
Nonce-Based Symmetric Encryption

Phillip Rogaway

Dept. of Computer Science, University of California, Davis, CA 95616, USA, and
Dept. of Computer Science, Fac. of Science, Chiang Mai University, Chiang Mai,

Thailand 50200. rogaway@cs.ucdavis.edu, www.cs.ucdavis.edu/∼rogaway

Abstract. Symmetric encryption schemes are usually formalized so as
to make the encryption operation a probabilistic or state-dependent func-
tion E of the message M and the key K: the user supplies M and K and
the encryption process does the rest, flipping coins or modifying internal
state in order to produce a ciphertext C. Here we investigate an alterna-
tive syntax for an encryption scheme, where the encryption process E is
a deterministic function that surfaces an initialization vector (IV). The
user supplies a message M , key K, and initialization vector N , getting
back the (one and only) associated ciphertext C = EN

K (M). We concen-
trate on the case where the IV is guaranteed to be a nonce—something
that takes on a new value with every message one encrypts. We ex-
plore definitions, constructions, and properties for nonce-based encryp-
tion. Symmetric encryption with a surfaced IV more directly captures
real-word constructions like CBC mode, and encryption schemes con-
structed to be secure under nonce-based security notions may be less
prone to misuse.

1 Introduction

Ever since Goldwasser and Micali’s landmark paper [7], formalizations of en-
cryption schemes have usually made the encryption algorithm probabilistic or
stateful. In this paper we investigate a different formalization for symmetric en-
cryption: the encryption algorithm is made to be a deterministic function, but
one of its argument is a user-supplied initialization vector (IV). Effectively, the
user and not the encryption algorithm is made responsible for flipping coins or
maintaining state. We are mostly interested in security properties that can be
guaranteed as long as the IV is a nonce—a value, like a counter, used at most
once within a session. Our formalization leads to what is effectively a stronger
notion of privacy than the conventional formalization, and a stronger notion
of authenticity as well. As a consequence, encryption schemes created so as to
satisfy the given notions would seem to be less likely to be misused.

Comparing CBC and CBC$ encryption. Popular modes of operation for
encryption have always surfaced an IV. For example, CBC using block cipher
E : Key × {0, 1}n → {0, 1}n requires an initialization vector N ∈ {0, 1}n to
encrypt a message M (or decrypt a message C) under key K ∈ Key. See Fig. 1
and note that the initialization vector N is an argument to both CBC.Encrypt

Algorithm CBC.EncryptN
K(M)

if |M | �∈ {n, 2n, 3n, . . .} then return �
Parse M into M1 · · ·Mm where |Mi| = n
C0 ← N
for i← 1 to m do

Ci ← EK(Ci−1⊕Mi)
return C1 · · ·Cm

Algorithm CBC.DecryptN
K(C)

if |C| �∈ {n, 2n, 3n, . . .} then return �
Parse C into C1 · · ·Cm where |Mi| = n
C0 ← N
for i ∈ [1 .. m] do

Mi ← Ci−1⊕E−1
K (Ci)

return M1 · · ·Mm

Fig. 1. Scheme CBC. Encryption and decryption depend on a block cipher E : Key ×
{0, 1}n → {0, 1}n. The key space for the encryption scheme is the same as the key space
for the block cipher. The IV N is a string in {0, 1}n. The encryption scheme is the pair
(CBC.Encrypt, CBC.Decrypt).

Algorithm CBC$.EncryptK(M)
if |M | �∈ {n, 2n, 3n, . . .} then return �
Parse M into M1 · · ·Mm where |Mi| = n

C0
$←{0, 1}n

for i← 1 to m do
Ci ← EK(Ci−1⊕Mi)

return C0C1 · · ·Cm

Algorithm CBC$.DecryptK(C)
if |C| �∈ {2n, 3n, 4n, . . .} then return �
Parse C into C0C1 · · ·Cm where |Mi| = n

for i ∈ [1 .. m] do
Mi ← Ci−1⊕E−1

K (Ci)
return M1 · · ·Mm

Fig. 2. Scheme CBC$. The mechanism depends on a block cipher E : Key × {0, 1}n →
{0, 1}n. Scheme CBC$ is a conventional probabilistic encryption scheme. It is just like
scheme CBC except that the encryption routine chooses the IV N = C0 internally and at
random. The user cannot influence it. The value is now returned as part of the ciphertext.

and CBC.Decrypt. Given that the IV is manifestly present in the description of
CBC mode, this would seem to be quite natural. Nonetheless, the approach is
at odds with the customary formalization of symmetric encryption going back
to [1, 7]. There one explicitly models some particular manner of generating the
IV and folds this into the definition of the scheme. For example, one considers
the scheme CBC$ (i.e., CBC with a random IV) as defined in Fig. 2.

