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Computational Geometry: Proximity

and Location

63.1 Introduction

Proximity and location are fundamental concepts in geometric computation. The term
proximity refers informally to the quality of being close to some point or object. Typical
problems in this area involve computing geometric structures based on proximity, such as the
Voronoi diagram, Delaunay triangulation and related graph structures such as the relative
neighborhood graph. Another class of problems are retrieval problems based on proximity.
These include nearest neighbor searching and the related concept of range searching. (See
Chapter 18 for a discussion of data structures for range searching.) Instances of proximity
structures and proximity searching arise in many fields of applications and in many di-
mensions. These applications include object classification in pattern recognition, document
analysis, data compression, and data mining.

The term location refers to the position of a point relative to a geometric subdivision or
a given set of disjoint geometric objects. The best known example is the point location
problem, in which a subdivision of space into disjoint regions is given, and the problem is
to identify which region contains a given query point. This problem is widely used in areas
such as computer graphics, geographic information systems, and robotics. Point location is
also used as a method for proximity searching, when applied in conjunction with Voronoi
diagrams.

In this chapter we will present a number of geometric data structures that arise in the
context of proximity and location. The area is so vast that our presentation will be limited
to a relatively few relevant results. We will discuss data structures for answering point
location queries first. After this we will introduce proximity structures, including Voronoi
diagrams and Delaunay triangulations. Our presentation of these topics will be primarily
restricted to the plane. Finally, we will present results on multidimensional nearest neighbor
searching.

63.2 Point Location

The planar point location problem is one of the most fundamental query problems in com-
putational geometry. Consider a planar straight line graph S. (See Chapter 17 for details.)
This is an undirected graph, drawn in the plane, whose edges are straight line segments
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that have pairwise disjoint interiors. The edges of S subdivide the plane into (possibly
unbounded) polygonal regions, called faces. Henceforth, such a structure will be referred
to as a polygonal subdivision. Throughout, we let n denote the combinatorial complexity
of S, that is, the total number of vertices, edges and faces. (We shall occasionally abuse
notation and use n to refer to the specific number of vertices, edges, or faces of S.) A planar
subdivision is a special case of the more general topological concept of a cell complex [35],
in which vertices, edges, and generally faces of various dimensions are joined together so
that the intersection of any two faces is either empty or is a face of lower dimension.

The point location problem is to preprocess a polygonal subdivision S in the plane into
a data structure so that, given any query point q, the polygonal face of the subdivision
containing q can be reported quickly. (In Figure 68.1(a), face A would be reported.) This
problem is a natural generalization of the binary search problem in 1-dimensional space,
where the faces of the subdivision correspond to the intervals between the 1-dimensional
key values. By analogy with the 1-dimensional case, the goal is to preprocess a subdivision
into a data structure of size O(n) so that point location queries can be answered in O(log n)
time.
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FIGURE 63.1: Illustration of (a) point location and (b) vertical ray shooting queries.

A slightly more general formulation of the problem, which is applicable even when the
input is not a subdivision is called vertical ray shooting. A set S of line segments is given
with pairwise disjoint interiors. Given a query point q, the problem is to determine the
line segment of S that lies vertically below q. (In Figure 68.1(b), the segment s would be
reported.) If the ray hits no segment, a special value is returned. When S is a polygonal
subdivision, point location can be reduced to vertical ray shooting by associating each edge
of S with the face that lies immediately above it.

63.2.1 Kirkpatrick’s Algorithm

Kirkpatrick was the first to present a simple point location data structure that is asymp-
totically optimal [52]. It answers queries in O(log n) time using O(n) space. Although this
is not the most practical approach to point location, it is quite easy to understand.

Kirkpatrick starts with the assumption that the planar subdivision has been refined
(through the addition of O(n) new edges and vertices) so that it is a triangulation whose
external face is a triangle. Let T0 denote this initial triangulation subdivision. Kirkpatrick’s
method generates a finite sequence of increasingly coarser triangulations, 〈T0, T1, T2, . . . , Tm〉,
where Tm consists of the single triangle forming the outer face of the original triangulation.
This sequence satisfies the following constraints: (a) each triangle of Ti+1 intersects a con-
stant number of triangles of Ti, and (b) the number of vertices of Ti+1 is smaller than the
number of vertices of Ti by a constant fraction. (See Figure 68.2.)
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The data structure itself is a rooted DAG (directed acyclic graph), where the root of
the structure corresponds to the single triangle of Tm, and the leaves correspond to the
triangles of T0. The interior nodes of the DAG correspond to the triangles of each of the
triangulations. A directed edge connects each triangle in Ti+1 with each triangle in Ti that
it overlaps.

Given a query point q, the point location query proceeds level-by-level through the DAG,
visiting the nodes corresponding to the triangles that contain q. By property (a), each
triangle in Ti+1 overlaps a constant number of triangles of Ti, which implies that it is
possible to descend one level in the data structure in O(1) time. It follows that the running
time is proportional to the number of levels in the tree. By property (b), the number of
vertices decreases at each level by a fixed constant fraction, and hence, the number of levels
is O(log n). Thus the overall query time is O(log n).

q qqq

T0 T1 T2 T3 T4

FIGURE 63.2: The sequence of triangulations generated in the construction of Kirkpatrick’s
structure (above) and the triangles visited in answering a point location query (below).

