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ABSTRACT

Graphics Processing Units (GPUs) have become ideal can-
didates for the development of fine-grain parallel algorithms
as the number of processing elements per GPU increases. In
addition to the increase in cores per system, new memory
hierarchies and increased bandwidth have been developed
that allow for significant performance improvement when
computation is performed using certain types of memory
access patterns.

Merging two sorted arrays is a useful primitive and is a
basic building block for numerous applications such as join-
ing database queries, merging adjacency lists in graphs, and
set intersection. An efficient parallel merging algorithm par-
titions the sorted input arrays into sets of non-overlapping
sub-arrays that can be independently merged on multiple
cores. For optimal performance, the partitioning should be
done in parallel and should divide the input arrays such that
each core receives an equal size of data to merge.

In this paper, we present an algorithm that partitions
the workload equally amongst the GPU Streaming Multi-
processors (SM). Following this, we show how each SM per-
forms a parallel merge and how to divide the work so that
all the GPU’s Streaming Processors (SP) are utilized. All
stages in this algorithm are parallel. The new algorithm
demonstrates good utilization of the GPU memory hierar-
chy. This approach demonstrates an average of 20X and
50X speedup over a sequential merge on the x86 platform
for integer and floating point, respectively. Our implemen-
tation is 10X faster than the fast parallel merge supplied in
the CUDA Thrust library.
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1. INTRODUCTION

The merging of two sorted arrays into a single sorted ar-
ray is straightforward in sequential computing, but presents
challenges when performed in parallel. Since merging is a
common primitive in larger applications, improving perfor-
mance through parallel computing approaches can provide
benefit to existing codes used in a variety of disciplines.
Given two sorted arrays A,B of length |A|,|B| respectively,
the output of the merge is a third array C' such that C'
contains the union of elements of A and B, is sorted, and
|C| = |A| + |B|. The computational time of this algorithm
on a single core is O(|C]) [2]. As of now, it will be assume
that |C| = n.

The increase in the number of cores in modern comput-
ing systems presents an opportunity to improve performance
through clever parallel algorithm design; however, there are
numerous challenges that need to be addressed for a paral-
lel algorithm to achieve optimal performance. These chal-
lenges include evenly partitioning the workload for effective
load balancing, reducing the need for synchronization mech-
anisms, and minimizing the number of redundant operations
caused by the parallelization. We present an algorithm that
meets all these challenges and more for GPU systems.

The remainder of the paper is organized as follows: In
this section we present a brief introduction to GPU systems,
merging, and sorting. In particular, we present Merge Path
[8, 7]. Section 2 introduces our new GPU merging algorithm,
GPU Merge Path, and explains the different granularities
of parallelism present in the algorithm. In section 3, we
show empirical results of the new algorithm on two different
GPU architectures and improved performance over existing
algorithms on GPU and x86. Section 4 offers concluding
remarks.

1.1 Introduction on GPU

Graphics Processing Units (GPUs) have become a popular
platform for parallel computation in recent years following
the introduction of programmable graphics architectures like
NVIDIA’s Compute Unified Device Architecture (CUDA)
[6] that allow for easy utilization of the cards for purposes
other than graphics rendering. For the sake brevity, we
present only a short introduction to the CUDA architecture.

To the authors’ knowledge, the parallel merge in the Thrust



library [5] is the only other parallel merge algorithm imple-
mented on a CUDA device.

The original purpose of the GPU is to accelerate graphics
applications which are highly parallel and computationally
intensive. Thus, having a large number of simple cores can
allow the GPU to achieve high throughput. These simple
cores are also known as stream processors (SP), and they are
arranged into groups of 8/16/32 (depending on the CUDA
compute capability) cores known as stream multiprocessors
(SM). The exact number of SMs on the card is dependent
on the particular model. Each SM has a single control unit
responsible for fetching and decoding instructions. All the
SPs for a single SM execute the same instruction at a given
time but on different data or perform no operation in that
cycle. Thus, the true concurrency is limited by the num-
ber of physical SPs. The SMs are responsible for scheduling
the threads to the SPs. The threads are executed in groups
called warps. The current size of a warp is 32 threads. Each
SM has a local shared memory / private cache. Older gener-
ation GPU systems have 8KB local shared memory, whereas
the new generation has 64KB of local shared memory which
can be used in two separate modes.

