

1. The way of the program1. The way of the program1. The way of the program1. The way of the program
The goal of this book is to teach you to think like a computer scientist. This way of thinking combines
some of the best features of mathematics, engineering, and natural science. Like mathematicians,
computer scientists use formal languages to denote ideas (specifically computations). Like engineers,
they design things, assembling components into systems and evaluating tradeoffs among alternatives.
Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problemproblemproblemproblem solving solving solving solving. Problem solving means
the ability to formulate problems, think creatively about solutions, and express a solution clearly and
accurately. As it turns out, the process of learning to program is an excellent opportunity to practice
problem-solving skills. That’s why this chapter is called, The way of the program.

On one level, you will be learning to program, a useful skill by itself. On another level, you will use
programming as a means to an end. As we go along, that end will become clearer.

1.1. The Python programming language1.1. The Python programming language1.1. The Python programming language1.1. The Python programming language
The programming language you will be learning is Python. Python is an example of a highhighhighhigh----level level level level
languagelanguagelanguagelanguage; other high-level languages you might have heard of are C++, PHP, and Java.

As you might infer from the name high-level language, there are also lowlowlowlow----level languageslevel languageslevel languageslevel languages,
sometimes referred to as machine languages or assembly languages. Loosely speaking, computers
can only execute programs written in low-level languages. Thus, programs written in a high-level
language have to be processed before they can run. This extra processing takes some time, which is a
small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a high-level language.
Programs written in a high-level language take less time to write, they are shorter and easier to read,
and they are more likely to be correct. Second, high-level languages are portableportableportableportable, meaning that they
can run on different kinds of computers with few or no modifications. Low-level programs can run on
only one kind of computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level
languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: interpretersinterpretersinterpretersinterpreters and
compilerscompilerscompilerscompilers. An interpreter reads a high-level program and executes it, meaning that it does what the
program says. It processes the program a little at a time, alternately reading lines and performing
computations.

A compiler reads the program and translates it completely before the program starts running. In this
case, the high-level program is called the sourcesourcesourcesource code code code code, and the translated program is called the
object codeobject codeobject codeobject code or the executableexecutableexecutableexecutable. Once a program is compiled, you can execute it repeatedly without
further translation.

index next | previous | How to Think Like a Computer Scientist: Learning with Python 3 »

Page 1 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

Many modern languages use both processes. They are first compiled into a lower level language,
called byte codebyte codebyte codebyte code, and then interpreted by a program called a virtual machinevirtual machinevirtual machinevirtual machine. Python uses both
processes, but because of the way programmers interact with it, it is usually considered an interpreted
language.

There are two ways to use the Python interpreter: immediate mode and script mode. In immediate
mode, you type Python expressions into the Python InterpreterPython InterpreterPython InterpreterPython Interpreter window, and the interpreter
immediately shows the result:

The >>> is called the Python promptPython promptPython promptPython prompt. The interpreter uses the prompt to indicate that it is ready for
instructions. We typed 2 + 2, and the interpreter evaluated our expression, and replied 4, and on the
next line it gave a new prompt, indicating that it is ready for more input.

Alternatively, you can write a program in a file and use the interpreter to execute the contents of the
file. Such a file is called a scriptscriptscriptscript.

In this Rhodes Local Edition of the textbook, we use a program development environment called
PyScripterPyScripterPyScripterPyScripter. (It is available at http://code.google.com/p/pyscripter.) There are various other
development environments. If you’re using one of the others, you might be better off working with the
authors’ original book rather than this edition.

For example, we created a file named firstprogram.py using PyScripter. By convention, files that
contain Python programs have names that end with .py

To execute the program, we can click the RunRunRunRun button in PyScripter:

Page 2 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

Most programs are more interesting than this one.

Working directly in the interpreter is convenient for testing short bits of code because you get
immediate feedback. Think of it as scratch paper used to help you work out problems. Anything
longer than a few lines should be put into a script.

1.2. What is a program?1.2. What is a program?1.2. What is a program?1.2. What is a program?
A programprogramprogramprogram is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or finding the
roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text
in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in just about
every language:

input
Get data from the keyboard, a file, or some other device.

output
Display data on the screen or send data to a file or other device.

math
Perform basic mathematical operations like addition and multiplication.

conditional execution
Check for certain conditions and execute the appropriate sequence of statements.

repetition
Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter how
complicated, is made up of instructions that look more or less like these. Thus, we can describe
programming as the process of breaking a large, complex task into smaller and smaller subtasks until
the subtasks are simple enough to be performed with sequences of these basic instructions.

