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Abstract

Detecting code clones has many software engineering
applications. Existing approaches either do not scale to
large code bases or are not robust against minor code modi-
fications. In this paper, we present an efficient algorithm for
identifying similar subtrees and apply it to tree representa-
tions of source code. Our algorithm is based on a novel
characterization of subtrees with numerical vectors in the
Euclidean spaceRn and an efficient algorithm to cluster
these vectors w.r.t. the Euclidean distance metric. Subtrees
with vectors in one cluster are considered similar. We have
implemented our tree similarity algorithm as a clone detec-
tion tool calledDECKARD and evaluated it on large code
bases written in C and Java including the Linux kernel and
JDK. Our experiments show thatDECKARD is both scal-
able and accurate. It is also language independent, appli-
cable to any language with a formally specified grammar.

1. Introduction
Many software engineering tasks, such as refactoring,

understanding code quality, or detecting bugs, require the
extraction of syntactically or semantically similar code frag-
ments (usually referred to as “clones”). Various stud-
ies show that much duplicated code exists in large code
bases [10,11,17]. Many such duplications can be attributed
to poor programming practice since programmers often
copy-paste code to quickly duplicate functionality. This ten-
dency not only produces code that is difficult to maintain,
but may also introduce subtle errors [6,17].

Different approaches for clone detection have been pro-
posed in the literature. Most of them focus on detecting syn-
tactic similarity of code because checking semantic similar-
ity is very difficult (and in general undecidable). Roughly,
these techniques can be classified into four categories:
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String-based: A program is first divided into strings, usu-
ally lines. Each code fragment consists of a contiguous se-
quence of strings. Two code fragments are similar if their
constituent strings match. The representative work here is
Baker’s “parameterized” matching algorithm [1, 2], where
identifiers and literals are replaced with a global constant.

Token-based: A program is lexed to produce a token
sequence, which is scanned for duplicated token subse-
quences that indicate potential code clones. Compared to
string-based approaches, a token-based approach is usually
more robust against code changes such as formatting and
spacing. CCFinder [10] and CP-Miner [17] are perhaps the
most well-known among token-based techniques.

Tree-based: A program is parsed to produce a parse tree
or abstract syntax tree (AST) representation of the source
program. Exact or close matches of subtrees can then be
identified by comparing subtrees within the generated parse
tree or AST [4,5,21]. Alternatively, different metrics canbe
used tofingerprint the subtrees, and subtrees with similar
fingerprints are reported as possible duplicates [15,19].

Semantics-based: Semantics-aware approaches have
also been proposed. Komondoor and Horwitz [14] suggest
the use of program dependence graphs (PDGs) [8] and
program slicing [22] to find isomorphic PDG subgraphs
in order to identify code clones. They also propose an
approach to group identified clones together while preserv-
ing the semantics of the original code [13] for automatic
procedure extraction to support software refactoring. Such
techniques have not scaled to large code bases.

Of existing techniques, CCFinder [10], CP-Miner [17],
and CloneDR [4,5] represent the state-of-the-art. However,
they either have limited scalability or are not robust against
code modifications. Our goal is to develop a practical detec-
tion algorithm that is both scalable and robust against code
modifications.

In this paper, we introduce a novel algorithm for
detecting similar trees and a practical implementation,
DECKARD, for detecting code clones. The main idea of
the algorithm is to compute certaincharacteristic vectorsto
approximate structural information within ASTs and then
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Figure 1. System architecture.

adaptLocality Sensitive Hashing(LSH) [7] to efficiently
cluster similar vectors (and thus code clones).

Figure 1 shows the high level architecture of DECKARD:
(1) A parser is automatically generated from a formal syn-
tax grammar; (2) The parser translates sources files into
parse trees; (3) The parse trees are processed to produce
a set of vectors of fixed-dimension, capturing the syntac-
tic information of parse trees; (4) The vectors are clustered
w.r.t. their Euclidean distances; and (5) Additional post-
processing heuristics are used to generate clone reports.

We have done extensive empirical evaluation of
DECKARD on large software (including JDK and the Linux
kernel) and compared it against CloneDR and CP-Miner.
Results indicate that DECKARD is both scalable and accu-
rate: it detects more clones in large code bases than both
CloneDR and CP-Miner; it is more scalable than CloneDR,
which is also tree-based, and is as scalable as the token-
based CP-Miner.

The rest of the paper is structured as follows. We first
give a detailed overview of our algorithm and illustrate it
with an example (Section 2) before presenting details of
our detection algorithm (Section 3). Next, we discuss our
implementation and evaluation of DECKARD (Section 4).
Finally, we survey related work (Section 5) and conclude
with a discussion of future work (Section 6).

2. Overview

This section illustrates the main steps of our algorithm
with a small example. Consider the following two C pro-
gram fragments for array initialization:

for (int i= 0; i < n; i++)
x[i]= 0;

for (int i= 0; i < n; i++)
y[i]= "";

The parse trees for these two code segments are identical,
because the code differs only in identifier names and literal
values. The parse tree is shown in Figure 2. A pairwise
tree comparison could be used to detect such clones, but
this is expensive for large programs because of the possibly
large number of subtrees. In the following, we demonstrate
a novel, efficient technique for tree similarity detection.

