How to Protect DES Against Exhaustive Key Search
(An Analysis of DESX)*

Jor KivLian® PHILLIP ROGAWAY?

February 2, 2000

Abstract

The block cipher DESX is defined by DESXy k142 (z) = k2 & DESk (k1 & z), where @ de-
notes bitwise exclusive-or. This construction was first suggested by Rivest as a computationally-
cheap way to protect DES against exhaustive key-search attacks. This paper proves, in a formal
model, that the DESX construction is sound. We show that, when F' is an idealized block
cipher, FX 152 (2) = k2 ® Fy (k1 @ x) is substantially more resistant to key search than is F'.
In fact, our analysis says that FX has an effective key length of at least k +n — 1 — lgm bits,
where & is the key length of F', n is the block length, and m bounds the number of (z, FX g (z))
pairs the adversary can obtain.
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1 Introduction

With its 56-bit keys, the susceptibility of DES to exhaustive key search has been a concern and a
complaint since the cipher was first made public; see, for example, [6]. The problem has escalated
to the point that the Electronic Frontier Foundation has now built a DES cracking machine, at a
cost of less than 250,000 USD, that can find the right key in about three days.

There have been many approaches suggested for reducing DES’s vulnerability to exhaustive key
search. One is to construct a DES-based block cipher which employs a longer key. Triple DES
(typically in “EDE mode”) is the best-known algorithm in this vein. It seems to be quite se-
cure, but efficiency considerations make triple DES a rather painful way to solve the exhaustive
key-search problem. Specifically, triple-DES encryption/decryption requires multiple DES encryp-
tions/decryptions. This paper analyzes a much cheaper alternative.

Rivest [13] proposes an extension of DES, called DESX, defined by

“An earlier version of this paper appears in [11].
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The key K = k.k1.k2 (here, . denotes concatenation) is now 56 + 64 + 64 = 184 bits. Compatibility
with DES is maintained by setting k1 = k2 = 054, Existing DES CBC hardware can be gainfully
employed by first masking the plaintext, computing the DES CBC, and then masking the ciphertext.
Most significantly, DESX has hardly any computational overhead over ordinary DES. Yet, somehow,
DESX seems no longer susceptible to brute-force attacks of anything near 256 time.

It is unintuitive that one should be able to substantially increase the difficulty of key search by
something as simple as a couple of XORs. Yet working with the DESX definition for a while will
convince the reader that undoing their effect is not so easy.

Does the “DESX trick” really work to improve the strength of DES against exhaustive key search?
We give a strong positive result showing that it does.

1.1 Our model

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher and instead
treat it as a black-box transformation. Key-search strategies can be quite sophisticated; recent
work by [16] is an example. We want a model generous enough to permit sophisticated key-search
strategies, but restricted enough to permit only strategies that should be regarded as key search.
We accomplish this as follows.

Let x be the key length for a block cipher and let n be its block length. We model an ideal
block cipher with these parameters as a random map F : {0,1}* x {0,1}" — {0,1}" subject to
the constraint that, for every key k € {0,1}*, F(k,-) is a permutation on {0,1}". A key-search
adversary A is an algorithm that is given the following two oracles:

e An F oracle that on input (k,x) returns F(k,z) and

e An F~! oracle that on input (k,y) returns F~!(k,y).

Here, F~!(k,y) denotes the unique point = such that F(k,z) = y.

A generic key-search adversary tries to perform some cryptanalytic task (to be specified) that
depends on F. She may perform arbitrary computations, using unbounded amounts of time and
space, but her only access to F' is via the F/F~! oracles. We analyze the adversary’s rate of
success in performing her cryptanalytic task as a function of the number of accesses she makes to
the F//F~! oracles.

To apply the above framework to DESX, we first generalize the DESX construction. Given any
block cipher F' we define FX : {0,1}572" x {0,1}" — {0,1}" by
FX(k.k1.k2, ) = k2 ® F(k,k1 & x).

For both F' and FX we shall sometimes write their first argument (the key) as a subscript, Fj(z)
and FX g (x), where K = k.k1.k2. In this notation, Fj, may be thought of as a permutation chosen
from a family of (random) permutations that is indexed by k.

To investigate the strength of FX against key search we consider a generic key-search adversary A
with oracles for F' and F~!, and determine how well A can play the following “FX -or-n” game.



A is given an “encryption oracle” E that has been randomly chosen in one of two ways (each with
probability 0.5):

e A string K € {0,1}*2" is chosen at random and E(z) = FX g (z), or

e A random permutation 7 : {0,1}" — {0,1}" is selected and E(z) = n(z).

A must guess which way E was chosen. The adversary “wins” the game if it guesses correctly with
probability significantly greater than 0.5. The FX construction “works” if the resources needed to
do a good job in winning the above game are substantially greater than the resources that suffice
to break F'.

As an example of a generic key-search attack, consider the weakened form of DESX, denoted
DESW, in which k; is always set to 0/%1l; that is,

DESWy k2(z) = k2 & DESg(z).

It is possible to mount a generic key-search attack DESW as follows. Given & and DESWy, k, (z)
for an arbitrary z, one can compute ky = DESWy 1, () & DESk(z). Thus, one can go through all
possible keys k, compute the full key k.ko, and test with high confidence whether k.ky is correct
(given values of DESy k, (y) for a couple of random y-values). Hence, DESW is no stronger than
DES against generic key-search attacks. Similarly, if ko is always set to 0/k2l, there is no significant
improvement over DES, as long as two or three plaintext-ciphertext pairs are known. (There may be
marginal benefits if only a single plaintext-ciphertext pair is known, or for ciphertext-only attacks,
but these are comparatively small improvements.) It is the combination of the two XOR operations
that give DESX its superior resistance to generic key-search attacks.