Contributions. It is the purpose of this note to treat symmetric encryption
schemes in a way that explicitly surfaces the IV. The approach was first taken
in our earlier work on authenticated encryption [9, 10], where we adopted nonce-
based definitions without significant comment. Here we more systematically in-
vestigate the explicit-IV notion of encryption, giving definitions, schemes, and
basic results. We are mostly interested in the case when the IV is a nonce: a
value used at most once within the scope of a given session.

This note aims to call attention to the explicit-IV approach and to nudge fu-
ture work on practical encryption schemes into adopting the nonce-based frame-
work.

Standards. We believe that a nonce-based formalization is especially desir-
able when constructing an encryption scheme for a cryptographic standard: not
knowing how the scheme will be used, standards would do well to achieve the
strongest practical notion of security relative to the interface that they export.
The viewpoint, then, is that conventional encryption modes like CBC, as defined
in Fig. 1, are “deficient” insofar as they do not achieve a strong notion of secu-
rity unless one assumes something very strong about their IVs. One would prefer
an encryption mode that achieves a strong notion of security when one assumes
very little about the IV. It is thus our view that, in the future, standards for
privacy-only encryption would do well to achieve privacy in the ind$-sense that
we will define in Section 3, while standards for authenticated encryption would
do well to achieve, in addition, authenticity in the auth-sense that we define in
Section 6.

Further reasons to surface the IV. Another motivation for explicitly
surfacing the IV in the definition of an encryption scheme is that books and
systems often get wrong what it may or may not be. Books will say, for example,
that it is fine for the IV in CBC encryption to be a counter, or the last block of
encrypted ciphertext. Both statements are wrong, assuming that one intends to
achieve a strong notion of privacy. Having definitions that expose the IV across
the encryption and decryption interface facilitates answering what the IV may
or may not be in order to achieve a given notion of security.

Yet another motivation for surfacing the IV is that it allows a particularly
simple and strong notion of privacy: indistinguishability from random bits with
respect to an adaptive chosen-plaintext-and-IV attack (ind$, to be defined later).
This attack allows the adversary to select not only plaintexts but also the IVs
that will be used to encrypt each of them, subject only to the constraint that
no IV is reused. The model captures the possibility that the IVs may be chosen
in an unfortunate way by the sender, possibly even influenced by the adversary,
when we do not mandate any requirement on an IV beyond its non-reuse.

A small warning. Nothing in this paper should be construed to suggest that
the overall encryption process should become deterministic and stateless (and
therefore not semantically secure). We are simply drawing the abstraction bound-
ary a little differently, so that what is “inside” the scheme is deterministic, the
coins or state being pushed “outside” of the scheme’s formalization.

2 Syntax

Definitions. We begin by specifying the syntax for an encryption schemes
that surfaces an IV. An IV-based encryption scheme is a pair of algorithms
Π = (E ,D) where E : Key × IV × Plaintext → Ciphertext and D : Key × IV ×
Ciphertext → Plaintext ∪ {�} are deterministic functions. These functions are
called the encryption function and the decryption function, respectively. Here
Key, IV, Plaintext, and Ciphertext are nonempty sets of strings, the first of which

is finite or is otherwise endowed with a distribution (the understood distribution
on a finite set being the uniform one). These sets are called the key space, the
IV space, the message space, and the ciphertext space. We insist that Plaintext
has the structure that if it contains a string M then it contains all string M ′

having the same length of M . We often write EN
K (M) in place of E(K, N, M)

and DN
K(C) in place of D(K, N, C). We require that DN

K(EN
K (M)) = M for

any K ∈ Key and N ∈ IV and M ∈ Plaintext. For simplicity, we assume that
|EN

K (M)| depends only on |M | and, in particular, that |EN
K (M)| = |M | + τ for

some constant τ associated to the encryption scheme. We call τ the stretch of
the encryption scheme.