That may be a little vague, but we will come back to this topic later when we talk about algorithmsalgorithmsalgorithmsalgorithms.

1.3. What is debugging?1.3. What is debugging?1.3. What is debugging?1.3. What is debugging?
Programming is a complex process, and because it is done by human beings, it often leads to errors.
Programming errors are called bugsbugsbugsbugs and the process of tracking them down and correcting them is
called debuggingdebuggingdebuggingdebugging. Some claim that in 1945, a dead moth caused a problem on relay number 70,
panel F, of one of the first computers at Harvard, and the term bugbugbugbug has remained in use since.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It is
useful to distinguish between them in order to track them down more quickly.

1.4. Syntax errors1.4. Syntax errors1.4. Syntax errors1.4. Syntax errors
Python can only execute a program if the program is syntactically correct; otherwise, the process fails
and returns an error message. SyntaxSyntaxSyntaxSyntax refers to the structure of a program and the rules about that
structure. For example, in English, a sentence must begin with a capital letter and end with a period.
this sentence contains a syntax errorsyntax errorsyntax errorsyntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read the
poetry of e. e. cummings without problems. Python is not so forgiving. If there is a single syntax error
anywhere in your program, Python will display an error message and quit, and you will not be able to

Page 3 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

run your program. During the first few weeks of your programming career, you will probably spend a
lot of time tracking down syntax errors. As you gain experience, though, you will make fewer errors
and find them faster.

1.5. Runtime errors1.5. Runtime errors1.5. Runtime errors1.5. Runtime errors
The second type of error is a runtime error, so called because the error does not appear until you run
the program. These errors are also called exceptionsexceptionsexceptionsexceptions because they usually indicate that something
exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be a
while before you encounter one.

1.6. Semantic errors1.6. Semantic errors1.6. Semantic errors1.6. Semantic errors
The third type of error is the semantic errorsemantic errorsemantic errorsemantic error. If there is a semantic error in your program, it will run
successfully, in the sense that the computer will not generate any error messages, but it will not do
the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires you
to work backward by looking at the output of the program and trying to figure out what it is doing.

1.7. Experimental debugging1.7. Experimental debugging1.7. Experimental debugging1.7. Experimental debugging
One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and you have to infer
the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong, you
modify your program and try again. If your hypothesis was correct, then you can predict the result of
the modification, and you take a step closer to a working program. If your hypothesis was wrong, you
have to come up with a new one. As Sherlock Holmes pointed out, When you have eliminated the
impossible, whatever remains, however improbable, must be the truth. (A. Conan Doyle, The Sign of
Four)

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
start with a program that does something and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system kernel that contains millions of lines of code, but it started
out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry
Greenfield, one of Linus’s earlier projects was a program that would switch between displaying AAAA
and BBBB. This later evolved to Linux (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

1.8. Formal and natural languages1.8. Formal and natural languages1.8. Formal and natural languages1.8. Formal and natural languages
Natural languagesNatural languagesNatural languagesNatural languages are the languages that people speak, such as English, Spanish, and French. They
were not designed by people (although people try to impose some order on them); they evolved
naturally.

Formal languagesFormal languagesFormal languagesFormal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting

Page 4 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

relationships among numbers and symbols. Chemists use a formal language to represent the
chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.

Formal languages tend to have strict rules about syntax. For example, 3+3=6 is a syntactically correct
mathematical statement, but 3=+6$ is not. H2O is a syntactically correct chemical name, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokenstokenstokenstokens and structure. Tokens are the basic elements
of the language, such as words, numbers, and chemical elements. One of the problems with 3=+6$ is
that $ is not a legal token in mathematics (at least as far as we know). Similarly, 2Zz is not legal
because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structurestructurestructurestructure of a statement— that is, the way the tokens
are arranged. The statement 3=+6$ is structurally illegal because you can’t place a plus sign
immediately after an equal sign. Similarly, molecular formulas have to have subscripts after the
element name, not before.

When you read a sentence in English or a statement in a formal language, you have to figure out what
the structure of the sentence is (although in a natural language you do this subconsciously). This
process is called parsingparsingparsingparsing.

For example, when you hear the sentence, “The other shoe fell”, you understand that the other shoe is
the subject and fell is the verb. Once you have parsed a sentence, you can figure out what it means, or
the semanticssemanticssemanticssemantics of the sentence. Assuming that you know what a shoe is and what it means to fall, you
will understand the general implication of this sentence.

