The GPU Hardware and Software Model:
The GPU is not a PRAM (but it’s not far off)

CS 223 Guest Lecture
John Owens
Electrical and Computer Engineering, UC Davis

Credits

e This lecture is originally derived from a tutorial at
ASPLOS 2008 (March 2008) by David Luebke (NVIDIA
Research), Michael Garland (NVIDIA Research), John
Owens (UC Davis), and Kevin Skadron (NVIDIA
Research/University of Virginia), with additional
material from Mark Harris (NVIDIA Ltd.).

“If you were plowing a field, which
would you rather use? Two strong
oxen or 1024 chickens?”

—Seymour Cray

Why is data-parallel computing fast?

e The GPU is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about)

e So, more transistors can be devoted to data processing rather than data
caching and flow control

ALU ALU

Control

ALU ALU

CPU GPU

Recent GPU Performance Trends

GFLOPS

Historical Single—/Double—Precision Peak Compute Rates

—_

o
w
I

—_

o
N
I

10" -

288 GB . $388
250 G S [) recision
_}A‘ —e— SP R797O
e —AA =—A= DP
$452
Vendor GTX680
® AMD (GPU)
® NVIDIA (GPU) $3998
® Intel (CPU) K20X
H“k‘- Vs i ® Intel Xeon Phi $1844
2002 2004 2006 2008 2010 2012 E5-2687W

Date

Early data courtesy lan Buck; from Owens et al. 2007 [CGF]; thanks to
Mike Houston (AMD), Ronak Singhal (Intel), Sumit Gupta (NVIDIA)

1024 -

3.6, 515
512 - : \)
256 - ~ 6X
(Case studies 2 &
3)
128 -
: Platform
e I A D e B 20" o
o4 - C1060
—————————— =% Nehalem x 2
32- =+ Nehalem
16 -
8- 7 7 =
B B Double-precision
7
7’
4- 7

7

| | | | | | | |

1/8 1/4 1/2 1 2 4 8 16

Intensity (flop : byte) Courtesy Rich Vuduc, Georgia Tech

What | Know About PRAM

Article Discussion Read Edit View history

wixirepiA | Parallel Random Access Machine

The Free Encyclopedia From Wikipedia, the free encyclopedia

A Parallel Random Access Machine (PRAM) is a shared memory abstract machine which is used by parallel algorithm designers to estimate the
algorithm performance (like its time complexity). PRAM neglects such issues as synchronization and communication, but provides any (problem
size-dependent) number of processors. Algorithm cost, for instance, is estimated as O(time x processor_number).

Main page
Contents
Featured content
Current events The read/write conflicts in accessing the same shared memory location simultaneously are resolved by one of the following strategies:
Random article
Donate to Wikipedia

. Exclusive Read Exclusive Write (EREW)—every memory cell can be read or written to by only one processor at a time
. Concurrent Read Exclusive Write (CREW)}—multiple processors can read a memory cell but only one can write at a time
+ Interaction . Exclusive Read Concurrent Write (ERCW)—never considered
Help 4. Concurrent Read Concurrent Write (CRCW)—multiple processors can read and write.
About Wikipedia
Community portal

[

Here, E and C stand for 'exclusive' and 'concurrent' correspondingly. The read causes no discrepancies while the concurrent write is further defined

as:
Recent changes i L
.) Common—all processors write the same value; otherwise is illegal
Contact Wikipedia . K K)
Arbitrary—only one arbitrary attempt is successful, others retire
Toolbox FPrigrity—processor rank indicates who gets to write
b Print/export Another kind of array Reduction operation like SUM, Logical AND or MAX.

+ Languages Several simplifying assumptions are made while considering the development of algorithms for PRAM. They are :

Deutsch 1. There is no limit on the number of processors in the machine.

sl 2. Any memory location is uniformly accessible from any processor.

Francais 3. There is no limit on the amount of shared memory in the system.

B&E 4. Resource contention is absent.

L 2572 5. The programs written on these machines are, in general, of type MIMD. Certain special cases such as S5IMD may also be handled in such a

framework.

Algorithms are written in pseudo-code as there are only prototype implementations of a PRAM (see below). However, these kinds of algorithms are
useful for understanding the exploitation of concurrency, dividing the original problem into similar sub-problems and solving them in parallel.

GPU Truths

®There is no limit on the number of processors in the machine.
True! The programming model abstracts this.

® Any memory location is uniformly accessible from any processor.
For global memory, true, but there’s a memory hierarchy. Also,
memory coalescing is important.

®There is no limit on the amount of shared memory in the system.
Practically, if an implementation goes out of core memotry, it’s
probably not worth pursuing anyway.

®Resource contention is absent. Er, not so much.

