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Abstract String-based: A program is first divided into strings, usu-

ally lines. Each code fragment consists of a contiguous se-
Detecting code clones has many software engineeringquence of strings. Two code fragments are similar if their
applications. Existing approaches either do not scale to constituent strings match. The representative work here is
large code bases or are not robust against minor code modi- Baker’s “parameterized” matching algorithm [1, 2], where
fications. In this paper, we present an efficient algorithm fo identifiers and literals are replaced with a global constant
identifying similar subtrees and apply it to tree represent
tions of source code. Our algorithm is based on a novel
characterization of subtrees with numerical vectors in the

Token-based: A program is lexed to produce a token
sequence, which is scanned for duplicated token subse-
‘ o ! guences that indicate potential code clones. Compared to
Euclidean spac&™ and an efficient algorithm to cluster  yiny hased approaches, a token-based approach isyusuall
th.ese vector; w.r.t. the Euclidean d|§tance mgtnc. Sabtre more robust against code changes such as formatting and
ywth vectors in one clugter are consujered similar. We have spacing. CCFinder [10] and CP-Miner [17] are perhaps the
mplemented our tree similarity algorlthm.as a clone detec- most well-known among token-based techniques.

tion tool calledDECKARD and evaluated it on large code

bases written in C and Java including the Linux kernel and Trée-based: A program is parsed to produce a parse tree
JDK. Our experiments show th®XECKARD is both scal- ~ OF abstract syntax tree (AST) representation of the source
able and accurate. It is also language independent, appli- Program. Exact or close matches of subtrees can then be

cable to any language with a formally specified grammar. identified by comparing subtrees within the generated parse
tree or AST [4,5,21]. Alternatively, different metrics che

used tofingerprintthe subtrees, and subtrees with similar
fingerprints are reported as possible duplicates [15, 19].

1. Introduction : .
Semantics-based: Semantics-aware approaches have

Many software engineering tasks, such as refactoring, also been proposed. Komondoor and Horwitz [14] suggest
understanding code quality, or detecting bugs, require thethe yse of program dependence graphs (PDGs) [8] and
extraction of syntactically or semantically similar codag- program slicing [22] to find isomorphic PDG subgraphs
ments (usually referred to as “clones”). Various stud- i order to identify code clones. They also propose an
ies show that much duplicated code exists in large codeapproach to group identified clones together while preserv-
bases [10,11,17]. Many such duplications can be attributeding the semantics of the original code [13] for automatic
to poor programming practice since programmers often procedure extraction to support software refactoring.hSuc
copy-paste code to quickly duplicate functionality. Tleist  techniques have not scaled to large code bases.

dency not only produces code that is difficult to maintain, . ) . .
but may also introduce subtle errors [6, 17]. Of existing techniques, CCFinder [10], CP-Miner [17],

Different approaches for clone detection have been pro-2nd CloneDR [4, 5] represent the state-of-the-art. However
posed in the literature. Most of them focus on detecting syn- theY either have limited scalability or are not robust agin
tactic similarity of code because checking semantic simila c0de modifications. Our goal is to develop a practical detec-
ity is very difficult (and in general undecidable). Roughly, tion algorithm that is both scalable and robust against code

these techniques can be classified into four categories: ~ modifications. _ _
In this paper, we introduce a novel algorithm for
“This research was supported in part by NSF NeTS-NBD Grant No. detecting similar trees and a practical implementation,
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T the tree patterns be the node kinds in a parse tree. We will

Language | ,| Parsertree Source |} Parse-tree { Vector introduce more general tree patterns in Section 3.2.1.
Description generator Repository ) builder Parse- Generator . . .
l ; tree Not all nodes in parse trees are essential for capturing
Cl> tree structural information; many are redundant w.r.tirthe
oot .( Clones )« Clonng [ precer parents, or were introducgd_to s?mplify the grammar spec-
—_— ification. We thus also distinguish betweeslevantand

irrelevant nodes Example irrelevant nodes include C to-
kens ‘[ and ‘T and parentheses (‘(" and ‘)’). In Figure 2,
nodes with solid outlines are relevant while nodes with dot-
ted outlines are irrelevant. Irrelevant nodes do not have an

1 Ilgure L showstthe Tghlllevel arch;t%c;[ure QI?(ARDlz associated pattern or dimension in our vectors. For the ex-
(1) A parser is automatically generated from a ormal syn- ample, the ordered dimensions of characteristic vect@'s ar
tax grammar; (2) The parser translates sources files into

i occurrence counts of the relevant nodes:lit, assign_e,
parse trees; (3) The parse trees are processed to prOdu%cr,e, array e, cond.e, expr_s, decl, andfors. Thus,

a s_et of ve_ctors of fixed-dimension, capturing the syntac- the characteristic vector for the subtree rootedled! is

tic information of parse trees; (4) The vectors are clustere (1,1,0,0,0,0,0, 1,0) because there is ainode, it node

w.r.t. their Euclidean distancesand (5) Additional post- an’d ,ad’eél r;o;je,. ’ ’ '

processing heuristics are used to generate clone reports. Characteristic vectors are generated with a post-order
We have done extenswe emplrlcal evaluatlo.n of traversal of the parse tree by summing up the vectors for