Kirkpatrick showed how to build the data structure by constructing a sequence of triangu-
lations satisfying the above properties. Kirkpatrick’s approach is to compute an independent
set of vertices (that is, a set of mutually nonadjacent vertices) in Ti where each vertex of the
independent set has constant degree. (An example is shown at the top of Figure 68.2. The
vertices of the independent set are highlighted.) The three vertices of the outer face are not
included. Kirkpatrick showed that there exists such a set whose size is a constant fraction
of the total number of vertices, and it can be computed in linear time. These vertices are
removed along with any incident edges, and the resulting “holes” are then retriangulated.
Kirkpatrick showed that the two properties hold for the resulting sequence of triangulations.

63.2.2 Slab-Based Methods and Persistent Trees

Many point location methods operate by refining the given subdivision to form one that
is better structured, and hence, easier to search. One approach for generating such a
refinement is to draw a vertical line through each vertex of the subdivision. These lines
partition the plane into a collection of O(n) vertical slabs, such that there is no vertex within
each slab. As a result, the intersection of the subdivision with each slab consists of a set
of line segments, which cut clear through the slab. These segments thus partition the slab
into a collection of disjoint trapezoids with vertical sides. (See Figure 68.3.)

Point location queries can be answered in O(log n) time by applying two binary searches.
The first search accesses the query point’s x coordinate to determine the slab containing the
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FIGURE 63.3: Slab refinement of a subdivision.

query point. The second binary search tests whether the query point lies above or below
individual lines of the slab, in order to determine which trapezoid contains the query point.
Since each slab can be intersected by at most n lines, this second search can be done in
O(log n) time as well.

A straightforward implementation of this method is not space efficient, since there are
Ω(n) slabs,1 each having up to Ω(n) intersecting segments, for a total of Ω(n2) space.
However, adjacent slabs are very similar, since the only segments that change are those that
are incident to the vertices lying on the slab boundary. Sarnak and Tarjan [67] exploited this
idea to produce an optimal point location data structure. To understand their algorithm,
imagine sweeping a line segment continuously from left to right. Consider the sorted order of
subdivision line segments intersecting this sweep line. Whenever the sweep line encounters
a vertex of the subdivision, the edges incident to this vertex lying to the left of the vertex
are removed from the sweep-line order and incident edges to the right of the vertex are
inserted. Since every edge is inserted once and deleted once in this process, the total
number of changes over the entire sweep process is O(n).

Sarnak and Tarjan proposed maintaining a persistent variant of the search tree. A per-
sistent search tree is a dynamic search tree (supporting insertion and deletion) which can
answer queries not only to the current tree, but to any of the previous versions in the history
of the tree’s lifetime as well. (See Chapter 31.) In this context, the history of changes to
the search tree is maintained in a left to right sweep of the plane. The persistent search
tree supports queries to any of these trees, that is, in any of the slabs, in O(log n) time.
The clever aspect of Sarnak and Tarjan’s tree is that it can be stored in O(n) total space
(as opposed to O(n2) space, which would result by generating O(n) copies of the tree).
This is done by a method called limited node copying. Thus, this provides an asymptoti-
cally optimal point location algorithm. A similar approach was discovered independently
by Cole [29].

63.2.3 Separating Chains and Fractional Cascading

Slab methods use vertical lines to help organize the search. An alternative approach, first
suggested by Lee and Preparata [55], is to use a divide-and-conquer approach based on a hi-
erarchy of monotone polygon chains, called separating chains. A simple polygon is said to be
x-monotone if the intersection of the interior of the polygon with a vertical line is connected.
An x-monotone subdivision is one in which all the faces are x-monotone. The separating
chain method requires that the input be an x-monotone subdivision. Fortunately, it is pos-

1For readers unfamiliar with this notation, Ω(f(n)) is analogous to the notation O(f(n)), but it provides
an asymptotic lower bound rather than an upper bound. The notation Θ(f(n)) means that both upper
and lower bounds apply [30].
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sible to convert any polygonal subdivision in the plane into an x-monotone subdivision in
O(n log n) time, through the addition of O(n) new edges. (See, for example, [31, 55, 64].)
For example, Figure 68.4(a) shows a subdivision that is not x-monotone, but the addition
of two edges suffice to produce an x-monotone subdivision shown in Figure 68.4(b).
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FIGURE 63.4: Point location by separating chains: (a) the original subdivision, (b) the
addition of one or more edges to make the subdivision x-monotone, (c) decomposition of
the subdivision into a hierarchy of separating chains.

Consider an x-monotone subdivision with n faces. It is possible to order the faces
f0, f1, . . . , fn−1 such that if i < j, then every vertical line that intersects both of these
faces intersects fi below fj . (See Figure 68.4(b).) For each i, 0 < i < n, define the ith
separating chain to be the x-monotone polygonal chain separating faces whose indices are
less than i from those that are greater than or equal to i.

Observe that, given a chain with m edges, it is possible to determine whether a given
query point lies above or below the chain in O(log m) time, by first performing a binary
search on the x-coordinates of the chain, in order to find which chain edge overlaps the
query point, and then determining whether the query point lies above or below this edge in
O(1) time. The separating chain method works intuitively by performing a binary search
on these chains. The binary search can be visualized as a binary tree imposed on the chains,
as shown in Figure 68.4(c).