In CUDA, users must group threads into blocks and con-
struct a grid of some number of thread blocks. The user
specifies the number of threads in a block and the number
of blocks in a grid that will all run the same kernel code.
Kernels are functions defined by the user to be run on the
device. These kernels may refer to a thread’s index within
a block and the current block’s index within the grid. A
block will be executed on a single SM. For full utilization
of the SM it is good practice to set the block size to be a
multiple of the warp. As each thread block is executed by a
single SM, the threads in a block can share data using the
local shared memory of the SM. A thread block is considered
complete when the execution of all threads in that specific
block have completed. Only when all the threads blocks
have completed execution is the kernel considered complete.

1.2 Parallel Sorting

The focus of this paper is on parallel merging; however,
there has not been significant study solely on parallel merg-
ing on the GPU. Therefore we give a brief description of
prior work in the area of sorting: sequential, multicore par-
allel sorting, and GPU parallel sorting [9, 11]. In further
sections there is a more thorough background on parallel
merging algorithms.

Sorting is a key building block of many algorithms. It
has received a large amount of attention in both sequential
algorithms (bubble, quick, merge, radix) [2] and their re-
spective parallel versions. Prior to GPU algorithms, several
merging and sorting algorithms for PRAM were presented
in [3, 8 10] . Following the GPGPU trend, several algo-
rithms have been suggested that implement sorting using a
GPU for increased performance. For additional reading on
parallel sorting algorithms and intricacies of the GPU archi-
tecture (specifcally NVIDIA’s CUDA), we refer the reader
to [9, 4, 1] on GPU sorting.

Some of the new algorithms are based on a single sorting
method such as the radix sort in [9]. In [9], Satish et al.
suggest using a parallel merge sort algorithm that is based
on a division of the input array into sub arrays of equal size
followed by a sequential merge sort of each sub array. Fi-
nally, there is a merge stage where all the arrays are merged

Figure 1: Illustration of the MergePath concept
for a non-increasing merge. The first column (in
blue) is the sorted array A and the first row (in
red) is the sorted array B. The orange path (a.k.a.
Merge Path) represents comparison decisions that
are made to form the merged output array. The
black cross diagonal intersects with the path at the
midpoint of the path which corresponds to the me-
dian of the output array.

together in a pair-wise merge tree of depth log(p). A good
parallelization of the merge stage is crucial for good per-
formance. Other algorithms use hybrid approaches such as
the one presented by Sintorn and Assarsson [11], which uses
bucket sort followed by a merge sort. One consideration for
this is that each of the sorts for a particular stage in the
algorithm is highly parallel, which allows for high system
utilization. Additionally, using the bucket sort allows for
good load balancing in the merge sort stage; however, the
bucket sort does not guarantee an equal work load for each
of the available processors and — in their specific implemen-
tation — requires atomic instructions.

1.3 Serial Merging and Merge Path

While serial merging follows a well-known algorithm, it is
necessary to present it due to a reduction that is presented
further in this section. Given arrays A, B, C as defined ear-
lier, a simplistic view of a decreasing-order merge is to start
with the indices of the first elements of the input arrays,
compare the elements, place the larger into the output ar-
ray, increase the corresponding index to the next element in
the array, and repeat this comparison and selection process
until one of the two indices is at the end of its input array.
Finally, copy the remaining elements from the other input
array into the end of the output array [2].

In [8], the authors suggests treating the sequential merge
as though it is a path that moves from the top-left corner
of an |A| x |B| grid to the bottom-right corner of the grid.
The path can move only to the right and downwards. The



reasoning behind this is that the two input arrays are sorted.
This ensures that if A[i] > B[j], then A[i] > B[j’] for all
J >

In this way, performing a merge can be thought of as the
process of discovering this path through a series of com-
parisons. When A[i] > B[j], the path moves down by one
position, and we copy A[i] into the appropriate place in C.
Otherwise when A[i] < BJj], the path moves to the right,
and we copy B[j] into the appropriate place in C. We can
determine the path directly by doing comparisons. Simi-
larly, if we determine a point on the path through a means
other than doing all comparisons that lead to that point,
we have determined something about the outcomes of those
comparisons earlier in the path. From a pseudo-code point
of view, when the path moves to the right, it can be consid-
ered taking the branch of the condition when A[i] < Bl[j],
and when the path moves down, it can be thought of as not
taking that branch. Consequently, given this path the or-
der in which the merge is to be completed is totally known.
Thus, all the elements can be placed in the output array in
parallel based on the position of the corresponding segment
in the path (where the position in the output array is the
sum of row and column indices of a segment).

