Subset Sum Handout

The subset sum problem takes as input a set of integers $L = \{x_1, \ldots, x_n\}$ and a target sum b and asks for a subset $S \subseteq L$ such that the sum of the items in S is at most b but as close to b as possible.

We can solve this by dynamic programming where we let T[i, j] = 1 if a subset of x_1, \ldots, x_i can sum to exactly j, otherwise T[i, j] = 0. To fill it in row by row we do the following (where T has n rows and b + 1 columns).

To initialize: $T[1, x_1] = 1$; rest of row 1 is all zeros T[i, 0] = 1 for i = 1, 2, ..., n

for $i \leftarrow 2$ to nfor $j \leftarrow 1$ to $x_i - 1$ $T[i, j] \leftarrow T[i - 1, j]$ for $j \leftarrow x_i$ to b $T[i, j] \leftarrow 1$ iff T[i - 1, j] = 1 or $T[i - 1, j - x_i] = 1$ $T[i, j] \leftarrow 0$ otherwise

Thus we easily fill in the table in $\Theta(nb)$ time: this many entries, each taking O(1) time.