1.2 Our main result

We show that if generic key-search adversary A can make only a “reasonable” number to queries
to her encryption oracle E, then A must ask an excessive number of F/F~! queries in the FX-
or-m game, and therefore A must run for an excessively long time. More specifically, we prove the
following. Let m bound the number of (x, FX g (x)) pairs that the adversary can obtain. (This
number is usually under the control of the security architect, not the adversary.) Suppose the
adversary makes at most ¢ queries to her F'/F~! oracles. (This number is usually under the control
of the adversary, not the security architect.) Then the adversary’s advantage over random guessing
(i.e., the difference between its success and failure probabilities) in winning the FX—-or-m game is
at most mt - 27" "+ In other words, the adversary’s advantage is at most ¢ - 2% H1Flem 4o the
effective key length of FX, with respect to key search, is at least K +n — 1 — lgm bits.

To understand the above formula, consider a block cipher F' with 55-bit keys and a 64-bit block
size.! Suppose key-search adversary A attacks FX and in the course of attack able to obtain up to
m = 239 blocks of enciphered data. Suppose A runs in time at most 7. Then A has advantage of
at most T'- 275576443041 — 7. 9788 4 just guess whether the enciphered data really was produced
by FX, and not a random permutation. A more detailed discussion of out main theorem is given
in Section 4.

! Why we use 55 and not 56 is explained in the discussion in Section 4.



Because our main result indicates the infeasibility of key search even when we ignore the adver-
sary’s space requirement, this “omission” only strengthens what we are saying. Similarly, “good”
adversaries may, necessarily, use an amount of time, 7', which far exceeds their number of F/F 1
queries, t. So focusing on the query complexity makes our results all the more meaningful. Likewise,
the weakness of the adversary’s goal only strengthens the lower bound.

1.3 Related work

Even and Mansour [8] construct a block cipher PX : {0,1}%" x {0,1}" — {0,1}" from a random
permutation P : {0,1}" — {0,1}" by PX12(z) = k2 @ P(kl1 @ z). Clearly this is a special case
of the FX construction, where x = 0. While their motivation for looking at PX was quite different
from our reasons to investigate FXX, our model and methods are, in fact, quite similar. Our main
result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its roots in [15].

Ron Rivest invented DESX by May of 1984, but never described the scheme in any conference or
journal paper [13]. DESX was implemented within products of RSA Data Security, Inc., and is de-
scribed in the documentation for these products [14]. DESX has also been described at conferences
organized by RSA DSI, including [18].

Encryption methods similar to DESX have been invented independently. Blaze [3] describes a
DES mode of operation in which the ith block of plaintext, x;, is encrypted using 112-bit key k.k1
by Egr1(z;) = si ® DESg(s; ® x), where s1s9--- is a stream of bits generated from k1 by, say,

8; = DES,(jl)(OM). Here DES(®) denotes the i-th iterate of DES.

Many authors have suggested methods to increase the strength of DES by changing its internal
structure. Biham and Biryukov [1] give ways to modify DES to use key-dependent S-boxes. Their
suggestions improve the cipher’s strength against differential, linear, and improved Davies’ attacks,
as well as exhaustive key search. Ciphers constructed using their ideas can exploit existing hardware
exactly in those cases where the hardware allows the user to substitute his own S-boxes in place of
the standard ones.

1.4 Discussion

UNDERSTANDING OUR RESULT. It may be hard to understand the ramifications of our main
theorem, thinking it means more or less than it does. DES, of course, is not a family of random
permutations, and we can not conclude from our theorem that there does not exist a reasonable
machine M which breaks DESX in say, 2% steps, given just a handful of (plaintext, ciphertext)
pairs. What we can say is that such a machine would have to exploit structural properties of DES;
it couldn’t get away with treating DES as a black-box transformation. This contrasts with the sort
of machines which have been suggested in the past for doing brute-force attack: they do treat the
underlying cipher as a black-box transformation.

We note that while remarkable theoretical progress has been made on the linear and differential
cryptanalysis of DES (see [2, 12]), thus far these attacks require an impractically large number of
plaintext-ciphertext pairs. To date, the only published practical attacks against DES remain of



the key-search variety. The DESX construction was not intended to improve the strength of DES
against differential or linear attack, or any other attack which exploits structural properties of DES,
and our theorem does not say anything about its resistance to these attacks.

ON EXPORT CONTROLS TIED TO KEY LENGTH. Our results indicate how algorithmically trivial it
can be to obtain extra bits of strength against exhaustive key-search attacks. The impact of these
extra bits can be especially dramatic when the key length of the block cipher had been intentionally
made short.

Consider a block cipher F' with a 40-bit key and a 64-bit plaintext. (Some products using such block
ciphers have been granted U.S. export approval.) With these parameters, our results guarantee an
effective key length (with respect to exhaustive key search) of at least 40+64—1—1gm = 103—1gm
bits. Under the reasonable assumption that m < 23°, say, the 40-bit block cipher has been modified,
with two XORs, to a new block cipher which needs at least 273-time for key exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to be is a policy which
can only make sense when it is impractical, for the given system, to replace the weak mechanism
by a strong one. Our results indicate that this impracticality must cover algorithmic changes that
are particularly trivial.

1.5 Outline of the paper

In Section 2 we define some basic notation and define what comprises a successful attack in our
model. In Section 3 we state and prove our main theorem on the security of the DESX construction.
Section 4 is a discussion. Section 5 demonstrates that the analysis underlying our main result is
tight. In Section 6 we give some conclusions and open questions.

2 Preliminaries

Let P, denote the space of all (2")! permutations on n-bits.