In this section we address only the sequential version of
Merge Path. In the following sections we further discuss the
parallelization of Merge Path on an x86 architecture and its
GPU counterpart.

We can observe that sections of the path correspond to
sections of elements from at least one or both of the input
arrays and a section of elements in the output array. Here
each section is distinct and contiguous. Additionally, the
relative order of these workspaces in the input and output
arrays can be determined by the relative order of their cor-
responding path sections within the overall path. In Fig. 1,
A[1] = 13 is greater than B[4] = 12. Thus, it is greater than
all B[j] for j > 4. We mark these elements with a ‘0’ in the
matrix. This translates to marking all the elements in the
first row and to the right of B[4](and including) with a ‘0.
In general if A[i] > B[j], then A[i'] > Bl[j] for all i’ < i.
Fig. 1, A[3] = 10 is greater than B[5] = 9, as are A[l] and
A[2]. All elements to the left of B[4] = are marked with
a ‘l’. The same inequalities can be written for B with the
minor difference that the ‘0’ is replaced with ‘1.

Observation 1: The path that follows along the bound-
ary between the ‘0’s and ‘1’s is the same path mentioned
above which represents the selections from the input arrays
that form the merge as is depicted in Fig. 1 with the or-
ange, heavy stair-step line. It should be noted here that the
matrix of ‘0’s and ‘1’s is simply a convenient visual represen-
tation and is not actually created as a part of the algorithm
(i.e. the matrix is not maintained in memory and the com-
parisons to compute this matrix are not performed).

Observation 2: Paths can only move down and to the
right from a point on one diagonal to a point on the next.
Therefore, if the cross diagonals are equally spaced diag-
onals, the lengths of paths connecting each pair of cross
diagonals are equal.

1.4 GPU Challanges

To achieve maximal speedup on the GPU platform, it
is necessary to implement a platform-specific (and in some
cases, card-specific) algorithm. These implementations are
architecture-dependent and in many cases require a deep

understanding of the memory system and the execution sys-
tem. Ignoring the architecture limits the achievable perfor-
mance. For example, a well known performance hinderer
is bad memory access (read/write) patterns to the global
memory. Further, GPU-based applications greatly benefit
from implementation of algorithms that are cache aware.

For good performance, all the SPs on a single SM should
read/write sequentially. If the data is not sequential (mean-
ing that it strides across memory lines in the global DRAM),
this could lead to multiple global memory requests which
cause all SPs to wait for all memory requests to complete.
One way to achieve efficient global memory use when non-
sequential access is required is to do a sequential data read
into the local shared memory incurring one memory re-
quest to the global memory and followed by ‘random’ (non-
sequential) memory accesses to the local shared memory.

An additional challenge is to find a way to divide the
workload evenly among the SMs and further partition the
workload evenly among the SPs. Improper load-balancing
can result in only one of the SPs out of the eight or more
doing useful work while others are idle due to bad global
memory access patterns or divergent execution paths (if-
statements) that are partially taken by the different SPs. For
the cases mentioned, where the code is parallel, the actual
execution is sequential.

It is very difficult to find a merging algorithm that can
achieve a high level of parallelism and maximize utilization
on the GPU due to the multi-level parallelism requirements
of the architecture. In a sense, parallelizing merging algo-
rithms is even more difficult due to the small amount of work
done per each element in the input and output. The algo-
rithm that is presented in this paper uses the many cores of
the GPU while reducing the number of requests to the global
memory by using the local shared memory in an efficient
manner. We further show that the algorithm is portable for
different CUDA compute capabilities by showing the results
on both TESLA and FERMI architectures. These results
are compared with the parallel merge from the Thrust li-
brary on the same architectures and an OpenMP (OMP)
implementation on an x86 system.

2. GPU MERGEPATH

In this section we present our new algorithm for the merg-
ing of two sorted arrays into a single sorted array on a GPU.
In the previous section we explained Merge Path [8] and its
key properties. In this section, we give an introduction to
parallel Merge Path for parallel systems. We also explain
why the original Merge Path algorithm cannot be directly
implemented on a GPU and our contribution development
of the GPU Merge Path algorithm.