Although formal and natural languages have many features in common — tokens, structure, syntax,
and semantics — there are many differences:

ambiguityambiguityambiguityambiguity
Natural languages are full of ambiguity, which people deal with by using contextual clues and
other information. Formal languages are designed to be nearly or completely unambiguous,
which means that any statement has exactly one meaning, regardless of context.

redundancyredundancyredundancyredundancy
In order to make up for ambiguity and reduce misunderstandings, natural languages employ lots
of redundancy. As a result, they are often verbose. Formal languages are less redundant and
more concise.

literalnessliteralnessliteralnessliteralness
Formal languages mean exactly what they say. On the other hand, natural languages are full of
idiom and metaphor. If someone says, “The other shoe fell”, there is probably no shoe and
nothing falling. You’ll need to find the original joke to understand the idiomatic meaning of the
other shoe falling. Yahoo! Answers thinks it knows!

People who grow up speaking a natural language—everyone—often have a hard time adjusting to
formal languages. In some ways, the difference between formal and natural language is like the
difference between poetry and prose, but more so:

poetrypoetrypoetrypoetry
Words are used for their sounds as well as for their meaning, and the whole poem together
creates an effect or emotional response. Ambiguity is not only common but often deliberate.

proseproseproseprose
The literal meaning of words is more important, and the structure contributes more meaning.

Page 5 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

Prose is more amenable to analysis than poetry but still often ambiguous.

programprogramprogramprogram
The meaning of a computer program is unambiguous and literal, and can be understood entirely
by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember that
formal languages are much more dense than natural languages, so it takes longer to read them. Also,
the structure is very important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and interpreting the
structure. Finally, the details matter. Little things like spelling errors and bad punctuation, which you
can get away with in natural languages, can make a big difference in a formal language.

1.9. The first program1.9. The first program1.9. The first program1.9. The first program
Traditionally, the first program written in a new language is called Hello, World! because all it does is
display the words, Hello, World! In Python, the script looks like this:

This is an example of using the print functionprint functionprint functionprint function, which doesn’t actually print anything on paper. It
displays a value on the screen. In this case, the result is the words

The quotation marks in the program mark the beginning and end of the value; they don’t appear in
the result.

Some people judge the quality of a programming language by the simplicity of the Hello, World!
program. By this standard, Python does about as well as possible.

1.10. Comments1.10. Comments1.10. Comments1.10. Comments
As programs get bigger and more complicated, they get more difficult to read. Formal languages are
dense, and it is often difficult to look at a piece of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language what
the program is doing.

A commentcommentcommentcomment in a computer program is text that is intended only for the human reader - it is
completely ignored by the interpreter.

In Python, the # token starts a comment. The rest of the line is ignored. Here is a new version of Hello,
World!.

You’ll also notice that we’ve left a blank line in the program. Blank lines are also ignored by the
interpreter, but comments and blank lines can make your programs much easier for humans to parse.
Use them liberally!

print("Hello, World!")

Hello, World!

#---
This demo program shows off how elegant Python is!
Written by Joe Soap, December 2010.
Anyone may freely copy or modify this program.
#---

print("Hello, World!") # Isn't this easy!

Page 6 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

1.11. Glossary1.11. Glossary1.11. Glossary1.11. Glossary

algorithmalgorithmalgorithmalgorithm
A general process for solving a category of problems.

bugbugbugbug
An error in a program.

byte codebyte codebyte codebyte code
An intermediate language between source code and object code. Many modern languages first
compile source code into byte code and then interpret the byte code with a program called a
virtual machine.

commentcommentcommentcomment
Information in a program that is meant for other programmers (or anyone reading the source
code) and has no effect on the execution of the program.

compilecompilecompilecompile
To translate a program written in a high-level language into a low-level language all at once, in
preparation for later execution.

debuggingdebuggingdebuggingdebugging
The process of finding and removing any of the three kinds of programming errors.

exceptionexceptionexceptionexception
Another name for a runtime error.

executableexecutableexecutableexecutable
Another name for object code that is ready to be executed.

formal languageformal languageformal languageformal language
Any one of the languages that people have designed for specific purposes, such as representing
mathematical ideas or computer programs; all programming languages are formal languages.

highhighhighhigh----level languagelevel languagelevel languagelevel language
A programming language like Python that is designed to be easy for humans to read and write.

immediate modeimmediate modeimmediate modeimmediate mode
A style of using Python where we type expressions at the command prompt, and the results are
shown immediately. Contrast with scriptscriptscriptscript, and see the entry under Python shellPython shellPython shellPython shell.

interpretinterpretinterpretinterpret
To execute a program in a high-level language by translating it one line at a time.

lowlowlowlow----level languagelevel languagelevel languagelevel language
A programming language that is designed to be easy for a computer to execute; also called
machine language or assembly language.

natural languagenatural languagenatural languagenatural language
Any one of the languages that people speak that evolved naturally.

object codeobject codeobject codeobject code
The output of the compiler after it translates the program.

parseparseparseparse
To examine a program and analyze the syntactic structure.

portabilityportabilityportabilityportability
A property of a program that can run on more than one kind of computer.