Although many chains traverse the same edge, it suffices to store each edge only once in
the structure, namely with the chain associated with the highest node in the binary tree.
This is because once a discrimination of the query point is made with respect to such an
edge, its relation is implicitly known for all other chains that share the same edge. It follows
that the total space is O(n).

As mentioned above, at each chain the search takes logarithmic time to determine whether
the query point is above or below the chain. Since there are Ω(n) chains, this would
lead to an Ω(log2 n) algorithm [55]. There is a clever way to reduce the search time to
O(log n), through the use of a simple and powerful method called fractional cascading
[24, 36]. Intuitively, fractional cascading seeks to replace a sequence of independent binary
searches with a more efficient sequence of coordinated searches. After searching through a
parent’s chain, it is known which edge of this chain the query point overlaps. Thus, it is not
necessary to search the entire range of x-coordinates for the child’s chain, just the sublist
of x-coordinates that overlap this interval.

However, in general, the number of edges of the child’s chain that overlaps this interval
may be as large as Ω(n), and so this observation would seem to be of no help. In fractional
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cascading, this situation is remedied by augmenting each list. Starting with the leaf level, the
x-coordinate of every fourth vertex is passed up from each child’s sorted list of x-coordinates
and inserted into its parent’s list. This is repeated from the parent to the grandparent, and
so on. After doing this, once the edge of the parent’s chain that overlaps the query point
has been determined, there can be at most four edges of the child’s chain that overlap this
interval. (For example, in Figure 68.5 the edge pq is overlapped by eight edges at the next
lower level. After cascading, it is broken into three subedges, each of which overlaps at
most four edges at the next level.) Thus, the overlapping edge in the child’s chain can be
found in O(1) time. The root requires O(log n) time, and each of the subsequent O(log n)
searches can be performed in O(1) additional time. It can be shown that this augmentation
of the lists increases the total size of all the lists by at most a constant factor, and hence
the total space is still O(n).

p q

FIGURE 63.5: Example of fractional cascading. Every fourth vertex is sampled from each
chain and inserted in its parent’s chain.

63.2.4 Trapezoidal Maps and the History Graph

Next we describe a randomized approach for point location. It is quite simple and practical.
Let us assume that the planar subdivision is presented simply as a set of n line segments
S = {s1, s2, . . . , sn} with pairwise disjoint interiors. The algorithm answers vertical ray-
shooting queries as described earlier. This approach was developed by Mulmuley [60]. Also
see Seidel [68].

The algorithm is based on a structure called a trapezoidal map (or trapezoidal decompo-
sition). First, assume that the entire domain of interest is enclosed in a large rectangle.
Imagine shooting a bullet vertically upwards and downwards from each vertex in the polyg-
onal subdivision until it hits another segment of S. To simplify the presentation, we shall
assume that the x-coordinates of no two vertices are identical. The segments of S together
with the resulting bullet paths subdivide the plane into O(n) trapezoidal cells with vertical
sides, which may degenerate to triangles. (See Figure 68.6(a).)

For the purposes of point location, the trapezoidal map is created by a process called a
randomized incremental construction. The process starts with the initial bounding rectangle
(that is, one trapezoid) and then the segments of S are inserted one by one in random order.
As each segment is added, the trapezoidal map is updated by “walking” the segment through
the subdivision, and updating the map by shooting new bullet paths through the segments
endpoints and trimming existing paths that hit the new segment. See [31, 60, 68] for further
details. The number of changes in the diagram with each insertion is proportional to the
number of vertical segments crossed by the newly added segment, which in the worst case
may be as high as Ω(n). It can be shown, however, that on average each insertion of a
new segment results in O(1) changes. This is true irrespective of the distribution of the
segments, and the expectation is taken over all possible insertion orders.
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FIGURE 63.6: A trapezoidal map of a set of segments (a), and the two types of internal
nodes: x-node (b) and y-node (c).
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FIGURE 63.7: Example of incremental construction of a trapezoidal map and the associated
history DAG. The insertion of segment s2 replaces the leaves associated with destroyed
trapezoids c and d with an appropriate search structure for the new trapezoids e–i.

The point location data structure is based on a rooted directed acyclic graph, or DAG,
called the history DAG. Each node has either two outgoing edges (internal nodes) or none
(leaves). Leaves correspond one-to-one with the cells of the trapezoidal map. There are two
types of internal nodes, x-nodes and y-nodes. Each x-node contains the x-coordinate x0

of an endpoint of one of the segments, and its two children correspond to the points lying
to the left and to the right of the vertical line x = x0. Each y-node contains a pointer to
a line segment of the subdivision. The left and right children correspond to whether the
query point is above or below the line containing this segment, respectively. (In Figure 68.7,
x-nodes are shown as circles, y-nodes as hexagons, and leaves as squares.)

As with Kirkpatrick’s algorithm, the construction of the point location data structure
encodes the history of the randomized incremental construction. Let 〈T0, T1, . . . , Tn〉 denote
the sequence of trapezoidal maps that result through the randomized incremental process.
The point location structure after insertion of the ith segment has one leaf for each trapezoid
in Ti. Whenever a segment is inserted, the leaf nodes corresponding to trapezoids that were
destroyed are replaced with internal x- and y-nodes that direct the search to the location of
the query point in the newly created trapezoids, after the insertion. (This is illustrated in
Figure 68.7.) Through the use of node sharing, the resulting data structure can be shown
to have expected size O(n), and its expected depth is O(log n), where the expectation is
over all insertion orders. Details can be found in [31, 60, 68].