Characteristic Vectors We introducecharacteristic vec-
tors to capture structural information of trees (and forests).
This is a key step in our algorithm. The characteristic vector
of a subtree is a point〈c1, . . . , cn〉 in the Euclidean space,
where eachci represents the count of occurrences of a spe-
cific tree pattern in the subtree. For this example, we let

the tree patterns be the node kinds in a parse tree. We will
introduce more general tree patterns in Section 3.2.1.

Not all nodes in parse trees are essential for capturing
tree structural information; many are redundant w.r.t. their
parents, or were introduced to simplify the grammar spec-
ification. We thus also distinguish betweenrelevant and
irrelevant nodes. Example irrelevant nodes include C to-
kens ‘[’ and ‘]’ and parentheses (‘(’ and ‘)’). In Figure 2,
nodes with solid outlines are relevant while nodes with dot-
ted outlines are irrelevant. Irrelevant nodes do not have an
associated pattern or dimension in our vectors. For the ex-
ample, the ordered dimensions of characteristic vectors are
occurrence counts of the relevant nodes:id, lit, assign e,
incr e, array e, cond e, expr s, decl, and for s. Thus,
the characteristic vector for the subtree rooted atdecl is
〈1, 1, 0, 0, 0, 0, 0, 1, 0〉 because there is anid node, alit node,
and adecl node.

Characteristic vectors are generated with a post-order
traversal of the parse tree by summing up the vectors for
children with the vector for the parent’s node. As an
example, the vector for the subtree rooted atassign e
〈2, 1, 1, 0, 1, 0, 0, 0, 0〉 is the sum of the vectors forar-
ray e (〈2, 0, 0, 0, 1, 0, 0, 0, 0〉), = (〈0, 0, 0, 0, 0, 0, 0, 0, 0〉),
primary e (〈0, 1, 0, 0, 0, 0, 0, 0, 0〉), and the additional node
assign e (〈0, 0, 1, 0, 0, 0, 0, 0, 0〉). Users may also specify
a minimum token count to suppress vectors for small sub-
trees; this helps to avoid reporting small clones which are
often uninteresting. For example, in Figure 2, with this
threshold set to three, no vector is generated for the subtree
rooted atincr e. By varying this threshold, we can system-
atically find only large clones.

Vector Merging The aforementioned technique consid-
ers only those code fragments with a corresponding sub-
tree in the parse tree. However, developers often insert
code fragments within some larger context. Differences in
the surrounding nodes may prevent the parents from being
detected as clones (see Section 4.3.2 for a concrete exam-
ple from JDK 1.4.2). To identify these cloned fragments,
we use a second phase of characteristic vector generation,
calledvector merging, to sum up the vectors of certain node
sequences. In this phase, a sliding window moves along a
serialized form of the parse tree. The windows are chosen
so that amerged vectorcontains a large enough code frag-
ment. In Figure 2, for example, we merged the vectors for
decl andcond e to get the vector〈3, 1, 0, 0, 0, 1, 0, 1, 0〉 for
the combined code fragment.

The choice of which nodes in the tree to merge is impor-
tant; these nodes must make good boundaries among cloned
code, while not frequently containing large subtrees. Roots
of expression trees, likely the atomic units for copy-pasting,
are usually good choices for merging vectors. We call such
chosen nodesmergeablenodes. In Figure 2, the mergeable
nodes are the four children of thefor statement. It is not
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Figure 2. A sample parse tree with generated characteristic vectors.

necessary for mergeable nodes to be on a same level. If
we had chosen any statement to be mergeable, the entire
for loop would have been considered as one unit without
subsequences. In Figure 2, we also required each merged
fragment to contain at least five tokens. If we had required
six tokens instead, there would have been only two merged
vectors instead of three: (1) fordecl andcond e, and (2)
for cond e, incr e, andexpr s.

Vector Clustering and Post-Processing After we have
selected the characteristic vectors, our algorithm clus-
ters similar characteristic vectors w.r.t. their Euclidean
distances to detect cloned code. The two sample C
code fragments both have the same characteristic vec-
tor 〈6, 2, 1, 1, 1, 1, 1, 1, 1〉, and DECKARD reports them as
clones. Because the number of generated vectors can be
large, an efficient clustering algorithm is needed. We will
present such an algorithm in Section 3.

The subtree rooted atexpr s also illustrates the need
for post-processing. When a particular subtree has a low
branching factor, the vectors for a child and its parent are
usually very similar and thus likely to be detected as clones.
We employ a post-processing phase following clustering to
filter such spurious clones.

3. Algorithm Description

In this section, we give a detailed technical description
of our tree similarity algorithm: we first formally define
a clone pair (Section 3.1), then introduce characteristic
vectors for trees and describe how to generate them (Sec-
tion 3.2), and finally explain our vector clustering algorithm
for clone detection (Section 3.3).

3.1. Formal Definitions

In this paper, we view clones as syntactically similar
code fragments. Thus, it is natural to define the notion of
similar trees first. We follow the standard definition and use
tree editing distance as the measure for tree similarity.

Definition 3.1 (Editing Distance) The editing distanceof
two treesT1 andT2, denoted byδ(T1, T2), is theminimal
sequenceof edit operations (either relabel a node, insert a
node, or delete a node) that transformsT1 to T2.

Definition 3.2 (Tree Similarity) Two treesT1 andT2 are
σ-similar for a given thresholdσ, if δ(T1, T2) < σ.

We are now ready to define the notion of aclone pair.

Definition 3.3 (Clone Pair) Two code fragmentsC1 and
C2 are called aclone pair if their corresponding tree rep-
resentationsT1 andT2 areσ-similar for a specifiedσ.