DECKARD on large software (including JDK and the Linux children with the vector for the parents node. As an

Iéernell) ‘"?‘”g_ comphareg:lt agalnstbCIr(])neDlezland C(:jP-Mmer. example, the vector for the subtree rootedaasign_e
esults indicate that ECKARD is both scalable and accu- (2,1,1,0.1,0,0,0,0) is the sum of the vectors foar-

rate: 1l getects more clones In large code bases han B0May e ((2,0,0,0,1,0,0,0,0)), = ((0.0.0,0,0.0,0,0.0))
k?nﬁ . "’lm A blner,dlt IS rg‘?re scala Iebtl an r?ne K ' primary_e ({0, 1,0,0,0,0,0,0,0)), and the additional node
which is also tree-based, and is as scalable as the to enéssign,e ((0,0,1,0,0,0,0,0,0)). Users may also specify

based CP-Miner. ) ~aminimum token count to suppress vectors for small sub-
~ The rest of the paper is structured as follows. We first ees: this helps to avoid reporting small clones which are

give a detailed overview of our algorithm and illustrate it e uninteresting. For example, in Figure 2, with this

with an example (Section 2) before presenting details of ireshold set to three, no vector is generated for the sibtre

our detection algorithm (Section 3). Next, we discuss our ooted aincr.e. By varying this threshold, we can system-
implementation and evaluation ofHEKARD (Section 4). atically find only large clones.

Finally, we survey related work (Section 5) and conclude

Figure 1. System architecture.

adaptLocality Sensitive Hashingl. SH) [7] to efficiently
cluster similar vectors (and thus code clones).

with a discussion of future work (Section 6). Vector Merging The aforementioned technique consid-
_ ers only those code fragments with a corresponding sub-
2. Overview tree in the parse tree. However, developers often insert

code fragments within some larger context. Differences in
the surrounding nodes may prevent the parents from being
detected as clones (see Section 4.3.2 for a concrete exam-
ple from JDK 1.4.2). To identify these cloned fragments,
we use a second phase of characteristic vector generation,
Falledvector mergingto sum up the vectors of certain node
because the code differs only in identifier names and literal Sequgnces. In this phase, a sliding wm(:iow moves along a
serialized form of the parse tree. The windows are chosen

values. The parse tree is shown in Figure 2. A pairwise :
. o that amerged vectocontains a large enough code frag-
tree comparison could be used to detect such clones, bu .
ment. In Figure 2, for example, we merged the vectors for

this is expensive for large programs bepause of the pOSS|nydecl andcond_e to get the vectot3, 1,0, 0,0, 1,0, 1, 0) for
large number of subtrees. In the following, we demonstrate

a novel, efficient technique for tree similarity detection the combined code fragment.
’ ' The choice of which nodes in the tree to merge is impor-

Characteristic Vectors We introducecharacteristic vec-  tant; these nodes must make good boundaries among cloned
torsto capture structural information of trees (and forests). code, while not frequently containing large subtrees. Root
This is a key step in our algorithm. The characteristic viecto of expression trees, likely the atomic units for copy-pasti

of a subtree is a poinfey, . . ., ¢,,) in the Euclidean space, are usually good choices for merging vectors. We call such
where eachy; represents the count of occurrences of a spe-chosen nodemergeablenodes. In Figure 2, the mergeable
cific tree pattern in the subtree. For this example, we let nodes are the four children of tier statement. It is not

This section illustrates the main steps of our algorithm
with a small example. Consider the following two C pro-
gram fragments for array initialization:

for (int i= 0; i < n; i++) for (int i= 0; i < n; i++)
x[il= 0; ylil="";

The parse trees for these two code segments are identica
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Figure 2. A sample parse tree with generated characteristic vectors.

necessary for mergeable nodes to be on a same level. IDefinition 3.1 (Editing Distance) The editing distanceof

we had chosen any statement to be mergeable, the entiréwo treesT; and Ty, denoted by (T}, T5), is theminimal

for loop would have been considered as one unit without sequencef edit operations (either relabel a node, insert a
subsequences. In Figure 2, we also required each mergedode, or delete a node) that transforiso 7.

fragment to contain at least five tokens. If we had required
six tokens instead, there would have been only two merged
vectors instead of three: (1) falecl andcond_e, and (2)

for cond_e, incr_e, andexpr_s. We are now ready to define the notion aflane pair

Definition 3.3 (Clone Pair) Two code fragments’; and
C, are called alone pairif their corresponding tree rep-
resentationd’; andT; arecs-similar for a specified.

2,0,0,0,0,1,0,0,0

_SEENE.

N .7
.
\

Definition 3.2 (Tree Similarity) Two treesT; and Ty are
o-similar for a given threshold, if §(71,75) < o.