2.1 Parallel Merge

In [8] the authors suggest a new approach for the paral-
lel merging of two sorted arrays on parallel shared-memory
systems. Assuming that the system has p cores, each core is
responsible for merging an equal n/p part of the final out-
put array. As each core receives an equal amount of work,
this ensures that all the p cores finish at the same time.
Creating the balanced workload is one of the aspects that
makes Merge Path a suitable candidate for the GPU. While
the results in [8] intersect with those in [3], the approach
that is presented is different and easier to understand. We
use this approach to develop a Merge Path algorithm for



(a) Initial position of the window which.

(b) New position of window(after completion of previous
block).

Figure 2: Diagonal searches for a single window of one SM. (a) The window is in its initial position. Each SP
does a search for the path. (b) The window moves to the farthest position of the path and the new diagonals

are searched.

GPU. Merge Path, like other parallel merging algorithms, is
divided into 2 stages:

1. Partitioning stage - Each core is responsible for divid-
ing the input arrays into partitions. Each core finds
a single non-overlapping partition in each of the in-
put arrays. While the sub-arrays of each partition are
not equal length, the sum of the lengths of the two
sub-arrays of a specific partition is equal (up to a con-
stant of 1) among all the cores. In Algorithm 1 and in
the next section, we present the pseudo code for the
partitioning and give a brief explanation. For more
information we suggest reading [3, 7, 8] .

2. Merging stage - Each core merges the two sub arrays
that it has been given using the same algorithm as a
simple sequential merge. The cores operate on non-
overlapping segments of the output array, thus the
merging can be done concurrently and lock-free. Using
the simple sequential mere algorithm for this stage is
not well-suited to the GPU.

Both of these stages are parallel.

As previously stated, Merge Path suggests treating the
sequential merge as if it was a path that moves from the
top-left corner of a rectangle to the bottom-right corner of
the rectangle (| Bl,|A|). The path can move only to the right
and down. We denote n = |A+|B|. When the entire path is
known, so is the order in which the merge takes place. Thus,
when an entire path is given, it is possible to complete the
merge concurrently; however, at the beginning of the merge
the path is unknown and computation of the entire path
through a diagonal binary search for all the cross diagonals

is considerably expensive O(n - log(n)) compared with the
complexity of sequential merge which is O(n). Therefore,
we compute only p points on this path. These points are
the partitioning points.

To find the partitioning points, use cross diagonals that
start at the top and right borders of the output matrix. The
cross diagonals are bound to meet the path at some point as
the path moves from the top-left to the bottom-right and the
cross diagonals move from the top-right to the bottom-left.
It is possible to find the points of intersection using binary
searches on the cross diagonals by comparing elements from
A and B (Observation 1), making the complexity of finding
the intersection O(log(n)).

By finding exactly p points on the path such that these
points are equally distanced, we ensure that the merge stage
is perfectly load balanced. By using equidistant cross diag-
onals, the work load is divided equally among the cores, see
[8]. The merging of the sub-arrays in each partition is the
same as the standard sequential merge that was discussed
earlier in this paper. The time complexity of this algorithm
is O(n/p + log(n)). This is also the work load of each of
the processors in the system. The work complexity of this
algorithm is O(n + p - log(n)).

2.2 GPU Partitioning

The above parallel selection algorithm can be easily im-
plemented on a parallel machine as each core is responsible
for a single diagonal. This approach can be implemented
on the GPU; however, it does not fully utilize the GPU as
SPs on each SM will frequently be idle. We present 3 ap-
proaches to implementing the cross diagonal binary search



Algorithm 1 Pseudo code for parallel Merge Path algo-
rithm with an emphasis on the partitioning stage.
Adiag[threads] < Ajength
Bdiag [threads] <~ Blength
for each i in threads in parallel do
index < i * (Aiength + Biength) / threads
Gtop <= index > Ajength 7 Alength : index
biop < index > Ajengtn ! tndex — Ajengtn @ 0
Qbottom < btop
// binary search for diagonal intersections
while true do
of fset <= (atop — Gbottom)/2
a; <= Qiop — Of fset
bi <= biop + of fset
if Ala;] > B[b; — 1] then
if Ala; — 1] < BJ[b;] then
Adiag ['L] = ai
Bdiag [l] <= b;
break
else
Gtop = a; — 1
btop <~ bz + 1
end if
else
Apottom <= Qi + 1
end if
end while
end for
for each i in threads in parallel do
merge(A, Adiag[t], B, Baiagi], C, i * length/threads)
end for

followed by a detailed description. We denote w as the size
of the warp. The 3 approaches are:

1. w-wide binary search.
2. Regular binary search.
3. w-partition search.
Detailed description of the approaches is as follows:

1. w-wide binary search - In this approach we fetch w
consecutive elements from each of the arrays A and
B. By using CUDA block of size w, each SP / thread
is responsible for fetching a single element from each
of the global arrays, which are in the global mem-
ory, into the local shared memory. This efficiently
uses the memory system on the GPU as the addresses
are consecutive, thus incurring a minimal number of
global memory requests. As the intersection is a sin-
gle point, only one SP finds the intersection and stores
the point of intersection in global memory, which re-
moves the need for synchronization. It is rather obvi-
ous that the work complexity of this search is greater
than the one presented in Merge Path[8] which does
a regular sequential search for each of the diagonals;
however, doing w searches or doing 1 search takes the
same amount of time in practice as the additional ex-
ecution units would otherwise be idle if we were ex-
ecuting only a single search. In addition to this, the
GPU architecture has a wide memory bus that can

bring more than a single data element per cycle mak-
ing it cost-effective to use the fetched data. In essence
for each of the stages in the binary search, a total
of w operations are completed. This approach re-
duces the number of searches required by a factor of w.
The complexity of this approach for each diagonal is:
Time = O(log(n) — log(w)) for each core and a total
of Work = O(w - log(n) — log(w)).

2. Regular binary search - This is simply a single-threaded
binary search on each diagonal. The complexity of
this: Time = O(log(n))) and Work = O(log(n)).
Note that the SM utilization is low for this case, mean-
ing that all cores but one will idle and the potential
extra computing power is wasted.

3. w-partition search - In this approach, the cross diago-
nal is divided into 32 equal-size and independent par-
titions. Each thread in the warp is responsible for a
single comparison. Each thread checks to see if the
point of intersection is in its partition. Similar to w-
wide binary search, there can only be one partition
that the intersection point goes through. Therefore,
no synchronization is needed. An additional advan-
tage of this approach is that in each iteration the search
space is reduced by a factor of w rather than 2 as in
binary search. This reduces the O(log(n)) compar-
isons needed to O(logw(n)) comparisons. The com-
plexity of this approach for each diagonal is: Time =
O(logw(n) — log(w)) and Work = O(w - logw(n) —
log(w)). The biggest shortcoming of this approach is
that for each iteration of that partition-search, a total
of w global memory requests are needed(one for each
of the partitions limits). As a result, the implemen-
tation suffers a performance penalty from waiting on
global memory requests to complete.

In conclusion, we tested all of these approaches, and the
first two approaches offer a significant performance improve-
ment over the last due to a reduced number of requests to
the global memory for each iteration of the search. This is
especially important as the computation time for each iter-
ation of the searches is considerably smaller than the global
memory latency. The time difference between the first two
approaches is negligible with a slight advantage to one or
the other depending on the input data. For the results that
are presented in this paper we use the w-wide binary search.

2.3 GPU Merge

The merge phase of the original Merge Path algorithm is
not well-suited for the GPU as the merging stage is purely
sequential for each core. Therefore, it is necessary to extend
the algorithm to parallelize the merge stage in a way that
still uses all the SPs on each SM once the partitioning stage
is completed.

For full utilization of the SMs in the system, the merge
must be broken up into finer granularity to enable additional
parallelism while still avoiding synchronization when possi-
ble. We present our approach on dividing the work among
the multiple SPs for a specific workload.

For the sake of simplicity, assume that the sizes of the
partitions that are created by the partitioning stage are sig-
nificantly greater than the warp size, w. Also we denote
the CUDA thread block size using the letter Z and assume



that Z > w. For practical purposes Z = 32 or 64; how-
ever, anything that is presented in this subsection can also
be used with larger Z. Take a window consisting of the Z
largest elements of each of the partitions and place them
in local shared memory (in a sequential manner for perfor-
mance benefit). Z is smaller than the local shared memory,
and therefore the data will fit. Using a Z thread block, it
is possible to find the exact Merge Path of the Z elements
using the cross diagonal binary search.