63.2.5 Worst- and Expected-Case Optimal Point Location

Goodrich, Orletsky and Ramaiyer [43] posed the question of bounding the minimum number
of comparisons required, in the worst case, to answer point location queries in a subdivision
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of n segments. Adamy and Seidel [1] provided a definitive answer by showing that point
location queries can be answered with log2 n+2

√
log2 n+o(

√
log n) primitive comparisons.

They also gave a similar lower bound.
Another natural question involves the expected-case complexity of point location. Given

a polygonal subdivision S, assume that each cell z ∈ S is associated with the probability
pz that a query point lies in z. The problem is to produce a point location data structure
whose expected search time is as low as possible. The appropriate target bound on the
number of comparisons is given by the entropy of the subdivision, which is denoted by H
and defined:

entropy(S) = H =
∑
z∈S

pz log2(1/pz).

In the 1-dimensional case, a classical result due to Shannon implies that the expected
number of comparisons needed to answer such queries is at least as large as the entropy of
the probability distribution [53, 71]. Mehlhorn [58] showed that in the 1-dimensional case
it is possible to build a binary search tree whose expected search time is at most H + 2.

Arya, Malamatos, and Mount [5, 6] presented a number of results on this problem in
the planar case, and among them they showed that for a polygonal subdivision of size n
in which each cell has constant combinatorial complexity, it is possible to answer point
location queries with H + o(H) comparisons in the expected case using space that is nearly
linear in n. Their results also applied to subdivisions with convex cells, assuming the query
distribution is uniform within each cell. Their approach was loosely based on computing a
binary space partition (BSP) tree (see Chapter 20) satisfying two properties:

(a) The entropy of the subdivision defined by the leaves of the BSP should be close
to the entropy of the original subdivision.

(b) The depth of a leaf should be close to log2(1/p), where p is the probability that
a query point lies within the leaf.

Arya, Malamatos, and Mount [7] also presented a simple weighted variant of the randomized
incremental algorithm and showed that it can answer queries in O(H) expected time and
O(n) space. Iacono [48] presented a deterministic weighted variant based on Kirkpatrick’s
algorithm.

63.3 Proximity Structures

Proximity structures arise from numerous applications in science and engineering. It is a
fundamental fact that nearby objects tend to exert a greater influence and have greater
relevance than more distant objects. Proximity structures are discrete geometric and graph
structures that encode proximity information. We discuss a number of such structures, in-
cluding Voronoi diagrams, Delaunay triangulations, and various geometric graph structures,
such as the relative neighborhood graph.

63.3.1 Voronoi Diagrams

The Voronoi diagram of a set of sites S is a partition of space into regions, one per site,
where the region for site s is the set of points that are closer to s than to any other site of
S. This structure has been rediscovered and applied in many different branches of science
and goes by various names, including Thiessen diagrams and Dirichlet tessellations.

Henceforth, we consider the most common case in which the sites S consist of a set of
n points in real d-dimensional space, R

d, and distances are measured using the Euclidean
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metric. The set of points of R
d that are closer to some site s ∈ S than any other site

is called the Voronoi cell of s, or V (s). (See Figure 68.8.) The union of the boundaries
of the Voronoi cells is the Voronoi diagram of S, denoted Vor(S). Observe that the set
of points of R

d that are closer to s than some other site t consists of the points that lie
in the open halfspace defined by a plane that bisects the pair (s, t). It follows that each
Voronoi cell is the intersection of n − 1 halfspaces, and hence, it is a (possibly unbounded)
convex polyhedron. A Voronoi diagram in dimension d is a cell complex whose faces of all
dimensions are convex polyhedra. In the plane a Voronoi diagram is a planar straight line
graph with possibly unbounded edges. It can be represented using standard methods for
representing polygonal subdivisions and cell complexes (see Chapter 17).

s
V(s)

FIGURE 63.8: The Voronoi diagram and a Voronoi cell V (s).

The Voronoi diagram possesses a number of useful geometric properties. For example,
for a set of points in the plane, each edge of the Voronoi diagram lies on the perpendicular
bisector between two sites. The vertices of the Voronoi diagram lie at the center of an
empty circle passing through the incident sites. If the points are in general position (and
in particular if no four points are cocircular) then every vertex of the diagram is incident
to exactly three edges. In fact, it is not hard to show that the largest empty circle whose
center lies within the convex hull of a given point set will coincide with a Voronoi vertex. In
higher dimensions, each face of dimension k of the Voronoi diagram consists of the points
of R

d that are equidistant from a subset of d − k + 1 sites, and all other sites are strictly
farther away. In the plane the combinatorial complexity of the Voronoi diagram is O(n),
and in dimension d its complexity is Θ(ndd/2e).