Vector Clustering and Post-Processing After we have
selected the characteristic vectors, our algorithm clus-
ters similar characteristic vectors w.r.t. their Euclidea
distances to detect cloned code. The two sample C Suchadefinition based on tree editing distance faithfully
code fragments both have the same characteristic veccaptures how similar two code fragments are. However, it
tor (6,2,1,1,1,1,1,1,1), and DECKARD reports them as does not lead naturally to an efficient algorithm because:
clones. Because the number of generated vectors can bél) the complexity of computing the editing distance be-
large, an efficient clustering algorithm is needed. We will tween two trees is expensiv@nd (2) it requires many pair-
present such an algorithm in Section 3. wise comparisons to locate similar code in large software

The subtree rooted axpr_s also illustrates the need (quadratic in the worst case). Instead, we approximate tree
for post-processing. When a particular subtree has a lowsStructures using numerical vectors and reduce the tree simi
branching factor, the vectors for a child and its parent are larity problem to detecting similar vectors. Before descri
usually very similar and thus likely to be detected as clones INg the details, we define the two common distance mea-
We employ a post-processing phase following clustering to SUres for numerical vectors that we use in this paper.

filter such spurious clones. Definition 3.4 (Distance Measures on Vectors) et v; =
. o (x1,...,2,) andvy = (y1,...,y,) be twon-dimensional

3. Algorithm Description vectors. TheHamming distancef v; andv,, H(vi, vs),
In this section, we give a detailed technical description 1S_their li norm, i.e, H(vi,va) = [lv1 — vl =

of our tree similarity algorithm: we first formally define 2_i=1 [# — v The Euclidean distanceof v, and v,

a clone pair (Section 3.1), then introduce characteristic 2 (V1;v2). IS theirly norm,i.e., D(vy, v2) = [Jur — vall2 =

vectors for trees and describe how to generate them (Sec 2z (@i = 4i)*.

tion 3.2), and finally explain our vector clustering alglonit Such distance measures are much easier to compute and

for clone detection (Section 3.3). efficient algorithms for near-neighbor queries exist for nu

merical vectors. Based on these observations, we show how

to abstract trees into vectors and how to efficiently cluster
In this paper, we view clones as syntactically similar Similar vectors to detect code clones.

code fragments. Thus, it is natural to define the notion of

similar trees first. We follow the standard definition and use _ *More precisely, for two tree$, and 7> the complexity isO(| 71| x

L T»| x dy x d2), where|T;| is the size off; andd; is the mini f th
tree editing distance as the measure for tree similarity. ljezp‘tﬁ oflT_Xarfgﬂ‘?’e ﬁﬁqbér'soﬂgas\ﬁ%[;? s The minimm oTihe

3.1. Formal Definitions




3.2. Characteristic Vectors for Trees Algorithm 1 g-Level Vector Generation

Recall that in Section 2 we illustrated the use of occur- * function gVG(T : tree, ('« configuration): vectors
rence counts of relevant nodes to abstract a subtree (or sub-% ']I{rja_vers o in nost-order
trees). That example shows a special case of the general’’ P

. - . . . 4: for all nodeN traversedio
construction that we will introduce in this section. In par- v v
N — Zn € children(N) '™

w

ticular, we describe a general technique to map a tree (or . if IsRelevant(N, ) then
forests) to a numerical vector which characterizes thestru 7. id «— Index0f(N,C)
ture of the given tree. Without loss of generality, we assume g: Vn[id] < Vylid] + 1
trees are binary [12]. 9: end if
3.2.1 Atomic Tree Patterns and Vectors 10: If IsSignificant(NV, C) A
11 ContainsEnoughTokens(Vy, C) then
Given a binary tree, we define a family afomic tree pat-  12: Y —VU{Vn}
ternsto capture structural information of a tree. They are 13: end if
parametrized by a parametgrthe height of the patterns. 14:  end for

15: returny

Definition 3.5 (¢-Level Atomic Tree Patterns) A ¢-level .
16: end function

atomic patterris a complete binary tree of heigit Given
a label setZ, including the empty label, there are at most  the other hand, when the lower bound is smaller than
|£]>*~1 distinctg-level atomic patterns. d(Ty,T») is likely to be less tham too. Hence, we reduce
Definition 3.6 (g-Level Characteristic Vectors) Given a (e problem of tree similarity to the problem of detecting
treeT, its g-level characteristic vectofdenoted by, (7)) ~ Similarg-level vectors.
is (b1, ba, ..., bzj20-1), whereb; is the number of occur- Notice that Definition 3.6, Theorem 3.7, and Corol-
rences of the-th g-level atomic pattern iff". lary 3.8 can be relaxed to work on tree forests (a collection
ng trees) as well because tree forests can be viewed as a tree
the1-level atomic patterns and characterized trees with their . y ad_dmg an additional root. This is important for d(_eal-
ing with code fragments that do not correspond to a single

1-level characteristic vectors. . .
: . . subtree in the parse treef(Section 2).
Abstracting trees ag-level vectors yields an alternative

to the standard tree similarity definition based on editing 3.2.2 Vector Generation
distance. Our plan is to use Euclidean distance between
level vectors to approximate the editing distance of the cor
responding trees. We adapt a result of Yangl. on com-
puting tree similarity [23] to show that this approximation
is accurate.