Given the full path for the Z elements it is possible to
know how to merge all the Z elements concurrently as each
of the elements are written to a specific index. The complex-
ity for finding the entire Z-length path requires O(log(Z))
time in general iterations. This is followed by placing the
elements in their respective place in the output array. Upon
completion of the Z-element merge, it is possible to move
on to unmerged elements by starting a new merge window
whose top-left corner starts at the bottom-right-most posi-
tion of the merge path in the previous window. This can
be seen in Fig. 2 where the window starts off at the initial
point of merge for a given SM. All the threads do a diagonal
search looking for the path. Moving the window is a sim-
ple operation as it requires only moving the pointers of the
sub-arrays according to the (z,y) lengths of the path. This
operation is repeated until the SM finishes merging the two
sub-arrays that it was given. The only performance require-
ment of the algorithm is that the sub-arrays fit into the local
shared memory of the SM. If the sub-arrays fit in the local
shared memory, the SPs can perform random memory ac-
cess without incurring significant performance penalty. To
further offset the overhead of the path searching, we let each
of the SPs merge several elements.

2.4 Complexity analysis of the GPU merge

Given p blocks of Z threads and n elements to merge
where n is the total size of the output array, the size of the
partition that each of the blocks of threads receives is n/p.
Following the explanation in the previous sub-section on the
movement of the sliding window, the window moves a total
of (n/p)/Z times for that partition. For each window, each
thread in the block performs a binary diagonal search that
is dependent on the block size Z. When the search is com-
plete, the threads copy their resulting elements into indepen-
dent locations in the output array directly. Thus, the time
complexity of merging a single window is O(log(Z)). The
total amount of work that is completed for a single block is
O(Z - log(Z)). The total time complexity for the merging
done by a single thread block is O(n/(p - Z) - log(Z)) and
the work complexity is O(n/p-log(Z)). For the entire merge
the time complexity stays the same, O(n/(p - Z) - log(Z)) ,
as all the cores are expected to complete at the same time.
The work complexity of the entire merge is O(n - log(Z)).

The complexity bound given for the GPU algorithm is
different than the one given in [8, 7] for the cache efficient
Merge Path. The time complexity given by Odeh et el. is
O(n/p+n/Z - Z), where Z refers to the size of the shared
memory and not the block size. It is worth noting that the
GPU algorithm is also limited by the size of the shared mem-
ory that each of the SMs has, meaning that Z is bounded
by the size of the shared memory.

While the GPU algorithm has a higher complexity bound,
we will show in the results section that the GPU algorithm
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Figure 3: Merging one million single-precision float-
ing point numbers in Merge Path on Fermi while
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to 224 in multiples of 14.
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Figure 4: The timing of the global diagonal search to
divide work among the SMs compared with the tim-
ing of the independent parallel merges performed by
the SMs.

offers significant speedups over the parallel multicore algo-
rithm.

2.5 GPU Optimizations and Issues

1. Memory transfer between global and local shared mem-
ory is done in sequential reads and writes. A key re-
quirement for the older versions of CUDA, versions 1.3
and down, is that when the global memory is accessed
by the SPs, the elements requested be co-located and
not permuted. If the accesses are not sequential, the
number of global memory requests increases and the
entire warp (or partial-warp) is frozen until the com-
pletion of all the memory requests. Acknowledging
this requirement and making the required changes to
the algorithm has allowed for a reduction in the num-
ber of requests to the global memory. In the local
shared memory it is possible to access the data in a
non-sequential fashion without as significant of a per-
formance degradation.
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Figure 6: The speedup of the GPU implementations of Merge Path on the NVIDIA Tesla and Fermi archi-
tectures over the x86 serial merge.
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Merge Path on Fermi (112 blocks of 128 threads), and thrust::merge on Fermi. Size refers to the length of a

single input array in elements.

2. The sizes of threads and thread blocks, and thus the
total number of threads, are selected to fit the hard-
ware. This approach suggests that more diagonals are
computed than the number of SMs in the system. This
increases performance for both of the stages in the al-
gorithm. This is due to the internal scheduling of the
GPU which requires a large number of threads and
blocks to achieve the maximal performance through
latency hiding.

3. EMPIRICAL RESULTS

In this section we present comparisons of the running
times of the GPU Merge Path algorithm on the NVIDIA
Tesla and Fermi GPU architectures with those of the Thrust
parallel merge [5] on the same architectures and Merge Path
on a x86 Intel Nehalem core system. The specifications of
the GPUs used can be seen in Table 1, and the Intel multi-
core configuration can be seen in Table 2. For the x86 system
we show results for both a sequential merge and for OpenMP
implementation of Merge Path. Other than the Thrust li-
brary implementation, the authors could not find any other
parallel merge implementations for the CUDA architecture,
and therefore, there are no comparisons to other CUDA al-
gorithms to be made. Thrust is a parallel primitives library
that is included in the default installation of the CUDA SDK
Toolkit as of version 4.0.