Further information on algorithms for constructing Voronoi di-
agrams as well as variants of the Voronoi diagram can be found in
Chapter 62. Although we defined Voronoi diagrams for point sites,
it is possible to define them for any type of geometric object. One
such variant involves replacing point sites with line segments or
generally the boundary of any region of the plane. Given a region
P (e.g., a simple polygon), the medial axis is defined to be the
set of centers of maximal balls contained in P , that is, balls con-
tained in P that are not contained in another ball in P [32]. The
medial axis is frequently used in pattern recognition and shape
matching. It consists of a combination of straight-line segments
and hyperbolic arcs. It can be computed in O(n log n) time by
a modification of Fortune’s sweepline algorithm [39]. Finally, it is possible to generalize
Voronoi diagrams to other metrics, such as the L1 and L∞ metrics (see Section 68.4).
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63.3.2 Delaunay Triangulations

The Delaunay triangulation is a structure that is closely related to the Voronoi diagram.
The Delaunay triangulation is defined as follows for a set S of n point sites in the plane.
Consider any subset T ⊆ S of sites, such that there exists a circle that passes through all
the points of T , and contains no point of S in its interior. Such a subset is said to satisfy
the empty circumcircle property. For example, in Figure 68.9(a), the pair {p, q} and triple
{r, s, t} both satisfy the empty circumcircle property. The Delaunay triangulation is defined
to be the union of the convex hulls of all such subsets. It can be shown that the result is a
cell complex. Furthermore, if the points are in general position, and in particular, no four
points are cocircular, then the resulting structure is a triangulation of S. (If S is not in
general position, then some faces may have more than three edges, and it is common to
complete the triangulation by triangulating each such face.) A straightforward consequence
of the above definition is that the Delaunay triangulation is dual to the Voronoi diagram.
For example, Figure 68.9(b) shows the overlay of these two structures in the plane.

p

q
r

s

t

(b)(a)

FIGURE 63.9: (a) The Delaunay triangulation of a set of points and (b) its overlay with
the Voronoi diagram.

Delaunay triangulations are widely used in practice, and they possess a number of useful
properties. For example, among all triangulations of a planar point set the Delaunay trian-
gulation maximizes the minimum angle. Also, in all dimensions, the Euclidean minimum
spanning tree (defined below) is a subgraph of the Delaunay triangulation. Proofs of these
facts can be found in [31].

In the plane the Delaunay triangulation of a set of points has O(n) edges and O(n)
faces. The above definition can be generalized to arbitrary dimensions. In dimension d,
the Delaunay triangulation can have as many as Θ(ndd/2e) faces. However, it can be much
smaller. In particular, Dwyer [34] has shown that in any fixed dimension, if n points are
drawn from a uniform distribution from within a unit ball, then the expected number of
simplices is O(n).

There is an interesting connection between Delaunay triangulations in dimension d and
convex hulls in dimension d + 1. Consider the lifting map f : R

2 → R
3 defined f(x, y) =

(x, y, x2 + y2). This projects points in the plane onto the paraboloid z = x2 + y2. Given
a planar point set S, let S′ denote the set of points of R

3 that results by applying this
map to each point of S. Define the lower hull of S′ to be the set of faces whose outward
pointing normal has a negative z coordinate. It can be shown that, when projected back
to the plane, the edges of the lower convex hull of S′ are exactly the edges of the Delaunay
triangulation of S. (See Figure 68.10.)

Although there exist algorithms specially designed for computing Delaunay triangula-
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Project onto paraboloid Project hull faces back to planeCompute lower convex hull

FIGURE 63.10: The Delaunay triangulation can be computed by lifting the points to the
paraboloid, computing the lower convex hull, and projecting back to the plane.

tions, the above fact makes it possible to compute Delaunay triangulations in any dimen-
sion by computing convex hulls in the next higher dimension. There exist O(n log n) time
algorithms for computing planar Delaunay triangulations, for example, based on divide-
and-conquer [70] and plane sweep [39]. Perhaps the most popular method is based on
randomized incremental point insertion [45]. In dimension d ≥ 3, Delaunay triangulations
can be computed in O(ndd/2e) time through randomized incremental point insertion [27].

63.3.3 Other Geometric Proximity Structures

The Delaunay triangulation is perhaps the best known example of a proximity structure.
There are a number of related graph structures that are widely used in pattern recognition,
learning, and other applications. Given a finite set S of points in d-dimensional Euclidean
space, we can define a graph on these points by joining pairs of points that satisfy certain
neighborhood properties. In this section we will consider a number of such neighborhood
graphs.

Let us first introduce some definitions. For p, q ∈ R
d let dist(p, q) denote the Euclidean

distance from p to q. Given positive r ∈ R, let B(p, r) be the open ball consisting of points
whose distance from point p is strictly less than r. Define the lune, denoted L(p, q), to be
the intersection of two balls both of radius dist(p, q) centered at these points, that is,

L(p, q) = B(p,dist(p, q)) ∩ B(q,dist(p, q)).

The following geometric graphs are defined for a set S consisting of n points in R
d. (See

Figure 68.11.)

Nearest Neighbor Graph (NNG): The directed graph containing an edge (p, q) if
q is the nearest neighbor of p, that is, B(p,dist(p, q)) ∩ S = ∅.

Euclidean Minimum Spanning Tree (EMST): This is an undirected spanning
tree on S that minimizes the sum of the Euclidean edge lengths.

Relative Neighborhood Graph (RNG): The undirected graph containing an edge
(p, q) if there is no point r ∈ S that is simultaneously closer to p and q than
dist(p, q) [74]. Equivalently, (p, q) is an edge if L(p, q) ∩ S = ∅.

Gabriel Graph (GG): The undirected graph containing an edge (p, q) if the ball
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whose diameter is pq does not contain any other points of S [42], that is, if

B

(
p + q

2
,
dist(p, q)

2

)
∩ S = ∅.