Comments. (1) We will often use the word nonce instead of IV and write
Nonce, the nonce space, instead of IV. We do this when we are thinking in terms
of our nonce-based definitions for privacy (to follow). In such cases we call an
IV-based encryption scheme a nonce-based encryption scheme. (2) We emphasize
that E and D are deterministic and stateless functions: they may not flip coins
or preserve state. (3) What we call the ciphertext C = EN

K (M) is not expected
to encode the IV, even though the IV is needed to decrypt. The IV may be
communicated “out of band” to the receiver, maintained as shared state, or it
may be manifest within the context of use, as when the IV is the sector index on
a disk. (4) The encryption function E may be length-preserving, meaning that
|EN

K (M)| = |M | for all K, N, M . Indeed we will see that encryption schemes can
achieve a strong notion of privacy yet have zero stretch. (5) We have allowed for
the possibility that the decryption of a string returns the distinguished value �,
which is used to indicate that the ciphertext is invalid. While this possibility
is not needed for basic notions of privacy, it is needed for defining authenticity.
(6) We have not said that the sender or receiver are stateless and without benefit
of coins, only that E andD are. For example, the sender might maintain a counter
to use as the IV. It is simply that this state is outside of the functionality of E .

3 Privacy

Indistinguishability from random bits. Our preferred notion of privacy is
“indistinguishability from random bits under an adaptive chosen-plaintext-and-
IV attack”. To formalize this, let adversary A be an algorithm with access to
an oracle and let Π = (E ,D) be an IV-based encryption scheme with key space
Key and IV space Nonce and stretch τ . We define

Advind$
Π (A) = Pr

[
K

$← Key : AEK(·,·) ⇒ 1
]
− Pr

[
A$(·,·) ⇒ 1

]

The superscript ind$ may alternatively be written as ind$-cpa. The oracle EK(·, ·),
on input (N, M), returns EN

K (M). We sometimes refer to this as the real encryp-
tion oracle. The oracle $(·, ·), on input (N, M), returns |M | + τ random bits.
We sometimes refer to this as the random-bits oracle. Both oracles return � if
N �∈ Nonce or M �∈ Plaintext. When we write AO ⇒ 1 we are referring to the

event that adversary A, running with its oracle O, outputs the bit 1. We call
an adversary A nonce-respecting if it never repeats a nonce: if A asks (N, M) it
never subsequently asks (N, M ′) for any M ′. This must hold regardless of A’s
coins and regardless of oracle responses. We assume that any ind$-adversary is
nonce-respecting.

Conventional indistinguishability. It is more customary to focus on a
different kind of indistinguishability. Once again, let Π = (E ,D) be a nonce-
based encryption scheme with key space Key and nonce space Nonce. Let A be
an adversary. Then define

Advind
Π (A) = Pr

[
K

$← Key : AEK(·,·) ⇒ 1
]
− Pr

[
K

$← Key : AEK(·,0|·|) ⇒ 1
]

The superscript ind$ may alternatively be written as ind-cpa. The first oracle is
a real encryption oracle, as before. The second oracle, on input (N, M), returns
EK(N, 0|M|). We call this a fake encryption oracle. Both oracles return � if
N �∈ Nonce or M �∈ Plaintext, and A is always assumed to be nonce-respecting.

Resource-parameterized definitions. If Π is a scheme and A is an ad-
versary and Advxxx

Π (A) is a measure of adversarial advantage already defined,
then we write Advxxx

Π (R) to mean the maximal value of Advxxx
Π (A) over all

adversaries A that use resources bounded by R. Here R is a list of variables
specifying the resources of interest for the adversary in question. Adversarial
resources to which we pay attention are: t—the running time of the adversary;
q—the number of queries asked by the adversary; and σ—the aggregate length
of these queries, plus the length of the adversary’s output, measured in n-bit
blocks, for some understood value n. When an adversary’s query or output is a
tuple of strings we count in σ the sum of the lengths of each component. Frac-
tional blocks and the emptystring contribute 1. By convention, the running time
of an algorithm includes the description size of that algorithm, relative to some
standard encoding.