Such a definition based on tree editing distance faithfully
captures how similar two code fragments are. However, it
does not lead naturally to an efficient algorithm because:
(1) the complexity of computing the editing distance be-
tween two trees is expensive,1 and (2) it requires many pair-
wise comparisons to locate similar code in large software
(quadratic in the worst case). Instead, we approximate tree
structures using numerical vectors and reduce the tree simi-
larity problem to detecting similar vectors. Before describ-
ing the details, we define the two common distance mea-
sures for numerical vectors that we use in this paper.

Definition 3.4 (Distance Measures on Vectors)Let v1 =
〈x1, . . . , xn〉 andv2 = 〈y1, . . . , yn〉 be twon-dimensional
vectors. TheHamming distanceof v1 andv2, H(v1, v2),
is their l1 norm, i.e., H(v1, v2) = ||v1 − v2||1 =
∑n

i=1 |xi − yi|. The Euclidean distanceof v1 and v2,
D(v1, v2), is theirl2 norm,i.e., D(v1, v2) = ||v1 − v2||2 =
√

∑n

i=1(xi − yi)2.

Such distance measures are much easier to compute and
efficient algorithms for near-neighbor queries exist for nu-
merical vectors. Based on these observations, we show how
to abstract trees into vectors and how to efficiently cluster
similar vectors to detect code clones.

1More precisely, for two treesT1 andT2 the complexity isO(|T1| ×
|T2|×d1 × d2), where|Ti| is the size ofTi anddi is the minimum of the
depth ofTi and the number of leaves ofTi [24].
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3.2. Characteristic Vectors for Trees

Recall that in Section 2 we illustrated the use of occur-
rence counts of relevant nodes to abstract a subtree (or sub-
trees). That example shows a special case of the general
construction that we will introduce in this section. In par-
ticular, we describe a general technique to map a tree (or
forests) to a numerical vector which characterizes the struc-
ture of the given tree. Without loss of generality, we assume
trees are binary [12].

3.2.1 Atomic Tree Patterns and Vectors

Given a binary tree, we define a family ofatomic tree pat-
terns to capture structural information of a tree. They are
parametrized by a parameterq, the height of the patterns.

Definition 3.5 (q-Level Atomic Tree Patterns) A q-level
atomic patternis a complete binary tree of heightq. Given
a label setL, including the empty labelǫ, there are at most
|L|2q−1 distinctq-level atomic patterns.

Definition 3.6 (q-Level Characteristic Vectors) Given a
treeT , its q-level characteristic vector(denoted byvq(T ))
is 〈b1, b2, . . . , b|L|2

q
−1〉, wherebi is the number of occur-

rences of thei-th q-level atomic pattern inT .

For example, in Figure 2, we used the relevant nodes as
the1-level atomic patterns and characterized trees with their
1-level characteristic vectors.

Abstracting trees asq-level vectors yields an alternative
to the standard tree similarity definition based on editing
distance. Our plan is to use Euclidean distance betweenq-
level vectors to approximate the editing distance of the cor-
responding trees. We adapt a result of Yanget al. on com-
puting tree similarity [23] to show that this approximation
is accurate.

Theorem 3.7 (Yanget al., Thm. 3.3 [23]) For any trees
T1 andT2 with editing distanceδ(T1, T2) = k, thel1 norm
of theq-level vectors forT1 andT2, H(vq(T1), vq(T2)), is
no more than(4q − 3)k.

For any two integer vectorsv1 andv2,
√

H(v1, v2) ≤
D(v1, v2) ≤ H(v1, v2). Thus we have the following corol-
lary that relates the tree editing distance of two trees with
the Euclidean distance of theirq-level vectors.

Corollary 3.8 For any treesT1 andT2 with editing distance
δ(T1, T2) = k, thel2 norm of theq-level vectors forT1 and
T2, D(vq(T1), vq(T2)), is no more than(4q − 3)k and no
less than the square root of thel1 norm,i.e.,
√

H(vq(T1), vq(T2)) ≤ D(vq(T1), vq(T2)) ≤ (4q − 3)k.

Corollary 3.8 suggests that eitherD(vq(T1),vq(T2))
4q−3 or√

H(vq(T1),vq(T2))

4q−3 can be used as a lower bound of the tree
editing distanceδ(T1, T2). When such a lower bound is
larger than a specific thresholdσ, T1 andT2 cannot beσ-
similar and thus not a clone pair for the specifiedσ. On

Algorithm 1 q-Level Vector Generation
1: function QVG(T : tree, C : configuration): vectors

2: V ← ∅
3: TraverseT in post-order
4: for all nodeN traverseddo
5: VN ←

P

n ∈ children(N) Vn

6: if IsRelevant(N , C) then
7: id← IndexOf(N, C)
8: VN [id]← VN [id] + 1
9: end if

10: if IsSignificant(N , C)
V

11: ContainsEnoughTokens(VN , C) then
12: V ← V

S

{VN}
13: end if
14: end for
15: returnV
16: end function

the other hand, when the lower bound is smaller thanσ,
δ(T1, T2) is likely to be less thanσ too. Hence, we reduce
the problem of tree similarity to the problem of detecting
similar q-level vectors.

Notice that Definition 3.6, Theorem 3.7, and Corol-
lary 3.8 can be relaxed to work on tree forests (a collection
of trees) as well because tree forests can be viewed as a tree
by adding an additional root. This is important for deal-
ing with code fragments that do not correspond to a single
subtree in the parse tree (cf. Section 2).