Delaunay Graph (DT): The 1-skeleton (edges) of the Delaunay triangulation.

p

MSTNNG

q

p

DTRNG GG

q

FIGURE 63.11: Common geometric graphs on a point set.

These graphs form an interesting hierarchical relationship. If we think of each edge of an
undirected graph as consisting of two directed edges, then we have the following hierarchical
relationship, which was first established in [74]. Also see [50].

NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT.

This holds in all finite dimensions and generalizes to Minkowski (Lm) metrics, as well.

63.4 Nearest Neighbor Searching

Nearest neighbor searching is an important problem in a variety of applications, includ-
ing knowledge discovery and data mining, pattern recognition and classification, machine
learning, data compression, multimedia databases, document retrieval, and statistics. We
are given a set S of objects in some space to be preprocessed, so that given a query object
q, the closest object (or objects) of S can be reported quickly.

There are many ways in which to define the notion of similarity. Because the focus of
this chapter is on geometric approaches, we shall assume that proximity is defined in terms
of the well known Euclidean distance. Most of the results to be presented below can be
generalized to any Minkowski (or Lm) metric, in which the distance between two points p
and q is defined to be

distm(p,q) =

(
d∑

i=1

|pi − qi|m
)1/m

where m ≥ 1 is a constant. The case m = 2 is the Euclidean distance, the case m = 1 is the
Manhattan distance, and the limiting case m = ∞ is the max distance. In typical geometric
applications the dimension d is assumed to be a fixed constant. There has also been work
on high dimensional proximity searching in spaces of arbitrarily high dimensions [49] and
in arbitrary (nongeometric) metric spaces [23], which we shall not cover here.

There are a number of natural extensions to the nearest neighbor problem as described
above. One is to report the k nearest neighbors to the query point, for some given integer
k. Another is to compute all the points lying within some given distance, that is, a range
query in which the range is defined by the distance function.
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Obviously, without any preprocessing whatsoever, the nearest neighbor search problem
can be solved in O(n) time through simple brute-force search. A number of very simple
methods have been proposed which assume minimal preprocessing. For example, points
can be sorted according to their projection along a line, and the projected distances can be
used as a method to prune points from consideration [40, 44, 54]. These methods are only
marginally effective, and provide significant improvements over brute-force search only in
very low dimensions.

p

q

For uniformly distributed point sets, good expected case perfor-
mance can be achieved by simple decompositions of space into a
regular grid of hypercubes. Rivest [65] and later Cleary [28] pro-
vided analyses of these methods. Bentley, Weide, and Yao [17] also
analyzed a grid-based method for distributions satisfying certain
bounded-density assumptions. Intuitively, the points are bucketed
into grid cells, where the size of the grid cell is based on the ex-
pected distance to the nearest neighbor. To answer a query, the
grid cell containing the query point is located, and a spiral-like
search working outwards from this cell is performed to identify
nearby points. Suppose for example that q is the query point and
p is its closest neighbor. Then all the grid cells overlapping a ball
centered at q of radius dist(q, p) would be visited.

Grids are easy to implement, since each bucket can be stored as a simple list of points,
and the complete set of buckets can be arranged in a multi-dimensional array. Note that
this may not be space efficient, since it requires storage for empty cells. A more space-
efficient method is to assign a hash code to each grid cell based on its location, and then
store only the nonempty grid buckets in a hash table. In general, grid methods do not work
well for nearest neighbor search unless the point distribution is roughly uniform. As will
be discussed below, more sophisticated methods are needed to achieve good efficiency for
nonuniformly distributed data.

63.4.1 Nearest Neighbor Searching through Point Location

One of the original motivations for the Voronoi diagram is nearest neighbor searching. By
definition, the Voronoi diagram subdivides space into cells according to which site is the
closest. So, in order to determine the closest site, it suffices to compute the Voronoi diagram
and generate a point location data structure for the Voronoi diagram. In this way, nearest
neighbor queries are reduced to point location queries. This provides an optimal O(n)
space and O(log n) query time method for answering point location queries in the plane.
Unfortunately, this solution does not generalize well to higher dimensions. The worst-case
combinatorial complexity of the Voronoi diagram in dimension d grows as Θ(ndd/2e), and
optimal point location data structures are not known to exist in higher dimensions.

63.4.2 K-d trees

Perhaps the most popular class of approaches to nearest neighbor searching involves some
sort of hierarchical spatial subdivision. Let S denote the set of n points in R

d for which
queries are to be answered. In such an approach, the entire space is subdivided into suc-
cessively smaller regions, and the resulting hierarchy is represented by a rooted tree. Each
node of the tree represents a region of space, called a cell. Implicitly, each node represents
the subset of points of S that lie within its cell. The root of the tree is associated with the
entire space and the entire point set S. For some arbitrary node u of the tree, if the number
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of points of S associated with u is less than some constant, then this node is declared to be a
leaf of the tree. Otherwise, the cell associated with u is recursively subdivided into smaller
(possibly overlapping) subcells according to some splitting rule. Then the associated points
of S are distributed among these children according to which subcell they lie in. These
subcells are then associated with the children of u in the tree.