Discussion: favoring ind$ over ind. It is easy to verify that the ind$-notion
of security implies the ind-notion, and by a tight reduction, while ind does not
imply ind$ at all. (The same is true if one speaks of indistinguishability and in-
distinguishability from random bits in the context of conventional, probabilistic
encryptions schemes.) Despite this, typical encryption schemes seem to achieve
ind$ if they achieve ind (again, the IV is not considered part of the ciphertext).
Furthermore, it usually seems to be no extra trouble—indeed often it is slightly
simpler—to directly demonstrate that some scheme achieves ind$-security. Do-
ing so is useful because an encryption scheme that satisfies ind$ makes a more
versatile tool: it can be used to directly provide a pseudorandom generator or a
pseudorandom function. Finally, we find ind$ seems to us conceptually simpler
and easier to work with. For all of these reasons, we like ind$ as the basic notion
of security for building practical IV-based symmetric encryption schemes. (The
counter-argument is that being indistinguishable from random bits is irrelevant

Algorithm CBC1.EncryptN
K(M)

if |M | �∈ {n, 2n, 3n, . . .} then return �
Parse M into M1 · · ·Mm where |Mi| = n
C0 ← EK(N)
for i← 1 to m do

Ci ← EK(Ci−1⊕Mi)
return C1 · · ·Cm

Algorithm CBC1.DecryptN
K(C)

if |C| �∈ {n, 2n, 3n, . . .} then return �
Parse C into C1 · · ·Cm where |Mi| = n
C0 ← EK(N)
for i ∈ [1 .. m] do

Mi ← Ci−1⊕E−1
K (Ci)

return M1 · · ·Mm

Fig. 3. Scheme CBC1. The scheme is not secure.

to the goal of encryption—one would argue that it goes beyond the intuition
about what secure encryption needs to provide. This is true, and yet it has often
proven desirable to use definitions that reach beyond the minimal notions that
satisfy one’s intuition.)

4 Insecure Schemes

One can see right away that CBC encryption, as formalized in Fig. 1, is not
ind-secure (and therefore it is not ind$-secure, either). Here is the attack. The
adversary is trying to distinguish a real encryption oracle from a fake encryption
oracle. Let us write 0 for 0n and 1 for 0n−11. The adversary asks a first oracle
query of (N1, M1) = (0,0), getting back a ciphertext C1. Let it then ask a second
oracle query of (N2, M2) = (1,1), getting back a ciphertext C2. If C1 = C2 then
the adversary outputs 1 (it believes it has a real encryption oracle) and otherwise
the adversary outputs 0 (it knows that it has a fake encryption oracle). The
adversary is extremely efficient and has advantage close to 1.

The attack above motivates a natural alternative to CBC: encipher the IV
before using it, as shown in Fig. 3. We call the scheme CBC1. The key space
Key for the encryption scheme remains the key space for the underlying block
cipher and the nonce space Nonce is {0, 1}n.

The scheme CBC1 still doesn’t work. Let the adversary ask query (N1, M1) =
(0,00), obtaining ciphertext C1

1C2
1 (where C1

1 and C2
1 are n bits). Note that if

the adversary was provided a real encryption oracle then C2
1 = EK(C1

1). So next
the adversary asks (N2, M2) = (C1

1 , C2
1 ⊕C1

1), getting result C1
2 . If C1

2 = C2
1

then the adversary outputs 1 (it guesses that it has a real encryption oracle)
and otherwise it outputs 0 (it is sure that it has a fake encryption oracle). The
adversary is very efficient and is easily seen to have advantage close to 1.

5 Secure Schemes

Despite the two examples above, it is easy to construct encryption schemes that
are secure in the ind$-sense. Consider first the scheme CBC2 shown in Fig. 4.
The key space for the encryption scheme is Key × Key, where Key is the key

Algorithm CBC2.EncryptN
K1 K2(M)

if |M | �∈ {n, 2n, 3n, . . .} then return �
Parse M into M1 · · ·Mm where |Mi| = n
C0 ← EK1(N)
for i← 1 to m do

Ci ← EK2(Ci−1⊕Mi)
return C1 · · ·Cm

Algorithm CBC2.DecryptN
K1 K2(C)

if |C| �∈ {n, 2n, 3n, . . .} then return �
Parse C into C1 · · ·Cm where |Mi| = n
C0 ← EK1(N)
for i ∈ [1 .. m] do

Mi ← Ci−1⊕E−1
K2(Ci)

return M1 · · ·Mm

Fig. 4. Scheme CBC2. The scheme is now ind$-secure.

space for the underlying block cipher. The nonce space is {0, 1}n. The message
space remains ({0, 1}n)+.