Theorem 3.7 (Yanget al., Thm. 3.3 [23]) For any trees
T, andT» with editing distanceé (T}, Tz) = k, thel; norm

There are two phases of vector generation: one for subtrees
and one for subtree forests (for generating merged vectors)
Algorithm 1 shows how vectors are generated for subtrees.
Given a parse treg&', we essentially perform a post-order
traversal ofl" to generate vectors for its subtrees. Vectors
for a subtree are summed up from its constituent subtrees
of the ¢g-level vectors forTy and Ty, H(v,(Th),vq(T2)), is (Iine_ 5)|' Certall_in tfee patternsdmgy npthbs importantl for a
no more thar(4q — 3)k. particular application, so we distinguish between relevan
and irrelevant tree patterns (a concept that is similar tb an
For any two integer vectors; and v, /H(v1,v2) < generalizes relevant and irrelevant nodes from Section 2).
D(v1,v2) < H(vi,v2). Thus we have the following corol-  |f 5 pattern rooted at a particular node is relevant (line
lary that relates the tree editing distance of two trees with 6), we look up its index in the vector space usinglex0f
the Euclidean distance of thejflevel vectors. (line 7) and update the vector correspondingly (line 8).
Corollary 3.8 Forany treeq; and7; with editing distance We also allow vectors to be generated only for certain
6(T1,Tz) = k, thely norm of theg-level vectors fofl; and  subtrees, for example those that are more likely to be units
T, D(vq(T1),v4(T2)), is no more tharfdg — 3)k and N0 of clones, such as subtrees rooted at declarations, expres-
less than the square root of thenorm,i.e,, sions and statements. Users can select tisigpaificant

) node kinds to generatglevel vectors (line 10). For ex-
\/H(UQ(Tl)’ vg(T2)) = D(vg(Th), v4(T2)) = (49 = 3)k. ample, ifarray_e in Figure 2 had been specifiediasignif-

Corollary 3.8 suggests that eith (vq(zl);gq(Tz)) or |9ant no vector woulq have been generated for it. In gddl—
—— - a tion, we may want to ignore small subtrees that contain too
VHaT):va(T2)) an he used as a lower bound of the tree few tokens ¢f.incr_e in Figure 2). Users can define a min-

4q73 . . . .
editing distance’(T1,7%). When such a lower bound is imal token requirement on the subtrees, which is enforced
larger than a specific threshodd 77 and7:> cannot beo- with ContainsEnoughTokens (line 11).
similar and thus not a clone pair for the specified On Algorithm 2 shows how vectors are generated for adja-



Algorithm 2 Vector Merging for Adjacent Tree Forests
1: function wvG(T : tree, C' : configuration): vectors

2: ST « Serialize(T, C); V<« 0
3: step < 0;  front «— ST.head

4: back < NextNode(ST.head, C)

5. repeat

6: Vinerged — e[ front,back] Vn

7: while back # ST.tail \

8: —ContainsEnoughTokens(Viergeq C) dO
9: back «— NextNode(back, C)
10: Vmerged<_ ZnE[f'ro'n,t,ba,ck] Va

11: end while

12: if RightStep(step, C) then
13: V — YV U{Vinerged:

14: end if

15: front«—NextNode(front, C)
16: step «— step + 1

17: until front = ST.tail

18: return)

19: end function

cent subtree forests. It serializes the parse Tfée post-
order, then movesgliding windowalong the serialized tree
to mergeg-level vectors from nodes within the sliding win-
dow. Because it is not useful to include every node in the
serialized tree, we select certain node kinds (catiedge-
able nodeyas the smallest tree units to be included (to make
larger code fragments in the context of clone detection)). Fo
example, the significant nodedecl, cond_e, incr_e, and

expr_s in Figure 2 are specified as mergeable. Users can
specify any suitable node kinds as mergeable for a particu-
lar application. If both a parent and a child are mergeable,

we exclude the child in the sliding window for the benefit of
selecting larger clones. This is implementedMaygtNode
in Algorithm 2 (line 9).

Users can also choose the width of the sliding window
and how far it moves in each stejpe., its stride Larger

widths allow larger code fragments to be encoded together

and may help detect larger clones, while larger strides re
duce the amount of overlapping among tree fragments, an
may reduce the number of spurious clones. With sliding
windows of different widths, our algorithm can generate
vectors for code fragments of different sizes and provide
a systematic technique to find similar code of any size.

3.3. Vector Clustering

Given a large set of vectos, quadratic pairwise com-
parisons are computationally infeasible for similarity- de

the same hash value with arbitrarily low probability. Itals
helps efficiently find near-neighbors of a query vector. In
the following, we provide some basic background on LSH,
then discuss how it is applied for clone detection.