We say that F': {0,1}" x {0,1}"" — {0,1}" is a block cipher if for every k € {0,1}"*, F(k,-) € Pp.
We define Fj, by Fi(z) = F(k,z). Let B, denote the space of all block ciphers with parameters
x and n as above.

Given F € B, ,, we define the block cipher F~1 € B, , by F~1(k,y) = Fk_l(y) for k € {0,1}". We
interchangeably write F}, *(y) and F~1(k,y).

Given F € B, , we define the block cipher FX € Byion, by FX (K, z) = k2 ® Fj,(kl ® x), where
K = k.k1.k2, |k| = k and |k1| = |k2| = n. We interchangeably write FX g (z) and FX (K, ).

Given a partially defined function F' from a subset of {0,1}™ to a subset of {0,1}" we denote the
domain and range of F' by Dom(F') and Range(F'), and define Dom(F) = {0,1}"" — Dom(F’) and
Range(F) = {0,1}" — Range(F).

We denote by z & S the act of choosing z uniformly from S. We denote by Pr [A1; Ag; ... : E]|
the probability of event E after performing actions Aj, Ao, .. ..



Definition 2.1 A generic key-search adversary is an algorithm A with access to three oracles, E,
F and F~'. Thus, A may make queries of the form E(P), Fy(z) or F,;l(y) An (m,t) generic
key-search adversary is o key-search adversary that makes m queries to the E oracle and a total of
t queries to the F and F~' oracles.

For brevity, we will sometimes drop “generic” from our terminology. Note that A supplies the value
of k as part of its queries to the F' and F~! oracles. We denote by AF> F5 F ™' the adversary A
interacting with oracles E, F and F~!.

We now define what it means for a generic key-search adversary A to have an attack of a certain
specified effectiveness. We begin by choosing a random block cipher F' having k-bit keys and n-bit
blocks. This means that we select a random permutation Fj, & P, for each k-bit key k. Thus
each F} is chosen independently of each Fj:, for k # k'. Then we give A three oracles, F, F' and
F~1. The F and F~! oracles compute their respective functions. The encryptions oracle E, on
input z, either computes FX g (z) for a random (k + 2n)-bit key K or computes 7(z), for a random
permutation 7 & P,. The adversary’s job is to guess which type of encryption oracle she has.
Our convention is that A outputs a 1 to guess that the encryption oracle is computing FX k().
The adversary’s advantage is her probability of guessing right, normalized to a [—1,1] scale: —1
indicates a strategy that always guesses wrong; 1 indicates a strategy that always guesses correctly;
guessing at random, or always guessing the same way, will give an advantage of 0.

Definition 2.2 Let k,n > 0 be integers, and let € > 0 be a real number. Generic key-search
adversary A is said to e-break the FX -scheme with parameters k,n if

Advy def  p. [F & Bin; K & {0’1}l€+2n ARk, B R 1] B

Pr[F & Byeys mdt Pys A™ 1T <]
> €.

The above definition uses a very liberal notion of adversarial success. We are not demanding that,
say, A recover K; nor do we ask A to decrypt a random FX g(z) or to produce a not-yet-asked
(x, FX (x)) pair. Instead, we only ask A to make a good guess as to whether the (plaintext,
ciphertext) pairs she has been receiving really are FX-encryptions, as opposed to random nonsense
unrelated to F. The liberal notion of success is chosen to make our main result stronger: an
adversary’s inability to succeed becomes all the more meaningful.

3 Security of the DESX Construction
We now prove a bound on the security of F.X against generic key-search attacks.

Theorem 3.1 Let A be an (m,t) generic key-search adversary that e-breaks the FX -scheme with
parameters k,n. Then e < mt -2 %"+l



Proof: Before going into the detailed formal proof, we first give some intuition for why the proof
works. Clearly, the F’X construction is highly nonrandom if one makes all possible queries to the
E, F and F~! oracles. However, to defeat the adversary it suffices if the answers to its relatively few
queries are random. For intuition, we erroneously think of F' as a family of random functions (the
formal analysis takes into account the fact that Fj is a permutation). We conceptually view F as
undefined; as queries from the adversary come in we choose values of Fj(z) at random. Note that
queries to E(x) implicitly make queries to F. If in computing E(x) we make a “fresh” query to F
(one that hasn’t been made before), we generate a fresh answer that is random and independent of
the entire history of the attack. This fresh randomness ensures that the resulting value of E(z) will
be random. However, randomness cannot be guaranteed when new queries depend on previously
determined values. We show that if the adversary doesn’t make many queries, then these bad
events happen with low probability.

By a standard argument we may assume that A is deterministic (note that A may be computation-
ally unbounded).? We may also assume that A always asks exactly m queries of her first oracle,
which we shall call her E-oracle. (In the experiment that defines A’s advantage, E was instantiated
by either an FX g-oracle or a m-oracle.) We may assume that A always asks exactly ¢ queries (total)
to her second and third oracles, which we shall call her F- and F~!- oracles. We may further assume
that A never repeats a query to an oracle. We may assume that if F'(k,z) returns an answer y,
then there is no query (neither earlier nor later) of F~!(k,y). All of the above assumptions are
without loss of generality in the sense that it is easy to construct a new adversary, A’, that obeys
the above constraints and has the same advantage as A.

We begin by considering two different games that adversary A might play. This amounts to speci-
fying how to simulate a triple of oracles, (E, F, F~!), for the benefit of A.

A FIRST GAME. The first game we consider, Game R (for “random”), will exactly correspond to
the experiment which defines the second addend in the expression for the advantage:

Pp = Pr [A”’ A G 1] .