The following result shows that CBC2 is a secure encryption scheme. We
state the theorem in the information-theoretic setting. Passing to the complexity-
theoretic case is standard. By Pn we mean the set of all permutations on {0, 1}n.
These are block ciphers in the natural way. Thus by CBC2[Pn × Pn] we mean
the scheme where EK1 and EK2 are random permutations from n bits to n bits.

Theorem 1. Let n, σ ≥ 1. Then Advind$
CBC2[Pn×Pn](σ) ≤ σ2/2n ♦

To avoid having two block-cipher keys one can modify the scheme using tricks
like those from [4, 8]. However, it is not necessary to use a CBC-like scheme at
all; simple forms of counter mode (CTR) work fine, and such modes have the
advantage of being parallelizable and working directly on messages of any bit
length. See Fig. 5 and Fig. 6 for two counter-based encryption schemes that are
secure in the ind$-sense. The first has a nonce space of {0, 1}n/2 (assume that n
is even) and the second has a nonce space of {0, 1}n but uses one extra block-
cipher call. When S is an n-bit string and i is a number we denote by S + i the
n-bit string which is obtained by treating S as a number (msb first, lsb last),
adding i modulo 2n to this number, and then turning the result back into an
n-bit string (msb first, lsb last).

One should anticipate use of CTR1 only on strings of at most 2n/2 blocks,
though the ind$-security of the scheme has already vanished by that point when
the block cipher E is a PRP. Similarly, one should anticipate use of CTR2 only
on strings of at most 2n blocks, though the ind$-security of the scheme has long
before vanished when the function E is a PRP.

Theorem 2. Let n, σ ≥ 1. Then Advind$
CTR1[Pn×Pn](σ) ≤ σ2/2n ♦

Theorem 3. Let n, σ ≥ 1. Then Advind$
CTR2[Pn×Pn](σ) ≤ σ2/2n ♦

Recall our conventions that when multiple strings are encoded into a single one,
as in a query (N, M), one sums the length of each component in the resource
bound σ. This explains the absence of a term like q2/2n in the second bound
(where q is the number of queries).

Algorithm CTR1.EncryptN
K(M)

S ← N ‖ 0n/2

m← �|M |/n	
P ← EK(S + 0) ‖ · · · ‖ EK(S + m− 1)
C ←M ⊕P [first |M | bits]
return C

Algorithm CTR1.DecryptN
K(C)

S ← N ‖ 0n/2

m← �|M |/n	
P ← EK(S) ‖ · · · ‖ EK(S + m− 1)
M ← C ⊕P [first |C| bits]
return M

Fig. 5. Scheme CTR1. The nonce space is Nonce = {0, 1}n/2.

Algorithm CTR2.EncryptN
K(M)

S ← EK(N)
m← �|M |/n	
P ← EK(S + 0) ‖ · · · ‖ EK(S + m− 1)
C ←M ⊕P [first |M | bits]
return C

Algorithm CTR2.DecryptN
K(C)

S ← EK(N)
m← �|M |/n	
P ← EK(S) ‖ · · · ‖ EK(S + m− 1)
M ← C ⊕P [first |C| bits]
return M

Fig. 6. Scheme CTR2. The nonce space is Nonce = {0, 1}n.

6 Stronger Notions of Security

One desirable property of a nonce-based encryption scheme is that an adversarial-
produced ciphertext, coupled with its nonce, should be deemed invalid by the
receiver unless, of course, it is a copy a prior ciphertext and its nonce. We recall
the definition of this property and then look at some other strong properties for
a nonce-based encryption scheme.