3.2.2 Vector Generation

There are two phases of vector generation: one for subtrees
and one for subtree forests (for generating merged vectors).
Algorithm 1 shows how vectors are generated for subtrees.
Given a parse treeT , we essentially perform a post-order
traversal ofT to generate vectors for its subtrees. Vectors
for a subtree are summed up from its constituent subtrees
(line 5). Certain tree patterns may not be important for a
particular application, so we distinguish between relevant
and irrelevant tree patterns (a concept that is similar to and
generalizes relevant and irrelevant nodes from Section 2).
If a pattern rooted at a particular nodeN is relevant (line
6), we look up its index in the vector space usingIndexOf

(line 7) and update the vector correspondingly (line 8).
We also allow vectors to be generated only for certain

subtrees, for example those that are more likely to be units
of clones, such as subtrees rooted at declarations, expres-
sions and statements. Users can select thosesignificant
node kinds to generateq-level vectors (line 10). For ex-
ample, ifarray e in Figure 2 had been specified asinsignif-
icant, no vector would have been generated for it. In addi-
tion, we may want to ignore small subtrees that contain too
few tokens (cf. incr e in Figure 2). Users can define a min-
imal token requirement on the subtrees, which is enforced
with ContainsEnoughTokens (line 11).

Algorithm 2 shows how vectors are generated for adja-
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Algorithm 2 Vector Merging for Adjacent Tree Forests
1: function WVG(T : tree, C : configuration): vectors

2: ST ← Serialize(T, C); V ← ∅
3: step← 0; front← ST.head

4: back ← NextNode(ST.head, C)
5: repeat
6: Vmerged←

P

n∈[front,back] Vn

7: while back 6= ST.tail
V

8: ¬ContainsEnoughTokens(Vmerged, C) do
9: back ← NextNode(back, C)

10: Vmerged←
P

n∈[front,back] Vn

11: end while
12: if RightStep(step, C) then
13: V ← V

S

{Vmerged}
14: end if
15: front←NextNode(front, C)
16: step← step + 1
17: until front = ST.tail

18: returnV
19: end function

cent subtree forests. It serializes the parse treeT in post-
order, then moves asliding windowalong the serialized tree
to mergeq-level vectors from nodes within the sliding win-
dow. Because it is not useful to include every node in the
serialized tree, we select certain node kinds (calledmerge-
able nodes) as the smallest tree units to be included (to make
larger code fragments in the context of clone detection). For
example, the significant nodes,decl, cond e, incr e, and
expr s in Figure 2 are specified as mergeable. Users can
specify any suitable node kinds as mergeable for a particu-
lar application. If both a parent and a child are mergeable,
we exclude the child in the sliding window for the benefit of
selecting larger clones. This is implemented byNextNode

in Algorithm 2 (line 9).
Users can also choose the width of the sliding window

and how far it moves in each step,i.e., its stride. Larger
widths allow larger code fragments to be encoded together,
and may help detect larger clones, while larger strides re-
duce the amount of overlapping among tree fragments, and
may reduce the number of spurious clones. With sliding
windows of different widths, our algorithm can generate
vectors for code fragments of different sizes and provide
a systematic technique to find similar code of any size.

3.3. Vector Clustering

Given a large set of vectorsV, quadratic pairwise com-
parisons are computationally infeasible for similarity de-
tection. Instead, we can hash vectors with respect to the
Euclidean distances among them, and then look for similar
vectors by only comparing vectors with equal hash values.

Locality Sensitive Hashing(LSH) [7,9] is precisely what
we need. It constructs a special family of hash functions that
can hash two similar vectors to the same hash value with
arbitrarily high probability and hash two distant vectors to

the same hash value with arbitrarily low probability. It also
helps efficiently find near-neighbors of a query vector. In
the following, we provide some basic background on LSH,
then discuss how it is applied for clone detection.

3.3.1 Locality Sensitive Hashing

Definition 3.9 ((p1, p2, r, c)-Sensitive Hashing)A family
F of hash functionsh : V → U is called (p1, p2, r, c)-
sensitive(c ≥ 1), if ∀vi, vj ∈ V,
{

if D(vi, vj) < r thenProb[h(vi) = h(vj)] > p1

if D(vi, vj) > cr thenProb[h(vi) = h(vj)] < p2

For example, Dataret al. have shown that the following
family of hash functions, which map vectors to integers, is
locality sensitive [7]:

{hα,b : R
d → N | hα,b(v) = ⌊α · v + b

w
⌋, w ∈ R, b ∈ [0, w]}

Definition 3.10 ((r, c)-Approximate Neighbor) Given
a vector v, a vector setV, a distancer, and c ≥ 1,
U = {u ∈ V | D(v, u) ≤ cr} is called anrcAN set ofv,
and anyu ∈ U is a(r, c)-approximate neighborof v.

Given a vector setV of sizen and a query vectorv, LSH
may establish hash tables forV and findv’s rcAN set in
O(dnρ log n) time andO(nρ+1 + dn) space, whered is the
dimension of the vectors andρ = logp2

p1 < 1
c

for c ∈
[1,+∞). As long as we feedr (the largest distance allowed
betweenv and its neighbors) andp1 (the minimal proba-
bility that two similar vectors have the same hash value)
to LSH, it automatically computes other parameters that
would give optimal running time of a query.