The definition of Game R will be defined to contain several extra (and seemingly irrelevant) steps.
These steps aren’t needed in order to behave in a manner which is identical (as far as A sees) to
the manner of behavior defining Pg; these steps are used, instead, to facilitate our analysis. To
identify these “irrelevant” instructions we put them in italics. Game R is defined in Figure 1.

Let Prg[-] denote the probability of the specified event with respect to Game R. From the definition
of Game R we can see that:

Claim 3.1 Prp [AE’FaF‘l — 1] — P

A SECOND GAME. Now we define a second game, Game X. It will exactly correspond to the
experiment which defines the first term in the expression for the advantage:

Px = Pr |A% s B F_lzl].

2 Roughly, given unlimited computational capabilities, A can derandomize its strategy by exhaustively searching
through its possible random choices, computing the effectiveness of the resulting attack, and then choosing the most
efficacious choice.



Game R

Initially, let F and E be undefined. Flag
bad is initially unset. Randomly choose
k= & {0,1}%, ki k3 & {0,1}". Then answer
each query the adversary makes as follows:

On oracle query E(P):
1. Choose C € {0,1}" uniformly from
Range(E).
2. If Fi«(P @ kY) is defined, then set
bad.
If F..M(C @ k3) is defined, then set
bad.

3. Define E(P) = C and return C.

On oracle query Fj(z):
1. Choose y € {0,1}" uniformly from
Range(F},).
2. If k = k* and E(z @ kY) is defined
then set bad.
If k=k* and E~1(y ® k3) is defined
then set bad.

3. Define Fj(x) = y and return y.

On oracle query Fk_l(y):

1. Choose z € {0,1}" uniformly from
Dom(Fy,).

2. Ifk=k* and E~'(y ® k3) is defined
then set bad.
If k = k* and E(xz @ k) is defined
then set bad.

3. Define Fj(x) = y and return z.

Game X

Initially, let F and E be undefined. Flag
bad is initially unset. Randomly choose
k= & {0,1%, ki k3 & {0,1}". Then answer
each query the adversary makes as follows:

On oracle query E(P):

1. Choose C € {0,1}" uniformly from
Range(E).

2. If Fi« (P @ k7) is defined, then C <
Fi-(P ® k) @ k3 and set bad.
Else if F,.'(C @ k3) is defined, then
set bad and goto Step 1.

3. Define E(P) = C and return C.

On oracle query Fy(z):

1. Choose y € {0,1}" uniformly from
Range(F},).

2. If k = k* and E(z @ k}) is defined
then y < E(x @ k}) ® k3 and set
bad.

Else If k = k* and E~1(y @ k) is de-
fined then set bad and goto Step 1.

3. Define Fj(z) = y and return y.

On oracle query Fk_l(y):

1. Choose z € {0,1}" uniformly from
Dom(Fy,).

2. If k= k* and E~'(y @ k3) is defined
then z «+ E~'(y ® k3) ® k} and set
bad.

Else if k¥ = k* and E(z @ kT) is de-
fined then set bad and goto Step 1.

3. Define Fj(z) = y and return z.

Figure 1: Games R and X.



Once again, the definition of Game X will be defined to contain some “irrelevant” instructions,
which, for clarity, are indicated in italics. Game X is defined in Figure 1.

The intuition behind Game X is as follows. We try to behave like Game R, choosing a random
(not-yet-provided) answer for each E(P), and a random (not-yet-provided for this k) answer for
each Fy (), F), '(y). Usually this works fine for getting behavior which looks like the experiment
defining Py. But sometimes it doesn’t work, because an “inconsistency” would be created between
the FX-answers and the F'/F~!-answers. Game X is vigilant in checking if any such inconsistencies
are being created. If it finds an inconsistency about to be created, it changes the value which it
had “wanted” to answer in order to force consistency. Whenever Game X resorts to doing this it
sets the flag bad. In the analysis, we “give up” (regard the adversary as having won) any time this
happens.

Let Prx[-] denote the probability of the specified event with respect to Game X. The definition
of Game X looks somewhat further afield from the experiment which defines Py. Nonetheless, we
claim the following:

Claim 3.2 Pry [AEEF*1 — 1] — Py.

The proof of this claim is in the appendix.

BOUNDING THE ADVANTAGE BY Prp [BAD]. In either Game R or Game X, let BAD be the event
that, at some point in time, the flag bad gets set. Games R and X have been defined so as to
coincide up until event BAD. To see this, note that the corresponding oracles in these games are
identical except for, in each case, Step 2. For each pair of oracles, Step 2 executes identical tests
and based on the outcome of the test either does nothing in both cases or sets bad in both cases
(and other actions, in which the oracles will differ in their behavior). Thus, any circumstance that
causes Game R and Game X to execute different instructions will also cause both games to set
bad. The following two claims follow directly from this fact.

Claim 3.3 Pry[BAD] = Pry [BAD].
Claim 3.4 Prp [ AP = 1[BAD | = Pry [APFF™ = 1[BAD .

What we have shown so far allows us to bound the adversary’s advantage by Prp [BAD].

Claim 3.5 Adv4 < Prg[BAD].

The argument is quite simple:
AdVA = PX — PR
— Pry [AEJ”F’I - 1] — Prg [AEvFvF’l =1 (Claims 3.1, 3.2)

= Prx [A=1BAD|Pryx [BAD] + Pry [4 = 1|BAD|Pry [BAD] —

BAD](Prx [A =1|BAD] — Prg[A =1|BAD])  (Claims 3.3, 3.4)

PYR[ —1|W]PI‘R [m] —PI‘R[A:].|BAD]PYR[BAD]
P R[
rr [BAD]



Initially, let F' and E be undefined. Answer each query the adversary makes as follows:

On oracle query E(P):

1. Choose C uniformly from Range(E).
2. Define E(P) = C and return C.

On oracle query Fy(x):

1. Choose y uniformly from Range(F},)
2. Define Fj(z) =y and return y.

On oracle query F,;l(y):

1. Choose z uniformly from Dom(F}).

2. Define Fj,(z) = y and return z.

After all the queries have been answered:

Flag bad is initially unset.