3.3.1 Locality Sensitive Hashing
Definition 3.9 ((p1, p2, r, ¢)-Sensitive Hashing) A family

F of hash functionsh : V — U is called (py, p2, 7, ¢)-
sensitive(c > 1), if Yv;,v; € V,
{ if D(v;,v;) <r  thenProblh(v;) = h(v;)] > p1

if D(v;,v;) > cr thenProblh(v;) = h(v;)] < p2
For example, Datagt al. have shown that the following

family of hash functions, which map vectors to integers, is

locality sensitive [7]:

{hap: R — N|hgp(v) =| |, weR,bE[0,w]}

Definition 3.10 ((r, ¢)-Approximate Neighbor) Given

a vectorv, a vector setV, a distancer, andc > 1,
U ={ueV | Dw,u) < cr}is called anrcAN set ofv,
and anyu € U is a(r, ¢)-approximate neighboof v.

a-v+b
w

Given a vector se¥ of sizen and a query vectar, LSH
may establish hash tables forand findv’s rcAN set in
O(dn” log n) time andO(n?*! + dn) space, wheré is the
dimension of the vectors ang = log,, p1 < L forc €
[1,4+00). As long as we feed (the largest distance allowed
betweenv and its neighbors) ang, (the minimal proba-
bility that two similar vectors have the same hash value)
to LSH, it automatically computes other parameters that
would give optimal running time of a query.

3.3.2 LSH-based Clone Detection

LSH’s querying functionality can help find every vector's
rcAN sets, which are needed for clone detection. Algo-
rithm 3 describes the utilization of LSH: (1) All vectors are
stored into LSH’s hash tables (line 2), whereserves as

'the thresholdr defined in Definition 3.3; (2) A vector is
“used as a query point to get an rcAN set (lines 3 and 4);

3) If the rcAN set only contains itself, it means has no
neighbors within distance and should be deleted directly
(line 8); (4) Otherwise, the rcAN set is treated as a clone
class (lines 6 and 8). Such a process may query kSH
times in the worst case. Thus, our LSH-based clone detec-
tion takesO(dn?*! log n) time, wherel is the dimension of
the vectorsj.e., |£|**~! in terms ofg-level vectors, where
|£] is the number of node kinds in a parse tree.

All the rcAN sets may contain potentially spurious

tection. Instead, we can hash vectors with respect to theg|ones ¢f. Section 2) and are post-processed to generate
Euclidean distances among them, and then look for similarclone reports. A filter is created to examine the line range
vectors by only comparing vectors with equal hash values. of every clone in an rcAN set and remove any that is con-

Locality Sensitive Hashin@-SH) [7,9] is precisely what  tained by or overlaps with others. A second filter is applied
we need. It constructs a special family of hash functions tha after the first one to remove rcAN sets that contain only one
can hash two similar vectors to the same hash value withvector. Both filters run in linear time in the number of rcAN
arbitrarily high probability and hash two distant vectass t sets and quadratic time in the size of the sets.



Algorithm 3 LSH-based Clone Detection Algorithm 4 Vector Grouping

1: function LSHCD(V : vectors, r : distance, p1 : prob): rcANs 1: function vG(V : vectors, r : distance, s : size)
22 N «—0; LSH(V,r, p1) 2. R« sizeRanges(V,r,s)
3 repeat pickav €V 3: dispatchV into groups according to the ranges/in
4 rcAN «— queryLSH(v) 4: end function
5 if [rcAN|>1 then 5:
6: N = NU{rcAN\ U, cp n} 6: function SIZERANGES(V : vectors, r : distance, s : size)
7 end if 7 The code size range for tHet group— [0, s + 7]
8 V — V\rcAN 8: The range for th@nd group«
9 until V=10 9: r=0?[s+1,s+1]:[s,s+3r+1]
10: returnPostProcessing(\V) 10: repeat computel;y1, uit+1] as
11: end function 11: lit1 =7 =0?(ui +1): (u; — %’r)
3.4. Size-Sensitive Clone Detection 12: Uit =7 =072 (i + 1) 1 (2w — 251 4 1)

13: until u; > maz,ev{S(Cy)}
Definition 3.3 of a clone pair does not take into account 14: end function
the varying sizes of_ code fragments. It is however nat_u- We can estimate (C) with the size ofC’s vectorv —
ral to allow more edits for larger code fragments to be still (@1, ), i€, S(C) & S(v) = Y7, ;. Although ir-
considered clone pairs. In this section, we introduce a size
sensitive definition of code clones and an algorithm for de-
tecting such clones. Such a higher tolerance to edits for
larger code fragments facilitates the detection of mogelar

relevant nodes may causév) < S(C), this should have
little impact on clone detection because eatld") is ad-
justed accordingly.