3.3.2 LSH-based Clone Detection

LSH’s querying functionality can help find every vector’s
rcAN sets, which are needed for clone detection. Algo-
rithm 3 describes the utilization of LSH: (1) All vectors are
stored into LSH’s hash tables (line 2), wherer serves as
the thresholdσ defined in Definition 3.3; (2) A vectorv is
used as a query point to get an rcAN set (lines 3 and 4);
(3) If the rcAN set only containsv itself, it meansv has no
neighbors within distanceσ and should be deleted directly
(line 8); (4) Otherwise, the rcAN set is treated as a clone
class (lines 6 and 8). Such a process may query LSHn

times in the worst case. Thus, our LSH-based clone detec-
tion takesO(dnρ+1 log n) time, whered is the dimension of
the vectors,i.e., |L|2q−1 in terms ofq-level vectors, where
|L| is the number of node kinds in a parse tree.

All the rcAN sets may contain potentially spurious
clones (cf. Section 2) and are post-processed to generate
clone reports. A filter is created to examine the line range
of every clone in an rcAN set and remove any that is con-
tained by or overlaps with others. A second filter is applied
after the first one to remove rcAN sets that contain only one
vector. Both filters run in linear time in the number of rcAN
sets and quadratic time in the size of the sets.
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Algorithm 3 LSH-based Clone Detection
1: function LSHCD(V : vectors, r : distance, p1 : prob): rcANs

2: N ← ∅; LSH(V, r, p1)
3: repeat pick av ∈ V
4: rcAN ← queryLSH(v)
5: if |rcAN | > 1 then
6: N ← N

S

{rcAN \
S

n∈N n}
7: end if
8: V ← V \ rcAN

9: until V = ∅
10: returnPostProcessing(N )
11: end function

3.4. Size-Sensitive Clone Detection

Definition 3.3 of a clone pair does not take into account
the varying sizes of code fragments. It is however natu-
ral to allow more edits for larger code fragments to be still
considered clone pairs. In this section, we introduce a size-
sensitive definition of code clones and an algorithm for de-
tecting such clones. Such a higher tolerance to edits for
larger code fragments facilitates the detection of more large
clones.

Definition 3.11 (Code Size)Thesizeof a code fragmentC
in a programP , denoted byS(C), is the size of its corre-
sponding tree fragments in the parse tree ofP .

Definition 3.12 (Size-Sensitive Clone Pair)Two code
fragmentsC1 and C2 form a size-sensitive clone pairif
their corresponding tree representationsT1 and T2 are
f(σ, S(C1), S(C2))-similar, where f is a monotonic,
non-decreasing function with respect toσ andS(Ci).

Clone detection based on Definition 3.12 requires larger
distance thresholds for larger code. We now present a tech-
nique to meet such a requirement. The basic idea isvector
grouping: vectors for a program are separated into differ-
ent groups based on the sizes of their corresponding code
fragments; then LSH is applied on each group with an ap-
propriate threshold; and finally, all reported clone classes
from different groups are combined.

Any grouping strategy is appropriate as long as it meets
the following requirements: (1) It should not miss any
clones detectable with a fixed threshold, thus each group
should overlap with the neighboring groups; (2) It should
not produce many duplicate clones, thus overlapping should
be avoided as much as possible; (3) It should produce many
small groups to help reduce clustering cost.

Algorithm 4 shows a generic vector grouping algorithm,
wheres is a user-specified code size for the first group.
Each vectorv is dispatched into groups whose size ranges
contain the size of its corresponding code fragment,i.e.,
S(Cv). SIZERANGES shows our formulae for grouping.
The exact constraints used to deduce the grouping formulae
can vary as long as they meet the aforementioned require-
ments.

Algorithm 4 Vector Grouping
1: function VG(V : vectors, r : distance, s : size)
2: R← sizeRanges(V, r, s)
3: dispatchV into groups according to the ranges inR

4: end function
5:
6: function SIZERANGES(V : vectors, r : distance, s : size)
7: The code size range for the1st group← [0, s + r]
8: The range for the2nd group←
9: r = 0 ? [s+1, s+1] : [s, s+3r+1]

10: repeat compute[li+1, ui+1] as
11: li+1 ← r = 0 ? (ui + 1) : (ui −

li
s
r)

12: ui+1 ← r = 0 ? (ui + 1) : ( s+2d
s

ui − 2 d2

s2 li + 1)
13: until ui ≥ maxv∈V{S(Cv)}
14: end function

We can estimateS(C) with the size ofC ’s vectorv =
〈x1, . . . , xn〉, i.e., S(C) ≈ S(v) =

∑n

i=1 xi. Although ir-
relevant nodes may causeS(v) < S(C), this should have
little impact on clone detection because eachS(C) is ad-
justed accordingly.

It is also worth mentioning that vector grouping has the
added benefit to improve scalability of our detection al-
gorithm. Because the vectors are separated into smaller
groups, the number of vectors will usually not be a bot-
tleneck for LSH, thus enabling the application of LSH on
larger programs. In addition, because vector generation
works on a file-by-file basis and the separated vectors are
processed one group at a time, our algorithm can be easily
parallelized.

4. Implementation and Empirical Evaluation
This section discusses our implementation of DECKARD

and presents a detailed empirical evaluation of it against two
state-of-the-art tools: CloneDR [4,5] and CP-Miner [17].