Randomly choose k* & {0,1}%, k¥, k3 & {0,1}".

If 3 x such that Fi«(x) and E(x @ ki) are both defined then set bad.
If 3y such that F..* (y) and E='(y © k%) are both defined then set bad.

Figure 2: Game R’

A THIRD GAME. We have reduced our analysis to bounding Prr [BAD]. To bound Prr [BAD], let
us imagine playing Game R a little bit differently. Instead of choosing £*, k], k5 at the beginning,
we choose them at the end. Then we set bad to be true or false depending on whether or not the
choice of k*, kT, k5 we’ve just made would have caused bad to be set to true in Game R (where the
choice was made at the beginning). The new game, Game R’, is described in Figure 2. From the
definition of Game R’ we see that:

Claim 3.6 Prp [BAD] = Pry [BAD].

COMPLETING THE PROOF. Now that we have sufficiently manipulated the games a simple calcula-
tion suffices to bound Prg [BAD], and, thereby, to bound Adv 4.

After having run the body of Game R/, not having yet chosen k*, k}, k3, let us simply count how
many of the 25727 choices for (k*, k}, k%) will result in bad getting set.

Fix any possible values for E and F which can arise in Game R'. Let |E| denote the number of
defined values E(P), and let |F| denote the number of defined values Fi(z). Note that |E| = m
and |F| =t. Fix E and F. Call (k*, k], k3) collision-inducing (with respect to E and F) if there
is some defined y = Fi(x) and some defined C' = E(P) such that

k*=k and (P® ki =2 or C®k;=y).
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Every choice of (k*, k7, k3) which results in setting bad is collision-inducing, so it suffices to upper
bound the number of collision-inducing (k*, k7, £k3).

Claim 3.7 Fiz E, F, where |E| = m and |F| =t. There are at most 2mt - 2" collision-inducing
(k*, kT, k3) € {0,1}" x {0,1}"™ x {0, 1}".

The reason is as follows: for each defined (P, E(P)), (k,x, Fx(z)) there are at most 2 - 2™ points
(k*, kT, k3) which induce a collision between these two points: they are the points (k*, k7, k3) €
{k} x{z ® P} x{0,1}"} U {k} x{0,1}" x {y & C}}. Now there are only mt pairs of such points,
so the total number of collision-inducing (k*, kT, k3) is as claimed.

Finally, in Game R’ we choose a triple (k*, k7, k3) at random, independent of E and F, so the
chance that the selected triple is collision-inducing (for whatever E' and F' have been selected) is at
most 2mt - 2" /26+2% = it . 2=+~ +1 " Pulling everything together, this probability bounds Adv 4,
and we are done. O

4 Discussion

HEALTH WARNINGS. We emphasize that when F' is a concrete block cipher, not a random one, its
internal structure can interact with the FX-construction in such a way as to obviate the construc-
tion’s benefits. As a trivial example, if F' already has the structure that it XORs plaintext and
ciphertext with key material, then doing it again is certainly of no utility.

Our model considers how much FX g looks like a random permutation (when key K is random and
unknown). It should be emphasized that some constructions which use block ciphers—particularly
hash function constructions—assume something more of the underlying block cipher. The current
results imply nothing about the suitability of F.X in constructions which are not based on FX g
resembling a random permutation when K is random and unknown.

We also note that our analysis as stated only considers chosen-plaintext attacks and does not estab-
lish resistance to chosen-ciphertext attacks. However, it is straightforward to adapt our techniques
to analyze chosen-ciphertext attacks, as was done in [8]. To do this, provide A an oracle for FX -1
in addition to her other oracles. Now m will count the sum of the number of queries to the FX
and FX ! oracles. Theorem 3.1 will then continue to hold. The proof changes very little.

STRUCTURE IN THE BLOCK CIPHER F WHEN F = DES. There is one structural property of
DES which has been suggested to assist in brute-force attacks: the DES key-complementation
property. This property comprises a significant sense in which DES is not behaving like a family of
(independent) random permutations. To “factor out” the key-complementation property just think
of DES as having a single key bit fixed. Then one can conclude that if this is the only structural
property of DES to be exploited by a generic key-search attack, DESX will still limit the attack’s
advantage to tm - 279764+ — ¢4y . 27118,
pre

SETTING k1 = k2. As mentioned in the introduction, the simpler constructions FX,  (z) =
Fi(z @ k1) and FXZ‘),:;(Q:) = k1 & Fj(z) don’t significantly improve F’s strength against generic
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key search attacks. But what about
FX} 41 (2) = k1 @ Fi(z & k1)?

Is it OK to use the same key inside and out? In fact this does work, in the sense that Theorem 3.1
still goes through, the proof little changed. We analyzed the more “standard” general construction,
with two keys, but the more restricted choice has the advantage of a smaller key-size, with no
obvious loss of security.

NICER KEY LENGTHS. A minor inconvenience of DESX is its strange key size. In applications it
would sometimes be preferable to extend the definition of DESX to use arbitrary-length keys, or
else to use keys of some fixed but more convenient length. Standard key-separation techniques can
be used.