The GPUs used were a Tesla C1060 supporting CUDA
hardware version 1.3 and a Tesla C2070 (Fermi architecture)
supporting CUDA hardware version 2.0. The primary dif-
ferences between the older Tesla architecture and the newer
Fermi architecture are (1) the increased size of the local
shared memory per SM from 16KB to 64KB, (2) the option
of using all or some portion of the L1 local shared memory as
a hardware-controlled cache, (3) increased total CUDA core
count, (4) increased memory bandwidth, and (5) increased
SM size from 8 cores to 32 cores. In our experiments, we use
the full local shared memory configuration. Managing the
workspace of a thread block in software gave better results
than allowing the cache replacement policy to control which
sections of each array were in the local shared memory.

An efficient sequential merge on x86 is used to provide a
basis for comparison. Tests were run for input array sizes
of one million, ten million, and one hundred million ele-
ments for a merged array size of two million, twenty mil-
lion, and two hundred million merged elements respectively.
For each size of array, merging was tested on both single-
precision floating point numbers and 32-bit integers. Our
results demonstrate that the GPU architecture can achieve
a 2x to 5x speedup over using 16 threads on two hyper-
threaded quad-core processors. This is an effect of both the
greater parallelism and higher memory bandwidth of the
GPU architecture.

Initially, we ran tests to obtain an optimal number of
thread blocks to use on the GPU for best performance with
separate tests for Tesla and Fermi. Results for this block
scaling test on Fermi at one million single-precision floating
point numbers using blocks of 128 threads can be seen in
Fig. 3. Clearly, the figure shows the best performance is
achieved at 112 blocks of 128 threads for this particular case.
Similarly, 112 blocks of 128 threads also produces the best
results in the case of merging one million 32-bit integer ele-
ments on Fermi. For the sake of brevity, we do not present
the graph.

In Fig. 4, we show a comparison of the runtime of the two
kernels: partitioning and merging. It can be seen that the
partitioning stage has a negligible runtime compared with
the actual parallel merge operations and increases in runtime
only very slightly with increased problem size, as expected.
This chart also demonstrates that our implementation scales
linearly in runtime with problem size while utilizing the same
number of cores.

Larger local shared memories and increased core counts al-
low the size of a single window on the Fermi architecture to
be larger with each block of 128 threads merging 4 elements
per window for a total of 512 merged-elements per window.
The thread block reads 512 elements cooperatively from each
array into local shared memory, performs the cross diagonal
search on this smaller problem in local shared memory, then
cooperatively writes back 512 elements to the global mem-
ory. In the Tesla implementation, only 32 threads per block



Tab

le 1: GPU test-bench.

Card Type CUDA HW | CUDA Cores Frequency | Shared Memory | Global Memory | Memory Bandwidth
Tesla C1060 | 1.3 240 cores / 30 SMs | 1.3 GHz 16KB 2GB 102 GB/s
Fermi M2070 | 2.0 448 cores / 14 SMs | 1.15 GHz | 64KB 6GB 150.3 GB/s
Table 2: CPU test-bench.
Processor Cores | Clock Frequency | L2 Cache L3 Cache | DRAM | Memory Bandwidth
2 x Intel Xeon E5530 | 4 2.4GHz 4 x 256 KB | 8MB 12GB 25.6 GB/s

are used to merge 4 elements per window for a total of 128
merged-elements due to local shared memory size limitations
and memory latencies. Speedup for the GPU implementa-
tion on both architectures is presented in Fig. 6 for sorted
arrays of 1 million,10 million, and 100 millions elements.

As the GPU implementations are benchmarked in com-
parison to the x86 sequential implementation and to the
x86 parallel implementation, we first present these results.
This is followed by the results of the GPU implementa-
tion. The timings for the sequential and OpenMP imple-
mentations are performed on a machine presented in Table
1. For the OpenMP timings we run the Merge Path algo-
rithm using 2, 4, 8, and 16 threads on an 8-core system
that supports hyper-threading (dual socket with quad core
processors). Speedups are depicted in Fig. 5. As hyper-
threading requires two threads per core to share execution
units and additional hardware, the performance per thread
is reduced versus two threads on independent cores. The
hyper-threading option is used only for the 16 thread con-
figuration. For the 4 thread configuration we use a single
quad core socket, and for the 8 thread configuration we use
both quad core sockets.