It is also worth mentioning that vector grouping has the

clones. added benefit to improve scalability of our detection al-
Definition 3.11 (Code Size)Thesizeof a code fragment’ gorithm. Because the vectors are separated into smaller
in a programP, denoted byS(C'), is the size of its corre-  groups, the number of vectors will usually not be a bot-
sponding tree fragments in the parse treé’of tleneck for LSH, thus enabling the application of LSH on
Definition 3.12 (Size-Sensitive Clone Pairwo ~ code  |arger programs. In addition, because vector generation
fragmentsC; and C, form a size-sensitive clone paif works on a file-by-file basis and the separated vectors are

their corresponding tree representatidfis and T, are processed one group at a time, our algorithm can be easily
£(0,8(C1), S(Cy))-similar, where f is a monotonic, Parallelized.
non-decreasing function with respectt@nd.S(C;). 4. Implementation and Empirical Evaluation

Clone detection based on Definition 3.12 requires larger This section discusses our implementation GRARD
distance thresholds for larger code. We now present a teCh'and presents a detailed empirical evaluation of it agast t

nique to meet such a requirement. The basic ide@E0r  giate_of the-art tools: CloneDR [4, 5] and CP-Miner [17].
grouping vectors for a program are separated into differ-

ent groups based on the sizes of their corresponding codet-1. Implementation

fragments; then LSH is applied on each group with an ap- e have implemented our algorithm as a clone detec-
propriate threshold; and finally, all reported clone classe tjon tool called DECKARD. In our implementation, we use
from different groups are combined. 1-level vectors to capture tree structuresdXARD is lan-

Any grouping strategy is appropriate as long as it meets guage independent and works on programs in any program-
the following requirements: (1) It should not miss any ming language that has a context-free grammar. It auto-
clones detectable with a fixed threshold, thus each groupmatically generates a parse tree builder to build parse tree
should overlap with the neighboring groups; (2) It should required by our algorithm. BckARD takes a YACC gram-
not produce many duplicate clones, thus overlapping shouldmar and generates a parse tree builder by replacing YACC
be avoided as much as possible; (3) It should produce manyactions in the grammar’s production rules with tree buidin
small groups to help reduce clustering cost. mechanisms. The generated parse tree builders also have

Algorithm 4 shows a generic vector grouping algorithm, high tolerance for syntactic errors. Thuss€<ARD is more
where s is a user-specified code size for the first group. applicable than other tree-based clone detection toods) ev
Each vectow is dispatched into groups whose size ranges for languages with incomplete or inaccurate grammars. As
contain the size of its corresponding code fragmest, an example, only files out of8, 453 in JDK 1.4.2 cannot
S(C,). sizERANGES shows our formulae for grouping. be parsed by BCKARD, whereas31 cannot be parsed by
The exact constraints used to deduce the grouping formulaeCloneDR.
can vary as long as they meet the aforementioned require- Section 4.3 will show that BCKARD works effectively
ments. for both C and Java. In addition, YACC grammars are



available for many languages, often with the requisite er- the number of statement insertions, deletions, or modifica-
ror recovery to localize syntax problems. Thus, it should be tions to transform one statement sequence to another. Such

straightforward to port BCKARD to other languages. a parameter is invariant w.r.t. different code sizes.
4.2. Experimental Setup 4.3. Experimental Results

We performed extensive experiments oedXARD, and
the most detailed ones were on JDK 1.4.2 (8,534a

We have evaluated ECKARD in terms of the following:
clone quantityi(e., number of detected clones), clone qual-
files, 2,418,767 LoC) and Linux kernel 2.6.16 (7,98@es, ity (i.e., number of false clones), and its scalability. Our
5,287,090 LoC¥. We also compared ECKARD to both results indicate that ECKARD performs significantly bet-
CloneDR [4, 5], a well-known AST-based clone detection ter than both CloneDR and CP-Miner.
tool for Java, and CP-Miner [17], a token-based tool for C. .

To compare with CloneDR, we ran experiments on a 4.3.1 Clone Quantity
workstation with a Xeon 2GHz processor and 1GB of We measure clone quantity by the number of lines of code
RAM, with both Windows XP (for CloneDR) and Linux that are within detected clone pairs.
kernel 2.4.27 (for BCKARD). CloneDR has several pa- In the first experiment, we comparedeDKARD with
rameters that may affect its clone detection rates, and weCloneDR on JDK. CloneDR failed to work on the entire
chose the most lenient values for all those parameters: (1)JJDK at once. It also failed on files with minor syntactic
The minimal depth of a subtree to be considered a clone isproblems. Thus, we excluded those syntactically incor-
set to two; (2) The minimal number of tree nodes a clone rect files reported by CloneDR and separated the remain-
should contain is set to three; (3) The maximal number of ing files into nine overlapping groups, with each group con-
parameters allowed when using parameterized macros tdaining around 1,000 files. Figure 3(a) shows the total de-

refactor clones is set t65535; and (4) Similarity is set
to a value betweef.9 and1.0, where CloneDR [5] defines

Similarity as the following:
2H

2H+L+R (Ea. 1)
whereH is the number of shared nodes in tréggandTs, L

is the number of different nodes i, and R is the number
of different nodes irYs. This definition takes tree sizes into
account, similar to our definition in Section 3.4. To make
our comparisons fair despite the different configuration op
tions in each, we compute HZKARD's thresholdo from
Similarity as follows. Suppose; andwvs are thel-level
vectors forT; and75; respectively. Because tlie norm of

v andw, can be approximated ds+ R andly > /1, for
integer vectors, we can transform a giv€imilarity s to

an approximateé, distance:

Similarity(Th, To) =

Ds(v1,v2) > VH(vi,v2) ~ VL+ R
FeY A< (n+ED
> V2(1 = 5) x min(S(v1), S(v2))

Given a vector group), /2(1 — s) x min,eyS(v) can
serve as the threshold used by BEcKARD for the group.

tected cloned lines over many runs on JDK. F&dBARD,

we used a variety of configuration optionminT (mini-

mal number of tokens required for clones) was seitor

50, stride (size of the sliding window) ranged fror to

inf (equivalent to no merging of vectors), as@dmilarity
ranged between.9 and1.0. The setting with an infinite
stride means that vector merging was disabled. The total
number of cloned lines for BCKARD ranges from 204,263

to 1,943,777, while for CloneDR the number ranges from
246,708 to 727,701.