We give one extension of DESX to arbitrary-length keys, as follows. Let X;_, denotes the first ¢
bits of X, let SHA-1 be the map of the NIST Secure Hash Standard, and let C, C'1 and C2 be
fixed, distinct, equal-length strings. When |K| # 184, we can define DESXk (z) to be equal to
DESX g (z) where K’ is defined as follows:

o If |[K| =56 then K’ = K.064 0%,

k= SHA-1(C.K);. 56,
e Otherwise, K' = k.k1.k2, where { k1 = SHA-1(CLK)_ g, and
k2 = SHA-1(C2.K)1. 64

Note that when |K| = 56, DESX g (z) = DESk(x).

DIFFERENTIAL AND LINEAR CRYPTANALYSIS. OPERATIONS BESIDES XOR. We emphasize that the
DESX construction was never intended to add strength against differential or linear cryptanalysis.
The attacks of [2, 12] do not represent a threat against DES when the cipher is prudently employed
(e.g., when a re-key is forced before an inordinate amount of text has been acted on); until these
attacks are improved, it suffices that the DESX construction does not render differential or linear
attack any easier.

Nonetheless, the proof of Theorem 3.1 goes through when @ is replaced by a variety of other
operations, and some of these alternatives may help to defeat attacks which were not addressed by
our model, including differential and linear cryptanalysis. In particular, an attractive alternative
to DESX may be the construction DESP} 1 42(z) = k2 + DESj (k1 + z), where LR + L'R’ %
L+L' . R+R', where |L| = |R| = |L'| = |R'| = 32 and + denotes addition modulo 232. Burt Kaliski
has suggested such alternatives, and analyzed their security with respect to differential and linear
attacks [9].

5 Our Bound is Tight

We have shown that the adversary’s advantage is at most ¢ - 27"~ #+!+e™  Turning this around,
the adversary needs e2"t*~1718™ queries to the F//F~! oracles to achieve an e-advantage. We
now show that for a wide range of m (comprising all m that would be considered in practice), an
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attacker can achieve an e-advantage using very close to 275 +4=18™ queries to the F//F~! oracles
(the exact bound is given in Corollary 5.2). This follows as a corollary of a more ambitious attack.
This attack recovers a key K' = k'.k1'.k} that is consistent with the encryptions under FX of m
plaintexts chosen before F//F~! oracles queries are made.

Theorem 5.1 Let m be even, m < 2" and € < % Let block cipher F be uniformly distributed
over By and let key K be uniformly distributed over {0, 1}++20  Then there exists an adversary
A(m, €) that initially makes m distinct queries ty,. .., ty, (the test set) to an oracle computing F X .

Adversary A then makes
(2n+n+1—lgm 412" 4 25) (6+ 62)

expected queries to the F/F~' oracles. With probability at least € it returns a K' such that
FXj(t;)) = FXg(t;) for 1 < i < m. The probability is taken over the choice of F, K and
A’s coin tosses.

It follows that our analysis is essentially tight, given our measure on the attacker’s resources, which
roughly corresponds to time. We note that in practice it is also important to consider the memory
requirements of an attack. Conceivably, there exists stronger attacks than require the same amount
of time but much less memory. However, if the time requirements are sufficiently high, the memory
issue becomes moot. However, it is an interesting open question whether imposing a reasonable
space bound can allow us to improve our time bound.

For reasonable values of m, the task performed by A(m,e€) is at least as strong as simply distin-
guishing FX from a purely random permutation. To see this, consider any family of permutations
{FXk} on {0,1}", where |K| = k+2n. We say that 7 is plausible if for some K, n(z;) = F Xk (x;)
for 1 < ¢ < m. If 7 is chosen at random, then by a simple counting argument the probability that
it is plausible is at most

2n+2n
2n(2n —1) - (2" —m+1)

For example, if K < n, n > 20 and m > 6 then p < 10724, So an attacker who outputs a 1 iff she
finds a consistent K has an advantage of € — p(k,n,m), which is essentially e.

A minor technical point is that our lower bound considered attackers with worst-case instead
of expected case bounds. However, we can convert the expectation into a worst case bound by
observing that if an expected value is at most () then with probability % it is at most 2¢). Hence,
for € < % we can set the attacker A in Theorem 5.1 to find a consistent K with probability 2¢, and
time out if A takes more than twice its expected number of F'/F~! queries. The resulting attack
uses at most

~
IA

(2n+ﬁ+271gm 4ontl 4 2n+1) (26+462)
< (2n+n+4—lgm +2n+3 +2m+3) ¢

worst-case queries to the F//F~1 oracles.

Finally, since the advantage is € — p(k,n,m) we can set € to be p(k,n,m) bigger than the desired
advantage, giving the following corollary.
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Corollary 5.2 Let m be even, m < 2" and € < % — p(k,n,m). Let block cipher F be uniformly
distributed over By ,, key K be uniformly distributed over {0, 1}52% and permutation m be a uni-
formly distributed over P,. There exists an attacker A(m,e€) that makes m queries to oracle E
(computing either F Xg or w) and makes

(2n+fi+4—1gm + on+3 + 25—1—3) (6 + p(K,, n, m))

queries to the F /F~1 oracles. A solves the FX-or-m game with advantage at least €.

The rest of this section is devoted to the proof of Theorem 5.1.

To motivate our attack, we can view the FX block cipher as choosing a random key k£ and then
applying the Even-Mansour construction to the function Fj. We can therefore trivially adapt
Daemen’s chosen-plaintext attack [5] on the Even-Mansour construction [8]. Unfortunately, we
don’t know the value of k, so we instead try all possible ones. For completeness, we describe the
attack and calculate the amount of work required to have probability € of recovering the key.