There are many ways in which to define such a subdivision. Perhaps the earliest and best
known example is that of the k-d tree data structure. Bentley [16] introduced the k-d tree
data structure (or kd-tree) as a practical general-purpose data structure for many types of
geometric retrieval problems. Although it is not the asymptotically most efficient solution
for these problems, its flexibility makes it a popular choice for implementation. The cells
of a k-d tree are axis-aligned hyperrectangles. Each internal node is associated with an
axis-orthogonal splitting hyperplane. This hyperplane splits the rectangular cell into two
rectangular subcells, each of which is associated with one of the two children. An example
is shown in Figure 68.12.
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FIGURE 63.12: An example of a k-d tree of a set of points in the plane, showing both the
associated spatial subdivision (left) and the binary tree structure (right).

The choice of the splitting hyperplane is an important issue in the implementation of the
k-d tree. For the purpose of nearest neighbor searching, a good split is one that divides
the points into subsets of similar cardinalities and which produces cells that are not too
skinny, that is, the ratio between the longest and shortest sides is bounded. However, it
is not always possible to achieve these goals. A simple and commonly used method is to
cycle through the various coordinate axes (that is, splitting along x, then y, then z, then
back to x, and so on). Each time the split is made through the median coordinate along
the splitting dimension [66, 31]. Friedman, Bentley and Finkel [41] suggested the following
method, which is more sensitive to the data distribution. First, compute the minimum axis-
aligned bounding box for the set of points associated with the current cell. Next choose
the splitting axis to be the one that is parallel to the longest side of this box. Finally,
split the points by a hyperplane that is orthogonal to this axis, and which splits the points
into two sets of equal size. A number of other splitting rules have been proposed for k-d
trees, including the sliding midpoint rule by Arya and Fu [3] and Maneewongvatana and
Mount [57], variance minimization by White and Jain [76], and methods by Silva Filho [37]
and Sproull [73]. We will discuss other subdivision methods in the next section as well.

It is possible to construct the k-d tree of an n-element point set in O(n log n) time by a
simple top-down recursive procedure. The process involves determining the splitting axis
and the splitting coordinate along this axis, and then partitioning the point set about this
coordinate. If the splitting rule partitions the point set about its median coordinate then
it suffices to compute the median by any linear-time algorithm for computing medians [30].
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Some splitting methods may not evenly partition the point set. In the worst case this
can lead to quadratic construction time. Vaidya showed that it is possible to achieve
O(n log n) construction time, even when unbalanced splitting takes place [75]. The total
space requirements are O(n) for the tree itself.
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FIGURE 63.13: Nearest neighbor search in a k-d tree. The point p10 is the initial closest,
and only the shaded cells and nodes are visited. The final answer is p8.

Given a query point q, a nearest neighbor search is performed by the following recursive
algorithm [41]. Throughout, the algorithm maintains the closest point to q encountered
so far in the search, and the distance to this closest point. As the nodes of the tree are
traversed, the algorithm maintains the d-dimensional hyperrectangular cell associated with
each node. (This is updated incrementally as the tree is traversed.) When the search arrives
at a leaf node, it computes the distance from q to the associated point(s) of this node, and
updates the closest point if necessary. (See Figure 68.13.) Otherwise, when it arrives at
an internal node, it first computes the distance from the query point to the associated cell.
If this distance is greater than the distance to the closest point so far, the search returns
immediately, since the subtree rooted at this node cannot provide a closer point. Otherwise,
it is determined which side of the splitting hyperplane contains the query point. First, the
closer child is visited and then the farther child. A somewhat more intelligent variant of
this method, called priority search, involves storing the unvisited nodes in a priority queue,
sorted according to the distance from the query point to the associated cell, and then
processes the nodes in increasing order of distance from the query point [9].

63.4.3 Other Approaches to Nearest Neighbor Searching

The k-d tree is but one example of a general class of nearest neighbor search structures that
are based on hierarchical space decomposition. A good survey of methods from database
literature was given by Böhm, Berchtold, and Keim [20]. These include the R-tree [46]
and its variants, the R∗-tree [15], the R+-tree [69], and the X-tree [18], which are all
based on recursively decomposing space into (possibly overlapping) hyperrectangles. (See
Chapter 21 for further information.) For the cases studied, the X-tree is reported to
have the best performance for nearest neighbor searching in high dimensional spaces [20].
The SS-tree [76] is based on subdividing space using (possibly overlapping) hyperspheres
rather than rectangles. The SR-tree [51] uses the intersection of an enclosing rectangle and
enclosing sphere to represent a cell. The TV-tree [56] applies a novel approach of considering
projections of the data set onto higher dimensional subspaces at successively deeper levels
in the search tree.

A number of algorithms for nearest neighbor searching have been proposed in the algo-
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rithms and computational geometry literature. Higher dimensional solutions with sublinear
worst-case performance were considered by Yao and Yao [77]. Clarkson [25] showed that
queries could be answered in O(log n) time with O(ndd/2e+δ) space, for any δ > 0. The
O-notation hides constant factors that are exponential in d. Agarwal and Matoušek [2]
generalized this by providing a tradeoff between space and query time. Meiser [59] showed
that queries could be answered in O(d5 log n) time and O(nd+δ) space, for any δ > 0, thus
showing that exponential factors in query time could be eliminated by using sufficient space.