Authenticity. A notion of authenticity of ciphertexts for nonce-based encryp-
tion schemes was formalized in [9, 10] following [2, 3, 6]. Fix an encryption scheme
Π = (E ,D) with key space Key. Let A be a nonce-respecting adversary having
an encryption oracle EK . We say that A forges if it outputs a pair (N, C) such
that C was not the response to any EK(N, M) query and DN

K (C) �= �. We write

Advauth
Π (A) = Pr

[
K

$← Key : AEK(·,·) forges
]

and lift this to give resource-bounded definitions in the usual way.

Chosen-ciphertext security. We define indistinguishability from random
bits under an adaptive chosen-plaintext-and-ciphertext-and-IV attack. The defin-
ing game is as with ind$-cpa except that the adversary is given access to a
decryption oracle as well. Queries may not be repeated, and one forbids the
adversary from making a decryption query of (N, C) if the adversary already
encrypted some (N, M) and got back an answer C; and one similarly forbids
the adversary from encrypting (N, M) if the adversary already decrypted some

(N, C) and got back an answer M . These restrictions must hold regardless of
the adversary’s coins and query responses. Only such an adversary is deemed to
be valid.

In defining chosen-ciphertext security one restricts attention to valid, nonce-
respecting adversaries. Be clear that the nonce-respecting condition applies only
to encryption-queries; the adversary is free to repeat nonces in its decryption
oracle. This reflects the understanding that the party encrypting a message is the
one that is responsible for providing fresh nonces; the receiver may be stateless.

Let adversary A be a valid, nonce-respecting adversary and let Π = (E ,D)
be a nonce-based encryption scheme with key space Key. We define

Advind$-cca
Π (A) = Pr

[
K

$← Key : AEK(·,·) DK(·,·) ⇒ 1
]
− Pr

[
A$(·,·) DK(·,·) ⇒ 1

]

The notion can be modified to ind-cca in the natural way.

Nonmalleability. The notion of nonmalleability [5] can likewise be adapted to
the nonce-based setting. The adversary’s goal will be to create a ciphertext (per-
haps by modifying ciphertexts that have already been seen) whose underlying
plaintext is something about which the adversary can say something interest-
ing. More specifically, the adversary will output a tuple (N, C, f, Y) where N
is a nonce and C is a ciphertext and f : {0, 1}∗ ∪ {�} → {0, 1}∗ is a function
(encoded as a program) and Y is a string. The output should be interpreted as
the adversary guessing that the value of f(M) is Y , where M = DN

K(C). The
formalization captures the idea that the adversary should be right about this
guess no more often than that which is inherent for the game.

We define nonmalleability under chosen-ciphertext attack (meaning chosen-
plaintext-and-ciphertext-and-IV attack). Fix an encryption scheme Π = (E ,D)
having key space Key. Consider a valid, nonce-respecting adversary A with ac-
cess to oracles EK(·, ·) and DK(·, ·). At the end of the adversary’s execution, let
Dec(N, C) be {M} if the adversary asked some query EK(N, M) and this re-
turned C or the adversary asked some query DK(N, C) and this returned M . If
the adversary asked no such query, let Dec(N, C) = �. One can regard Dec(N, C)
as a “fake” decryption of C for nonce N : if the adversary trivially knows the
decryption to be M then the value is M ; otherwise, the value is the “guess” that
the ciphertext is invalid. Then define Advnm-cca

Π (A) as

Pr
[
K

$← Key; (N, C, f, Y) $← AEK(·,·) DK(·,·); M ← DK(N, C) : f(M) = Y
]
−

Pr
[
K

$← Key; (N, C, f, Y) $← AEK(·,·) DK(·,·); M ← Dec(N, C) : f(M) = Y
]

.

The corresponding notion for nonmalleability under a chosen-plaintext attack
(nm-cpa) is obtained by insisting that the adversary asks no decryption queries.

Though the above notions might not look like nonmalleability, really they
are: the case of creating a ciphertext C whose plaintext M is related to the
plaintext M ′ of some other ciphertext C′ is just a special case.

Implications and separations. As with probabilistic encryption, one can
work out the complete set of implications and separations between the defined
notions of nonce-based encryption. The most useful relations are that ind$ plus
auth implies both ind$-cca and nm-cca. The intuition is clear: the auth-condition
effectively renders useless the decryption oracle, since it almost always returns
an answer that the adversary can anticipate. We omit further details.