5.1 Preliminaries

Assume that m is even, m < 2", and € < 1. Fix a constant C € {0,1}" — {0"}. For any function
G, define G*(z) = G(z ® C) ® G(z). Given an oracle for G one can compute G® by making two
calls. Let the secret key K = k.k1.k2. Let E by a synonym for FX. By our definitions and simple

algebra we have
E2(z) = FP(z @ kl) = FR(z ® C @ k1).

5.2 The key-search attack

The attacker A works as follows. A uses oracles computing F'Xg (for the correct K = k.k1.k2)
and F'. Attacker A takes as parameters m, the maximum number of queries it is allowed to make
to the F' X oracle and € a required lower bound on its probability of producing a key K’ that gives
consistent results on the m queries it made to F X

A(m,€)
1. Choose Z1, ...,y 2 € {0,1}" arbitrarily so that
TEST = T1,. ., T2, 01 D O, o, Tpyp & C
has m distinct elements.
2. Using the F Xk oracle, compute F X (t) for ¢ € TEST, and then compute

FXI%(‘II)J s JFXI%(xm/Z)

3. Forifrom 1 to ¢ = [%] do

m

Choose r & {0,1}"
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For all &' € {0,1}",1 <j <m/2 do
If F2() = FX2(s))
/* Hope that k' =k and r is either x; ® k1 or z; @ C @ k1 */
Forkl' e {z; ®r,z; @ C dr}
k2 = Fy (1‘1 D kll) D FXK(xl), K’'=k’.k1’ k2’
If FXKI(t) = FXK(t) for t € TEST
Return K’

5.3 Analysis of the attack

To analyze this attack we first bound the oracle-query complexity of testing each r. We then
compute how many 7’s are needed in order to succeed with probability e.

We say that r is good if it is equal to z; ® k1 or z; & C @ k1 for some j. If r is good then as soon
as the attacker tries k¥’ = k (remember she tries them all) she will obtain the correct values for k1’
and then k2" (though she may try some incorrect values as well).

We now bound the expected cost of trying each r. For each value of r (good or bad), the attacker
must go through, in the worst case, all 2% values for k’. For each value of &', it makes 2 calls to
the F' oracle in order to compute F kA,(r), giving a base cost of 2¢! calls to the F' oracle. Given a
promising (4, k'), where F5(r) = FX2(z;), the attacker generates 2 guesses k1’, and for each k1’
she makes an additional call to the F' oracle to compute k2'. Testing &', k1’ and k2’ requires no
further oracle calls.

We note that for any r, when k' # k the distribution on F2(r) is random even conditioned on
the answers to all of the F X oracle queries. Thus, the expected number of j such that (k',7) is
promising is at most m /2" 1. When k' = k, then in the worst case, m/2 promising values of (', j)
are tested. Therefore, the expected extra number of oracle queries needed to evaluate promising
candidates is at most m + m2"/2" for each value of r selected. Thus, for each random r selected,
a total of at most

2n+1 +m+ m2nfn

expected queries are required.

It remains to bound the number of r’s that must be tried in order to select a good r with probability
at least e. There are exactly m good r out of 2" possibilities. Thus, the probability that £ randomly
selected values for r will fail to be good is at most (1 —m/2")¢. We thus need to select £ so that
(1 —m/2")f <1 —e. Using the identity (1 + a)® < e, it suffices to achieve

e,m£/2n S 1 _ 6,
or equivalently,

—2"1In(1 —¢)
—

L>

For 0 < e< 3, —In(l —€) < e+ €2, so it suffices that

n 2
g 2t e)

- m
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Summarizing the above, there is an attack which finds a consistent key K' = k'.k1'.k2" with
probability € using m queries to the F' X oracle, and at most expected

(2n+n+lflgm Loy 2&) (6+ 62)

queries to the F/F ! oracles. The theorem follows. <

6 Open Problems and Conclusions

ANALYSIS OF OTHER MULTIPLE ENCRYPTION SCHEMES. The model we have used to upper bound
the worth of key search applies to many other block-cipher based constructions. For example, it
would be interesting to apply this model to bound the maximal advantage an adversary can get
for triple DES with three distinct keys, or triple DES with the first and third keys equal, or the
method of [4]. It would be interesting to demonstrate that some construction has a better effective
key length than DESX (e.g., k +n — 1 bits).

UsE 11! Work within some standards bodies continues to specify encryption based on DES in its
most customary mode of operation. We recommend DESX (or one of its variants, as in Section 4).
DESX is efficient, DES-compatible, patent-unencumbered, and resists generic key-search attacks.
In virtually every way, DESX would seem to be a better DES than DES.
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A Proof of Claim 3.2

We first define a new game, denoted Game X', which matches more directly the definition of the
experiment defining Py. Game X' is defined in Figure 3.

First, note that no adversary can distinguish between playing Game X' and playing with ora-
cles (FX g, F, F~!) drawn according to the experiment defining Py. Indeed the only difference
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Initially, let F' be undefined. Randomly choose k* <~ {0, 1}*, k¥, k3 & {0,1}". Then answer each query the
adversary makes as follows:

On oracle query E(P):
1. If Fy+ (P @ ky) is defined, return Fy- (P @ ki) @ k.
2. Otherwise, choose y uniformly from Range(Fg+), define Fy« (P @ ki) = y and return y & k3.

On oracle query Fy(x):

1. If Fi(z) is defined, return Fy(z).
2. Else, choose y € {0,1}" uniformly from Range(F},), define Fy(z) =y and return y.

On oracle query Fk_l(y)3

1. If F;7'(y) is defined, return F}, ' (y).
2. Else, choose z € {0,1}" uniformly from Dom(F},), define Fy(z) = y and return x.