63.4.4 Approximate Nearest Neighbor Searching

In any fixed dimensions greater than two, no method for exact nearest neighbor searching
is known that achieves the simultaneous goals of roughly linear space and logarithmic query
time. For methods achieving roughly linear space, the constant factors hidden in the asymp-
totic running time grow at least as fast as 2d (depending on the metric). Arya et al. [11]
showed that if n is not significantly larger than 2d, then boundary effects decrease this
exponential dimensional dependence. Nonetheless, the so called “curse of dimensionality”
is a significant impediment to computing nearest neighbors efficiently in high dimensional
spaces.

This suggests the idea of computing nearest neighbors approximately. Consider a set of
points S and a query point q. For any ε > 0, we say that a point p ∈ S is an ε-approximate
nearest neighbor of q if

dist(p, q) ≤ (1 + ε)dist(p∗, q),

where p∗ is the true nearest neighbor of q in S. The approximate nearest neighbor problem
was first considered by Bern [19]. He proposed a data structure that achieved a fixed
approximation factor depending on dimension. Arya and Mount [10] proposed a randomized
data structure that achieves polylogarithmic query time in the expected case, and nearly
linear space. Their approach was based on a combination of the notion of neighborhood
graphs, as described in Section 68.3.3, and skip lists. In their algorithm the approximation
error factor ε is an arbitrary positive constant, which is given at preprocessing time.

Arya et al. [12] proposed a hierarchical spatial subdivision data structure, called the
BBD-tree. This structure has the nice features of having O(n) size, O(log n) depth, and
each cell has bounded aspect ratio, that is, the ratio between its longest and shortest side
is bounded. They achieved this by augmenting the axis-aligned splitting operation of the
k-d tree (see Figure 68.14(a)) with an additional subdivision operation called shrinking (see
Figure 68.14(b)). A shrinking node is associated with an axis-aligned rectangle, and the
two children correspond to the portions of space lying inside and outside of this rectangle,
respectively. The resulting cells are either axis-aligned hyperrectangles, or the set-theoretic
difference of two axis-aligned hyperrectangles. They showed that, in all fixed dimensions d
and for ε > 0, it is possible to answer ε-nearest neighbor queries in O(log n) time using the
BBD-tree. The hidden asymptotic constants in query time grow as (1/ε)d.

Duncan et al. [33] proposed an alterative structure, called the BAR tree, which achieves all
of these combinatorial properties and has convex cells. The BAR tree achieves this by using
cutting planes that are not necessarily axis-aligned. Clarkson [26] and Chan [22] presented
data structures that achieved better ε dependency in the query time. In particular, they
showed that queries could be answered in O((1/ε)d/2 log n) time.
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FIGURE 63.14: Splitting nodes (a) and shrinking nodes (b) in a BBD-tree.

63.4.5 Approximate Voronoi Diagrams

As mentioned in Section 68.4.1 it is possible to answer nearest neighbor queries by applying
a point location query to the Voronoi diagram. However, this approach does not generalize
well to higher dimensions, because of the rapid growth rate of the Voronoi diagram and the
lack of good point location structures in dimension higher than two.

Har-Peled [47] proposed a method to overcome these problems. Given an error bound
ε > 0, an approximate Voronoi diagram (AVD) of a point set S is defined to be a partition
of space into cells, where each cell c is associated with a representative rc ∈ S, such that
rc is an ε-nearest neighbor for all the points in c [47]. Arya and Malamatos [4] generalized
this by allowing up to some given number t ≥ 1 representatives to be stored with each cell,
subject to the requirement that for any point in the cell, one of these t representatives is
an ε-nearest neighbor. Such a decomposition is called a (t, ε)-AVD. (See Figure 68.15.)
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FIGURE 63.15: A (3, 0)-AVD implemented as a quadtree subdivision for the set
{a, b, . . . , j}. Each cell is labeled with its representatives. The Voronoi diagram is shown
for reference.
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Of particular interest are AVDs that are constructed from hierarchical spatial decomposi-
tions, such as quadtrees and their variants, since such structures support fast point location
in all dimensions. This yields a very simple method for performing approximate nearest
neighbor searching. In particular, a tree descent determines the leaf cell containing the
query point and then the closest of the t representatives is reported.

Har-Peled [47] showed that it is possible to construct a (1, ε) AVD in which the number of
leaf cells is O((n/εd)(log n) log(n/ε)). Arya and Malamatos [4] and later Arya, Malamatos,
and Mount [8] improved these results by showing how to construct more space-efficient
AVDs. In all constant dimensions d, their results yield a data structure of O(n) space
(including the space for representatives) that can answer ε-nearest neighbor queries in
O(log n + (1/ε)(d−1)/2) time. This is the best asymptotic result known for approximate
nearest neighbor searching in fixed dimensional spaces.

63.5 Sources and Related Material

General information regarding the topics presented in the chapter can be found in standard
texts on computational geometry, including those by Preparata and Shamos [64], Edels-
brunner [35], Mulmuley [61], de Berg et al. [31], and Boissonnat and Yvinec [21] as well as
Samet’s book on spatial data structures [66]. Further information on point location can be
found in a survey paper written by Snoeyink [72]. For information on Voronoi diagrams see
the book by Okabe, Boots and Sugihara [62] or surveys by Aurenhammer [13], Aurenham-
mer and Klein [14], and Fortune [38]. For further information on geometric graphs see the
survey by O’Rourke and Toussaint [63]. Further information on nearest neighbor searching
can be found in surveys by Böhm et al. [20], Indyk [49], and Chavez et al. [23].
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