In our second experiment, we compareddXARD with
CP-Miner on the Linux kernel. Figure 4(a) shows the total
number of detected clone lines byeDKARD under differ-
ent configuration options witminT set to30 or 50, stride
ranging from2 to inf, andSimilarity ranging from0.9 to
1.0. The total number of detected cloned lines ranges from
338,519 to 3,936,242. For CP-Miner, we used four config-
uration options witminT set to30 or 50 andgap set to0
or 1. Its total number of detected clone lines ranges from
498,113 to 1,108,062 as shown in Table 1. It failed to oper-
ate withgap > 1.

In addition, Figure 4(c) plots the decline in clone de-

This is similar to Section 3.4, where we use vector sizestection rates asninT increases for both CP-Miner and
to approximate tree sizes. In Figures 3 and 4, we showDECKARD. Even with Similarity set t01.0, DECKARD

Similarity only, without showing the derived.

To compare with CP-Miner (available for Linux), we ran
experiments on a workstation running Linux kernel 2.6.16
with an Intel Xeon 3GHz processor and 2GB of RAM. CP-
Miner uses a different distance metric, callgp, which is

2We have also done experiments on the following programs and ob-

tained consistent results: GCC 3.3.6 (C), PostgreSQL g§a@)pDerby
10.0.2.1 (Java), and Apache 2.2.0 (C). Due to space limitsitiwe do not
report the detailed data here.

detects more clones than CP-Miner.
4.3.2 Clone Quality

The number of reported spurious clones is also important
in assessing clone detection tools. We performed random,
manual inspection on rcAN setisq, clustered similar vec-
tors) using two criteria: (1) Does an rcAN set contain at
least one clone pair that corresponds to copy-pasted frag-
ments? (2) Are all clones in an rcAN set copies of one
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Figure 3. Results for TECKARD (with grouping and full parameter tuning) and CloneDR on JDK 1.4.2.
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Figure 4. Results for EECKARD (with grouping and selective parameter tuning) and CP-Miner (Takd® Ljnux kernel 2.6.16.

another? If a set fails to satisfy either of the criteria, we to 4, andSimilarity set tol.0. Of those 93 rcAN sets are
classify it as a false clone report. clearly real clones. Among the remaining seven rcAN sets,
It may be difficult to decide for certain whether two code three involveif-else andswitch-case that are similar
fragments are clones or not. For example, consider the fol-to the aboveif-else example, three involve sequences of
lowing code fragments from JDK 1.4.2: simple import statements, and one involves sequences of
simple declarations. Although it is unclear whether these

1 else if (option.equalsIgnoreCase("basic")) { )

2 bBasicTraceOn = true; are clones, the reported clone pairs are all structuradly th
3 }else af (option. cqualsignoreCase(net™)) same. Also because both CloneDR and CP-Miner may de-
5} else if (option.equalsIgnoreCase("security")) { tect such code as clones, we also classified these as real
o eise bSecuritylraceln = true; clones. This experiment indicates that & ARD is highly

8 ... accurate. Because the version of CloneDR that we have
o et infoh:’lf: edale(onohelp™) { does not output the actual clones, we cannot directly com-
11} else if (opt.equals("-splitindex")) { pare its accuracy with BCKARD. For future work, we

12 splitindex = true; plan to develop a better user interface fardkARD, which

13} else if (opt.equals("-noindex")) { X

14 createindex = false; would allow us to conduct further user studies and to more
15 Felss ... rigorously assess the quality of reported clones.

The code between lines 1-7 and that between lines 9—154
have identical structure but different variable namesgfun
tions, and constants. CloneDR and CP-Miner may detectTable 2 shows the worst-case time and space complexities
them as clones if the twif -else sequences are standalone of CloneDR, CP-Miner, BCKARD, and LSH. Although
statements, but miss them if they are in the middle of differ- the number of tree nodesis usually several times larger
ent, largerif-else statements. BCKARD always detects  than the number of statementsin a program, [ECKARD'S
them with reasonably small settings foinT andstride. performance is still comparable to CP-Miner for large pro-

We inspected 00 randomly selected rcAN sets reported grams becausg is usually much smaller than one. With
by DECKARD for JDK 1.4.2 withminT set to50, stride set vector grouping, LSH’s memory consumption can be sig-

.3.3 Scalability



[ [ CloneDR | CP-Miner | LSH [ LSH w/ Grouping [ DECKARD w/ Post-Processing |

. n2
Time || O({gucrers) O(m?) O(dn” logn) O(d e lglP loglgl) O(n+dX e lglPT log |g| + clrcAN|?)
Mem O(n) O(m) OnPTT +dn) | O(mazgec{lgl’T" +dlg[}) | maz{O(crcAN]), Ogec(lgl”T" +dlg])}

Table 2. Worst-case complexities of CloneDR, CP-Miner, anBdBARD (m is the number of lines of code, is the size of a
parse tree|Buckets| is the number of hash tables used in CloneB#, the number of node kindg| is the size of a vector group,
0 < p < 1, cis the number of clone classes reported, grdl V| is the average size of the clone classes).