Figure 3: Game X'

between these scenarios is that Game X' generates values for F and F by “lazy evaluation,”
whereas the experiment defining Py would generate these values all at the beginning. Thus
Pry [ABRFT = 1] = Py,

We want to show that Pry [z‘lE’F’F_1 = 1] = Pry [AE’F’F_I =1 ]: no adversary A can distinguish
whether she is playing Game X or X’. We emphasize that A’s ability to distinguish between
Games X and X' is based strictly on the input/output behavior of the oracles; the adversary can
not see, for example, whether or not the flag bad has been set.

We will show something even stronger than that Games X and X' look identical to any adversary.
Observe that both Game X and Game X' begin with random choices for k*, k} and k3. We show
that, for any particular values of £*, k] and k3, Game X with these initial values of k*, k] and k3
is identical, to the adversary, to Game X' with these same initial values of k*, k7 and k3. So, for
the remainder of the proof, we consider £*, k] and k3 to have fixed, arbitrary values.

A basic difference between Games X and X' is that Game X separately defines both F and Fj-
while Game X' only defines Fi« and computes E(P), in response to a query P, by Fy- (P & ki) @ k5.
The essence of our argument is that Game X can also be viewed as answering its F/(P) queries by
referring to Fi~. But, strictly speaking, it’s not really Fi- which can be consulted. We get around
this as follows.

Given partial functions E and Fj~, these functions having arisen in Game X, define the partial
function Fj- by

Fy(x) if Fj-(x) is defined,
Fi-(z) = Exz®k}) ®k; if E(z @ kY) is defined, and
undefined otherwise.

Thus, in executing Game X, defining a value for F or Fj« can implicitly define a new value for ﬁk*
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At face value, the above definition might be inconsistent—this could happen if both Fj«(z) and
E(z @ kY) are defined for some z, and with “clashing” values (ie., values which do not differ by
k%). Before we proceed, we observe that this can never happen:

Claim A.1 Let E and Fy- be partial functions which may arise in in Game X. Then the function
Fi«, as described above, is well-defined.

The proof is by induction on the number of “Define” steps (Steps E-3, F-3, or F~'-3) in the
definition of Game X, where points of ﬁk* become defined as Game X executes. The basis (when
E and F~! are completely undefined) is trivial. So suppose that, in step E-3, we set E(P) = C. Isit
possible that this definition of E(P) will cause ﬁk* to become ill-defined? The only potential conflict
is between the new E(P) value and a value already selected for Fj«(P @ k7). So if Fi- (P @ k) was
not yet defined, there is no new conflict created in Step E-3. If, on the other hand, Fy-(P & k})
was already defined, then its value, by virtue of Step E-2, is E(P) @ k3. This choice results in B
remaining well-defined. The analysis for the cases corresponding to Steps F-3 and F~1-3 is exactly
analogous, and is omitted.

The function F-, as defined for Game X, also makes sense for Game X', where Fy-(z) = Fj-(z).
Our strategy, then, is to explain the effect of each E, Fj-, and F..! query strictly in terms of Fj.-.
We then observe that Game X' responds to its oracle queries in an absolutely identical way. This

suffices to show the games equivalent.

Case 1. We first analyze the behavior of Game X on oracle query E(P). To begin, note that
Game X never defines the value of F(P) unless it has received P as a query. So since A never repeats
queries (see the assumptions just following the theorem statement) £(P) must be undefined at the
time of query P. Consequently, at the time of query P, Fj- (P & k7) will be defined iff Fi- (P @ k7)
is defined, and Fy-(P @ k%) = F(P @ k¥). Case 1a. When Fi- (P & k) is defined, then Game X
returns the value of C = Fj- (P @ k¥) @ k. In this case, setting E(P) = C leaves Fj- unchanged.
Case 1b. When Fy- (P @ k*) is undefined, then C is repeatedly chosen uniformly from Range(E)
until F,.'(C @ k3) is undefined. By the definition of Fy- it follows that y = C' @ kj is uniformly
distributed over Range(Fj-). In this case, setting E(P) = C sets Fy-(P @ k) = v.

Now compare the above with Game X’ on query E(P). When Fi-(P @ k}) is defined, then C' =
Fy« (P & k) @ k3 is returned and no function values are set. When Fy-(P & k7) is undefined, y is
chosen uniformly from Range(F-), Fy-(P @ k?) is set to y (and implicitly Fy-(P @ k¥) is set to
y), and C' =y @ k3 is returned. Thus, the behavior of Game X' on query E(P) is identical to the
behavior of Game X on query E(P).

Case 2. We will be somewhat briefer with our analyses of the F' and F'~! oracles, which are similar
to the analysis above. Case 2a. On oracle query Fi(x), when k # k* then the behavior of Game X
is clearly identical to Game X'. Case 2b. When k = k* then Fi«(z) is defined iff a query of the
form E(z & k?) has been made. This holds iff Fj-(z) is defined (since Fi-(z) would not have been
queried before). By a straightforward argument the value y returned from the query F(z) will then
be y = E(z @ k¥) ® ki = Fj-(2) in both games. Case 2c. When Fj-(z) is undefined, then in both
games y is uniformly chosen from Range(ﬁk*) and ﬁk*(x) is defined to be y. Thus, in all cases,
Game X behaves identically to Game X'.
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Case 3. Finally, on oracle query Fk_l(y), the case k # k* is again trivial. When k& = k*, then
F,.X(y) will be defined iff E~'(y @ k3) is defined, in which case = E~'(y ® k3) ® kf = F.!(y) in
both games. When F.;'(y) is undefined, then in both games z is chosen uniformly from Dom(F}-)
and Fj- (x) is defined to be y. Again, Game X behaves identically to Game X'.
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