For each configuration, we perform three merges of two
arrays of sizes 1 million, 10 million, and 100 million elements
as with the GPU. Speedups are presented in Fig. 5. Within
a single socket, we see a linear speedup to four cores. Going
out of socket, the speedup for eight cores was 5.5X for integer
merging and between 6X and 8X for floating point. We show
a 12x speedup for the hyper-threading configuration for ten
million floating point elements.

The main focus of our work is to introduce a new algo-
rithm that extends the Merge Path concept to GPUs. We
now present the speedup results of GPU Merge Path over
the sequential merge in Fig. 6. We use the same size arrays
for both the GPU and OpenMP implementations. For our
results we use equal size arrays for merging; however, our
method can merge arrays of different sizes.

3.1 Floating Point Merging

For the floating point tests, random floating point num-
bers are generated to fill the input arrays then sorted on the
host CPU. The input arrays are then copied into the GPU
global memory. These steps are not timed as they are not
relevant to the merge. The partitioning kernel is called first.
When this kernel completes, a second kernel is called to per-
form full merges between the global diagonal intersections
using parallel merge path windows per thread block on each
SM. These kernels are timed.

For arrays of sizes 1 million, 10 million, 100 million we see
significant speedups of 28X & 34X & 30X on the Tesla card
and 43X & 53X & 46X on the Fermi card over the sequen-
tial x86 merge. This is depicted in Fig. 6. In Fig. 7, we
directly compare the speedup of the fastest GPU (Fermi) im-

plementation, the 16-thread OpenMP implementation, and
the Thrust GPU merge implementation. We checked a va-
riety of sizes. In Fig. 7 (a) there are speedups for merges of
sizes 1 million elements to 10 million elements in increments
of 1 millions elements. In Fig. 7 (b) there are speedups for
merges of sizes 10 million elements to 100 million elements
in increments of 10 millions elements. The results show
that the GPU code ran nearly 5x faster than 16-threaded
OpenMP and nearly 10x faster than Thrust merge for float-
ing point operations. It is likely that the speedup of our
algorithm over OpenMP is related to the difference in mem-
ory bandwidth of the two platforms.

3.2 Integer Merging

The integer merging speedup on the GPU is depicted in
Fig. 6 for arrays of size 1 million, 10 million, 100 million.
We see significant speedups of 11X & 13X & 14X on the
Tesla card and 16 & 20X & 21X on the Fermi card over
the sequenctial x86 merge. In Fig. 8, we directly compare
the speedup over serial of the fastest GPU (Fermi) imple-
mentation, the 16-thread OpenMP implementation, and the
Thrust GPU merge implementation demonstrating that the
GPU code ran nearly 2.5X faster than 16-threaded OpenMP
and nearly 10x faster on average than the Thrust merge.
The number of blocks used for Fig. 8 is 112 blocks, similar to
the number of blocks used in the floating point sub-section.
We used the same sizes of sorted arrays for integer as we did
for floating point.

4. CONCLUSION

We show a novel algorithm for merging sorted arrays us-
ing the GPU. The results show significant speedup for both
integer and floating point elements. While the speedups are
different for the two types, it is worth noting that the ex-
ecution time for merging for both these types on the GPU
are nearly the same. The explanation for this phenomena
is that the execution time for merging integers on the CPU
is 2.5X faster than the execution time for floating point on
the CPU. This explains the reduction in the the speedup of
integer merging on the GPU in comparison with speedup of
floating point merging.

The new GPU merging algorithm is atomic-free, parallel,
scalable, and can be adapted to the different compute ca-
pabilities and architectures that are provided by NVIDIA.
In our benchmarking, we show that the GPU algorithm out-
performs a sequential merge by a factor of 20X-50X and out-
performs an OpenMP implementation of Merge Path that
uses 8 hyper-threaded cores by a factor of 2.5X-5X.

This new approach uses the GPU efficiently and takes ad-
vantage of the computational power of the GPU and memory
system by using the global memory, local shared-memory
and the bus of the GPU effectively. This new algorithm



would be beneficial for many GPU sorting algorithms in-
cluding for a GPU merge sort algorithm.
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