4.1. Implementation

We have implemented our algorithm as a clone detec-
tion tool called DECKARD. In our implementation, we use
1-level vectors to capture tree structures. DECKARD is lan-
guage independent and works on programs in any program-
ming language that has a context-free grammar. It auto-
matically generates a parse tree builder to build parse trees
required by our algorithm. DECKARD takes a YACC gram-
mar and generates a parse tree builder by replacing YACC
actions in the grammar’s production rules with tree building
mechanisms. The generated parse tree builders also have
high tolerance for syntactic errors. Thus, DECKARD is more
applicable than other tree-based clone detection tools, even
for languages with incomplete or inaccurate grammars. As
an example, only2 files out of8, 453 in JDK 1.4.2 cannot
be parsed by DECKARD, whereas81 cannot be parsed by
CloneDR.

Section 4.3 will show that DECKARD works effectively
for both C and Java. In addition, YACC grammars are
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available for many languages, often with the requisite er-
ror recovery to localize syntax problems. Thus, it should be
straightforward to port DECKARD to other languages.

4.2. Experimental Setup

We performed extensive experiments on DECKARD, and
the most detailed ones were on JDK 1.4.2 (8,534java

files, 2,418,767 LoC) and Linux kernel 2.6.16 (7,988C files,
5,287,090 LoC).2 We also compared DECKARD to both
CloneDR [4, 5], a well-known AST-based clone detection
tool for Java, and CP-Miner [17], a token-based tool for C.

To compare with CloneDR, we ran experiments on a
workstation with a Xeon 2GHz processor and 1GB of
RAM, with both Windows XP (for CloneDR) and Linux
kernel 2.4.27 (for DECKARD). CloneDR has several pa-
rameters that may affect its clone detection rates, and we
chose the most lenient values for all those parameters: (1)
The minimal depth of a subtree to be considered a clone is
set to two; (2) The minimal number of tree nodes a clone
should contain is set to three; (3) The maximal number of
parameters allowed when using parameterized macros to
refactor clones is set to65535; and (4)Similarity is set
to a value between0.9 and1.0, where CloneDR [5] defines
Similarity as the following:

Similarity(T1, T2) =
2H

2H + L + R
(Eq. 1)

whereH is the number of shared nodes in treesT1 andT2, L
is the number of different nodes inT1, andR is the number
of different nodes inT2. This definition takes tree sizes into
account, similar to our definition in Section 3.4. To make
our comparisons fair despite the different configuration op-
tions in each, we compute DECKARD’s thresholdσ from
Similarity as follows. Supposev1 andv2 are the1-level
vectors forT1 andT2 respectively. Because thel1 norm of
v1 andv2 can be approximated asL + R andl2 ≥

√
l1 for

integer vectors, we can transform a givenSimilarity s to
an approximatel2 distance:

Ds(v1, v2) ≥
p

H(v1, v2) ≈
√

L + R

{Eq. 1}
=

p

(1 − s) × (|T1| + |T2|)
≥

p

2(1 − s) × min(S(v1), S(v2))

Given a vector groupV,
√

2(1 − s) × minv∈VS(v) can
serve as the thresholdσ used by DECKARD for the group.
This is similar to Section 3.4, where we use vector sizes
to approximate tree sizes. In Figures 3 and 4, we show
Similarity only, without showing the derivedσ.

To compare with CP-Miner (available for Linux), we ran
experiments on a workstation running Linux kernel 2.6.16
with an Intel Xeon 3GHz processor and 2GB of RAM. CP-
Miner uses a different distance metric, calledgap, which is

2We have also done experiments on the following programs and ob-
tained consistent results: GCC 3.3.6 (C), PostgreSQL 8.1.0(C), Derby
10.0.2.1 (Java), and Apache 2.2.0 (C). Due to space limitations, we do not
report the detailed data here.

the number of statement insertions, deletions, or modifica-
tions to transform one statement sequence to another. Such
a parameter is invariant w.r.t. different code sizes.

4.3. Experimental Results

We have evaluated DECKARD in terms of the following:
clone quantity (i.e., number of detected clones), clone qual-
ity (i.e., number of false clones), and its scalability. Our
results indicate that DECKARD performs significantly bet-
ter than both CloneDR and CP-Miner.

4.3.1 Clone Quantity

We measure clone quantity by the number of lines of code
that are within detected clone pairs.

In the first experiment, we compared DECKARD with
CloneDR on JDK. CloneDR failed to work on the entire
JDK at once. It also failed on files with minor syntactic
problems. Thus, we excluded those syntactically incor-
rect files reported by CloneDR and separated the remain-
ing files into nine overlapping groups, with each group con-
taining around 1,000 files. Figure 3(a) shows the total de-
tected cloned lines over many runs on JDK. For DECKARD,
we used a variety of configuration options:minT (mini-
mal number of tokens required for clones) was set to30 or
50, stride (size of the sliding window) ranged from2 to
inf (equivalent to no merging of vectors), andSimilarity

ranged between0.9 and1.0. The setting with an infinite
stride means that vector merging was disabled. The total
number of cloned lines for DECKARD ranges from 204,263
to 1,943,777, while for CloneDR the number ranges from
246,708 to 727,701.

In our second experiment, we compared DECKARD with
CP-Miner on the Linux kernel. Figure 4(a) shows the total
number of detected clone lines by DECKARD under differ-
ent configuration options withminT set to30 or 50, stride
ranging from2 to inf, andSimilarity ranging from0.9 to
1.0. The total number of detected cloned lines ranges from
338,519 to 3,936,242. For CP-Miner, we used four config-
uration options withminT set to30 or 50 andgap set to0
or 1. Its total number of detected clone lines ranges from
498,113 to 1,108,062 as shown in Table 1. It failed to oper-
ate withgap > 1.