Achieving ind$+auth by generic composition. None of the ind$-secure
encryption schemes given so far (CBC$, CTR1, CTR2) achieve the auth-notion
of authenticity (nor do they achieve ind-cca or nm-cca). We now explain the
most natural way to modify an ind$-secure encryption scheme so as to achieve
authenticity (while preserving ind$-security, of course).

Let Π = (E ,D) be a nonce-based encryption scheme having nonce space
Nonce = {0, 1}n and key space Key. Think of Π as being ind$-secure. Let
F : Key′×Dom→ {0, 1}n be a function. Think of it as being good as a pseudoran-
dom function. We want to combine Π and F to give an encryption scheme Π̄ =
(Ē , D̄) that will be ind$-secure and auth-secure. The simplest possibilities are as
follows.

• Encrypt-then-PRF. Let ĒN
K K′(M) = C ‖ T where T = FK′(N ‖ C) and

C = EN
K (M). Decryption (including the test for authenticity) proceeds in

the natural way.
• PRF-then-Encrypt. Let ĒN

K K′(M) = EN
K (M ‖ T) where T = FK′(N ‖M).

Decryption (including the test for authenticity) proceeds in the natural
way.

The definition above assumes that the encryption scheme Π and the PRF F
have appropriately matching domains.

The situation is different from conventional probabilistic encryption [2]; for
nonce-based encryption, both encrypt-then-PRF and PRF-then-encrypt work
correctly. The proofs are straightforward; see [10] for the slightly more complex
setting in which “associated data” is present as well.

7 Directions

With the syntax of an encryption having been modified to surface the IV, a
number of weaker notions of security for IV-based encryption make sense. For
example, to capture the requirement that “the IVs are to be some fixed sequence
of distinct values” have the adversary provide a deterministic algorithm F that
gives distinct n-bit strings F (1), F (2), . . . , F (2n). Require indistinguishability
from random bits with respect to the resulting scheme.

In this paper we have only treated symmetric encryption. Public-key encryp-
tion schemes traditionally do not surface an IV. But they do use random bits,
and it makes just as much sense to consider nonce-based public-key encryption
schemes as it does to consider nonce-based symmetric encryption schemes. This
provides an approach to effectively weakening the requirement for randomness
on the sender.

Acknowledgments

Some of the ideas of this note were developed in the course of preparing some
lectures for Helsinki University of Technology, Finland (April 2002); thanks to
Helger Lipmaa for inviting me to give those lectures. Kind thanks also to Mihir
Bellare, John Black, and Tom Shrimpton for their useful comments and sugges-
tions. This work was supported under NSF CCR-0208842 and a gift from CISCO
Systems.

References

1. M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation. Proceedings
of 38th Annual Symposium on Foundations of Computer Science (FOCS 97),
IEEE, 1997.

2. M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. Advances in
Cryptology—Asiacrypt ’00, Lecture Notes in Computer Science, vol. 1976,
T. Okamoto, ed., Springer-Verlag, 2000.

3. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to ex-
ploit nonces or redundancy in plaintexts for efficient cryptography. Advances
in Cryptology—Asiacrypt ’00. Lecture Notes in Computer Science, vol. 1976,
T. Okamoto, ed., Springer-Verlag, 2000.

4. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-
key constructions. Advances in Cryptology—CRYPTO ’00, Lecture Notes in
Computer Science, vol. 1880, M. Bellare, ed., Springer-Verlag, pp. 197–215, Aug
2000.

5. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Com-
puting, vol. 30, no. 2, pp. 391–437, 2000.

6. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure
modes of operation. Fast Software Encryption (FSE 2000), Lecture Notes in
Computer Science, vol 1978, B. Schneier, ed., Springer, pp. 284–299, 2001.

7. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, vol. 28, pp. 270–299, April 1984.

8. T. Iwata and K. Kurosawa. One-key CBC MAC. Fast Software Encryption (FSE
2003). Lecture Notes in Computer Science (to appear), 2003.

9. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode
of operation for efficient authenticated encryption. Proceedings of the 8th ACM
Conference on Computer and Communications Security (CCS ’01), ACM Press,
pp. 196–205, 2001.

10. P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the
9th ACM Conference on Computer and Communications Security (CCS ’02),
ACM Press, pp. 98–107, 2002.