[ [ Sim [ G@#) ][ ClonedLoC(#) [ T (min) |

numerical vectors has already been extensively studied and

Full Tuni 1.0 1984 624265 224.8 .. . .
Selective Tuning Py 140 efficient algorithms exist. Yangt al. [23] propose an ap-
Full Tuning 099 [ 235 792326 58.6 proximation algorithm for computing tree editing distasice
Selective Tuning 792298 16.3

: —— We adapt their characterization to capture structuralrinfo
Tabl_e 3. Effects of sele_ctlv_e parameter tuning in LSH. The mation in parse trees, and apply LSH [7] to search for sim-
data is for JDK 1.4.2, witlminT 50, stride 2. ilar trees. To the best of our knowledgeEEXARD is the

- most effective and scalable tool for tree similarity detatt
nificantly reduced to make ECKARD scale to very large

programs. Studies on Code Clones A few independent studies ad-
Figure 3(b) plots running times for both HBKARD dress the questions of clone coverage and evolution in large
and CloneDR on JDK. Wherfimilarity < 0.9999, open-source projects. The goal for clone coverage is to de-

DECKARD is several times faster than CloneDR. We show teérmine what fraction of a program is duplicated code. Itis
next how DECKARD can be configured to run significantly ~difficult to directly compare these studies because such re-
faster. By default, LSH takeS(kd Y, 9|* log |g]) time sults are usually sensitive to: (1) the different definisaf
to tune its own parameters and build optimal (w.r.t. query code similarity used; (2) the particular detection algoris
time) hash tables, wherk is the number of iterations it ~used; (3) the various choices of parameters for these algo-
uses to find the optimal parameters. Such cost accumulategithms; and (4) the different code bases used for evaluation
when the vectors are split into groups, and thus LSH may (€.9, CCFinder [10] report29% cloned code in JDK, and
spend much time on parameter tuning. Reusing the parameCP-Miner [17] report22.7% cloned code in Linux kernel
ters computed for certain groupsg, the largest group) can ~ 2.6.6). However, these studies do confirm that there is a
dramatically reduce LSH’s running time with little effeaio  significant amount of duplicated code in large code bases.
clone quantity and quality. Table 3 shows the effectiveness The goal of clone evolution is to understand how clones
of such a strategy in reducing the overall running time of are introduced or removed across different versions of a
DECKARD, especially when the vectors are split into many software. Lagé etal. [16] examined six versions of a
groups. telecommunication software system and found that a sig-
Figure 4(b) shows BCKARD'S running time on the  nificant number of clones were removed due to refactoring,
Linux kernel with selective parameter tuning. When but the overall number of clones increased due to the faster
Similarity > 0.95, DECKARD runs in tens of min-  rate of clone introduction. Kinet al.[11] describe a study
utes and is comparable to CP-Minef.(Table 1); it can of clone genealogies and find that: (1) many code clones are
be even faster wheimilarity is close tol.0. When short-lived, so performing aggressive refactoring may not
Similarity < 0.95, DECKARD may take more time than  be worthwhile; and (2) long-lived clones pose great chal-
CP-Miner. This extra cost is reasonable considering thatlenges to refactoring because they evolve independerdly an
DECKARD is tree-based and detects more clones, while CP-can deviate significantly from the original copy.
Miner is token-based and cannot operate wiip > 1, and
that Similarity < 0.95 is often too small for clone detec-
tion tasks.

Clone Detection Many algorithms and tools exist for
clone detection. First, there are tools specifically desilgn
for estimating similarity in programs for the purpose of de-
5. Related Work tecting plagiarism. Example tools include Moss [20] and
JPlag http://www.jplag.de). These tools are usually
very coarse-grained and are not suitable for clone detectio
Second, there are token-based tools, such as CP-Miner [17]
and CCFinder [10]. These are usually efficient, scale to mil-
Tree Similarity Detection Following the increased pop- lions of lines of code, and find good quality clones, but they
ularity of tree-structured data such as XML databases, sim-are sensitive to code restructuring and minor edits, so may
ilarity detection on trees is gaining increasing attention miss clones. Third, there are tree-based techniques, which
However, efficient tree similarity detection still remaizs are less sensitive to code edits than token-based tools. Bax
open problem, while similarity detection on high dimension ter et al. [4, 5] apply AST hashing for detecting exact and

In this section, we discuss closely related work and split
them into three categories: (1) tree similarity detecti@);
studies on code clones; and (3) clone detection algorithms.
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