In addition, Figure 4(c) plots the decline in clone de-
tection rates asminT increases for both CP-Miner and
DECKARD. Even withSimilarity set to1.0, DECKARD

detects more clones than CP-Miner.

4.3.2 Clone Quality

The number of reported spurious clones is also important
in assessing clone detection tools. We performed random,
manual inspection on rcAN sets (i.e., clustered similar vec-
tors) using two criteria: (1) Does an rcAN set contain at
least one clone pair that corresponds to copy-pasted frag-
ments? (2) Are all clones in an rcAN set copies of one
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Figure 3. Results for DECKARD (with grouping and full parameter tuning) and CloneDR on JDK 1.4.2.
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minT Gap Cloned LoC (#) Time (min)

30 0 684,119 18.7
1 1,108,062 19.7

50 0 498,113 11.9
1 783,925 18.7

Table 1. Results for CP-Miner.
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Figure 4. Results for DECKARD (with grouping and selective parameter tuning) and CP-Miner (Table 1)on Linux kernel 2.6.16.

another? If a set fails to satisfy either of the criteria, we
classify it as a false clone report.

It may be difficult to decide for certain whether two code
fragments are clones or not. For example, consider the fol-
lowing code fragments from JDK 1.4.2:

1 else if (option.equalsIgnoreCase("basic")) {
2 bBasicTraceOn = true;
3 } else if (option.equalsIgnoreCase("net")) {
4 bNetTraceOn = true;
5 } else if (option.equalsIgnoreCase("security")) {
6 bSecurityTraceOn = true;
7 } else ...
8 ...
9 else if (opt.equals("-nohelp")) {

10 nohelp = true;
11 } else if (opt.equals("-splitindex")) {
12 splitindex = true;
13 } else if (opt.equals("-noindex")) {
14 createindex = false;
15 } else ...

The code between lines 1–7 and that between lines 9–15
have identical structure but different variable names, func-
tions, and constants. CloneDR and CP-Miner may detect
them as clones if the twoif-else sequences are standalone
statements, but miss them if they are in the middle of differ-
ent, largerif-else statements. DECKARD always detects
them with reasonably small settings forminT andstride.

We inspected100 randomly selected rcAN sets reported
by DECKARD for JDK 1.4.2 withminT set to50, stride set

to 4, andSimilarity set to1.0. Of those,93 rcAN sets are
clearly real clones. Among the remaining seven rcAN sets,
three involveif-else andswitch-case that are similar
to the aboveif-else example, three involve sequences of
simpleimport statements, and one involves sequences of
simple declarations. Although it is unclear whether these
are clones, the reported clone pairs are all structurally the
same. Also because both CloneDR and CP-Miner may de-
tect such code as clones, we also classified these as real
clones. This experiment indicates that DECKARD is highly
accurate. Because the version of CloneDR that we have
does not output the actual clones, we cannot directly com-
pare its accuracy with DECKARD. For future work, we
plan to develop a better user interface for DECKARD, which
would allow us to conduct further user studies and to more
rigorously assess the quality of reported clones.

4.3.3 Scalability

Table 2 shows the worst-case time and space complexities
of CloneDR, CP-Miner, DECKARD, and LSH. Although
the number of tree nodesn is usually several times larger
than the number of statementsm in a program, DECKARD’s
performance is still comparable to CP-Miner for large pro-
grams becauseρ is usually much smaller than one. With
vector grouping, LSH’s memory consumption can be sig-
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CloneDR CP-Miner LSH LSH w/ Grouping DECKARD w/ Post-Processing

Time O( n2

|Buckets|
) O(m2) O(dnρ log n) O(d

P

g∈G |g|ρ log |g|) O(n + d
P

g∈G |g|ρ+1 log |g| + c|rcAN |2)

Mem O(n) O(m) O(nρ+1 + dn) O(maxg∈G{|g|ρ+1 + d|g|}) max{O(c|rcAN |), Og∈G(|g|ρ+1 + d|g|)}

Table 2. Worst-case complexities of CloneDR, CP-Miner, and DECKARD (m is the number of lines of code,n is the size of a
parse tree,|Buckets| is the number of hash tables used in CloneDR,d is the number of node kinds,|g| is the size of a vector group,
0 < ρ < 1, c is the number of clone classes reported, and|rcAN | is the average size of the clone classes).

Sim G (#) Cloned LoC (#) T (min)

Full Tuning 1.0 1984 624265 224.8
Selective Tuning 624265 14.9

Full Tuning 0.99 235 792326 58.6
Selective Tuning 792298 16.3

Table 3. Effects of selective parameter tuning in LSH. The
data is for JDK 1.4.2, withminT 50, stride 2.

nificantly reduced to make DECKARD scale to very large
programs.

Figure 3(b) plots running times for both DECKARD

and CloneDR on JDK. WhenSimilarity < 0.9999,
DECKARD is several times faster than CloneDR. We show
next how DECKARD can be configured to run significantly
faster. By default, LSH takesO(kd

∑

g∈G |g|ρ log |g|) time
to tune its own parameters and build optimal (w.r.t. query
time) hash tables, wherek is the number of iterations it
uses to find the optimal parameters. Such cost accumulates
when the vectors are split into groups, and thus LSH may
spend much time on parameter tuning. Reusing the parame-
ters computed for certain groups (e.g., the largest group) can
dramatically reduce LSH’s running time with little effect on
clone quantity and quality. Table 3 shows the effectiveness
of such a strategy in reducing the overall running time of
DECKARD, especially when the vectors are split into many
groups.