Page 7 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

print functionprint functionprint functionprint function
A function used in a program or script that causes the Python interpreter to display a value on its
output device.

problem solvingproblem solvingproblem solvingproblem solving
The process of formulating a problem, finding a solution, and expressing the solution.

programprogramprogramprogram
a sequence of instructions that specifies to a computer actions and computations to be
performed.

Python shellPython shellPython shellPython shell
An interactive user interface to the Python interpreter. The user of a Python shell types commands
at the prompt (>>>), and presses the return key to send these commands immediately to the
interpreter for processing. The word shell comes from Unix. In the PyScripter used in this RLE
version of the book, the Interpreter Window is where we’d do the immediate mode interaction.

runtime errorruntime errorruntime errorruntime error
An error that does not occur until the program has started to execute but that prevents the
program from continuing.

scriptscriptscriptscript
A program stored in a file (usually one that will be interpreted).

semantic errorsemantic errorsemantic errorsemantic error
An error in a program that makes it do something other than what the programmer intended.

semanticssemanticssemanticssemantics
The meaning of a program.

source codesource codesource codesource code
A program in a high-level language before being compiled.

syntaxsyntaxsyntaxsyntax
The structure of a program.

syntax errorsyntax errorsyntax errorsyntax error
An error in a program that makes it impossible to parse — and therefore impossible to interpret.

tokentokentokentoken
One of the basic elements of the syntactic structure of a program, analogous to a word in a
natural language.

1.12. Exercises1.12. Exercises1.12. Exercises1.12. Exercises

1. Write an English sentence with understandable semantics but incorrect syntax. Write another
English sentence which has correct syntax but has semantic errors.

2. Using the Python interpreter, type 1 + 2 and then hit return. Python evaluates this expression,
displays the result, and then shows another prompt. * is the multiplication operator, and ** is
the exponentiation operator. Experiment by entering different expressions and recording what
is displayed by the Python interpreter.

3. Type 1 2 and then hit return. Python tries to evaluate the expression, but it can’t because the
expression is not syntactically legal. Instead, it shows the error message:

 File "<interactive input>", line 1
 1 2
 ^

Page 8 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

In many cases, Python indicates where the syntax error occurred, but it is not always right, and it
doesn’t give you much information about what is wrong.

So, for the most part, the burden is on you to learn the syntax rules.

In this case, Python is complaining because there is no operator between the numbers.

See if you can find a few more examples of things that will produce error messages when you
enter them at the Python prompt. Write down what you enter at the prompt and the last line of
the error message that Python reports back to you.

4. Type print(‘hello’). Python executes this, which has the effect of printing the letters h-e-l-l-o.
Notice that the quotation marks that you used to enclose the string are not part of the output.
Now type "hello" and describe your result. Make notes of when you see the quotation marks and
when you don’t.

5. Type cheese without the quotation marks. The output will look something like this:

This is a run-time error; specifically, it is a NameError, and even more specifically, it is an error
because the name cheese is not defined. If you don’t know what that means yet, you will soon.

6. Type 6 + 4 * 9 at the Python prompt and hit enter. Record what happens.

Now create a python script named test1.py with the following contents:

What happens when you run this script? Now change the contents to:

and run it again.

What happened this time?

Whenever an expression is typed at the Python prompt, it is evaluated and the result is
automatically shown on the line below. (Like on your calculator, if you type this expression you’ll
get the result 42.)

A script is different, however. Evaluations of expressions are not automatically displayed, so it is
necessary to use the printprintprintprint function to make the answer show up.

It is hardly ever necessary to use the print function in immediate mode / at the command
prompt.

© Copyright 2011, Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers. Created using Sphinx 1.0.1.

SyntaxError: invalid syntax

Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
NameError: name 'cheese' is not defined

6 + 4 * 9

print(6 + 4 * 9)

index next | previous | How to Think Like a Computer Scientist: Learning with Python 3 »

Page 9 of 9 Url: http://openbookproject.net/thinkcs/python/english3e/way_of_the_program.html