Figure 4(b) shows DECKARD’s running time on the
Linux kernel with selective parameter tuning. When
Similarity > 0.95, DECKARD runs in tens of min-
utes and is comparable to CP-Miner (cf. Table 1); it can
be even faster whenSimilarity is close to1.0. When
Similarity ≤ 0.95, DECKARD may take more time than
CP-Miner. This extra cost is reasonable considering that
DECKARD is tree-based and detects more clones, while CP-
Miner is token-based and cannot operate withgap > 1, and
thatSimilarity ≤ 0.95 is often too small for clone detec-
tion tasks.

5. Related Work
In this section, we discuss closely related work and split

them into three categories: (1) tree similarity detection;(2)
studies on code clones; and (3) clone detection algorithms.

Tree Similarity Detection Following the increased pop-
ularity of tree-structured data such as XML databases, sim-
ilarity detection on trees is gaining increasing attention.
However, efficient tree similarity detection still remainsan
open problem, while similarity detection on high dimension

numerical vectors has already been extensively studied and
efficient algorithms exist. Yanget al. [23] propose an ap-
proximation algorithm for computing tree editing distances.
We adapt their characterization to capture structural infor-
mation in parse trees, and apply LSH [7] to search for sim-
ilar trees. To the best of our knowledge, DECKARD is the
most effective and scalable tool for tree similarity detection.

Studies on Code Clones A few independent studies ad-
dress the questions of clone coverage and evolution in large
open-source projects. The goal for clone coverage is to de-
termine what fraction of a program is duplicated code. It is
difficult to directly compare these studies because such re-
sults are usually sensitive to: (1) the different definitions of
code similarity used; (2) the particular detection algorithms
used; (3) the various choices of parameters for these algo-
rithms; and (4) the different code bases used for evaluation
(e.g., CCFinder [10] reports29% cloned code in JDK, and
CP-Miner [17] reports22.7% cloned code in Linux kernel
2.6.6). However, these studies do confirm that there is a
significant amount of duplicated code in large code bases.

The goal of clone evolution is to understand how clones
are introduced or removed across different versions of a
software. Lagüe et al. [16] examined six versions of a
telecommunication software system and found that a sig-
nificant number of clones were removed due to refactoring,
but the overall number of clones increased due to the faster
rate of clone introduction. Kimet al. [11] describe a study
of clone genealogies and find that: (1) many code clones are
short-lived, so performing aggressive refactoring may not
be worthwhile; and (2) long-lived clones pose great chal-
lenges to refactoring because they evolve independently and
can deviate significantly from the original copy.

Clone Detection Many algorithms and tools exist for
clone detection. First, there are tools specifically designed
for estimating similarity in programs for the purpose of de-
tecting plagiarism. Example tools include Moss [20] and
JPlag (http://www.jplag.de). These tools are usually
very coarse-grained and are not suitable for clone detection.
Second, there are token-based tools, such as CP-Miner [17]
and CCFinder [10]. These are usually efficient, scale to mil-
lions of lines of code, and find good quality clones, but they
are sensitive to code restructuring and minor edits, so may
miss clones. Third, there are tree-based techniques, which
are less sensitive to code edits than token-based tools. Bax-
ter et al. [4, 5] apply AST hashing for detecting exact and
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near-missclones. Wahleret al. [21] apply frequent item-
setdata mining techniques on ASTs represented in XML to
detect clones with minor changes. DECKARD is also tree-
based, but because of our novel use of characteristic vectors
and efficient vector clustering techniques, it detects signif-
icantly more clones and is much more scalable. Finally,
there are semantic-based techniques [14], which are most
robust against code modifications, such as re-ordered state-
ments, non-contiguous clones, and nested clones. However,
these have not been shown to scale to large programs.

There is recent work applying clone detection algorithms
to find “structural clones” for the purpose of detecting
design-level similarities. For example, two different clone
sets that often occur together in program files are an ex-
ample of structural clones. Basit and Jarzabek [3] first ap-
ply CCFinder to detectsimple code clonesand then use a
frequent itemsetdata mining algorithm to correlate simple
clones to find design-level similarities. PR-Miner [18] also
uses frequent itemset mining to detect implicit, high-level
programming patterns for specification discovery or bug de-
tection. Our algorithm can also be used for such purposes as
long as we adjust vector generation to appropriately model
these problems. We leave for future work the application of
our algorithm on such pattern discovery tasks.

6. Conclusions and Future Work
In this paper, we have presented a practical algorithm

for identifying similar subtrees and applied it to detect code
clones. It is based on a novel characterization of trees as
vectors inR

n that effectively captures structural informa-
tion of trees and an efficient hashing and near-neighbor
querying algorithm for numerical vectors. We have imple-
mented our algorithm in the tool DECKARD. It is language
independent and highly configurable. We have evaluated
DECKARD on large code bases, including the Linux kernel
and JDK. It easily scales to millions of lines of code and
has identified more clones than existing tools. Our algo-
rithm is general and can be extended to work on other data
structures such as graphs. It also has many other potential
applications, such as bug detection, code refactoring, and
programming pattern discovery. For future work, we plan
to apply our algorithm to such problem domains.
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