®The programs written on these machines are, in general, of type
MIMD. Certain special cases such as SIMD may also be handled in
such a framework. GPUs are SIMD across warps, otherwise MIMD.

http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/SIMD

GPU Memory Model

e The read/write conflicts in accessing the same shared memory location
simultaneously are resolved by one of the following strategies:

e Exclusive Read Exclusive Write (EREW)—every memory cell can be read or
written to by only one processor at a time

e Concurrent Read Exclusive Write (CREW)—multiple processors can read a
memory cell but only one can write at a time (you’d better program this way)

e Exclusive Read Concurrent Write (ERCW)—never considered

e Concurrent Read Concurrent Write (CRCW)—multiple processors can read and
write (I guess you could program this way—we do have a hash table code
where multiple processors write to the same location at the same time and all
we care about is that one of them win; also “is my sequence sorted” can be
written like this)

Programming Model: A Massively Multi-threaded Processor

e Move data-parallel application portions to the GPU
e Differences between GPU and CPU threads

e Lightweight threads

e GPU supports 1000s of threads
e Today:

e GPU hardware

e CUDA programming
environment

Big Idea #1

e One thread per data element.

e Doesn’t this mean that large problems will have
millions of threads?

Big Idea #2

e Write one program.
e That program runs on ALL threads in parallel.

e Terminology here is “SIMT”: single-instruction,
multiple-thread.

e Roughly: SIMD means many threads run in lockstep; SIMT
means that some divergence is allowed and handled by
the hardware

® Thisis notso much like the PRAM’s MIMD model. Since
the GPU has SIMD at its core, the question becomes what
the hw/sw do to ease the difficulty of SIMD programming.

CUDA Kernels and Threads

e Parallel portions of an application are executed on the

device as kernels Definitions:

Device = GPU; Host = CPU
Kernel = function that
runs on the device

e One SIMT kernel is executed at a time
e Many threads execute each kernel

e Differences between CUDA and CPU threads

e (CUDA threads are extremely lightweight
e \Very little creation overhead

e |nstant switching

e CUDA must use 1000s of threads to achieve efficiency

e Multi-core CPUs can use only a few

What sort of features do you have

to put in the hardware to make it

possible to support thousands (or
millions) of threads?

Graphics Programs

Features
e Millions of instructions
e Fullinteger and bit instructions

e No limits on branching, looping

T

Texture (read only)

Thread Program |<— Constants

!

Registers

l

Output Registers

General-Purpose Programs

Fea

e 1D, 2D, or 3D thread ID allocation

Fully general load/store to GPU memory: Scatter/
Gather

Thread Number ® Programmer flexibility on how memory is accessed
l e Untyped, not limited to fixed texture types
® Pointer support
-— Texture
Thread Program |<— Constants
«—> Registers
l ™~ Global Memory

Output Registers

Parallel Data Cache

Features

® Dedicated on-chip memory

® Shared between threads for inter-thread

communication

Thread Number

l

Output Registers

Global Memory

l e Explicitly managed
® As fastasregisters
- Texture
Thread Program |<— Constants
«—> Registers
"i:

Parallel Data Cache

Now, if every thread runs its own
copy of a program, and has its own
registers, how do two threads
communicate?

Parallel Data Cache

Addresses a fundamental problem

of stream computing r

Bring the data closer to the ALU P, =P 4P, +P+P,

B

P, '=P +P,+P_+P,

Stage computation for the parallel data
cache

Minimize trips to external memory

Share values to minimize overfetch and
computation

Increases arithmetic intensity by keeping
data close to the processors

User managed generic memory, threads
read/write arbitrarily

DRAM

P L

Parallel execution through cache

This parallel data cache seems
pretty cool. Since we can have
thousands of threads active at any
time, why can’t all of them
communicate through it?

Realities of modern DRAM

e DRAM {throughput, latency} not increasing as fast as
processor capability

e Vendorresponse: DRAM “grains” are getting larger

e (Consequence: Accessing 1 byte of DRAM same cost as
accessing 128 consecutive bytes

e Consequence: Structure your memory accesses to be
contiguous (NVIDIA: “coalesced”)

GPU Computing (G80 GPUs)

® Processors execute
, e 128 Thread Processors
computing threads
e Parallel Data Cache

e Thread Execution :
accelerates processing

Manager issues threads

S5

T

=

g I
<= 4-$<-§

3

o

=)

¥

<

s : : :
e e e

SM Multithreaded Multiprocessor

® Each SM runs a block of threads
e SM has 8 SP Thread Processors

e 32 GFLOPS peak at 1.35 GHz

e |EEE 754 32-bit floating point

e ScalarISA

e Up to 768 threads,
hardware multithreaded

e 16KB Shared Memory

e Concurrent threads share data

e Low latency load/store

Memory hierarchy

™eead + registers
g < . Per-thread local
memory

Thread Block

i

Per-block shared
memory

AAAA
VYVVYY

Grid 0

Block (0, 0) | Block (1, 0) | Block (2, 0)

Block (0, 1) | Block (1,1) | Block (2, 1)

+ Cache on
Fermi” and later GPUs

Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
§§§§§§
Block (0, 2) Block (1, 2)

W

Big Idea #3

e Latency hiding.
e |[ttakes alongtime to goto memory.
e So while one set of threads is waiting for memory ...

e ...run another set of threads during the wait.

e |n practice, 32 threads runin a SIMD “warp” and an efficient
program usually has 128-256 threads in a block.

Scaling the Architecture

e Same program

e Scalable performance

||||||||||||||

There’s lots of dimensions to scale
this processor with more resources.
What are some of those
dimensions? If you had twice as
many transistors, what could you
do with them?

What should you do with more
resources? In what dimension do
you think NVIDIA will scale future

GPUs?

HW Goal: Scalability

e Scalable execution
e Program must be insensitive to the number of cores
e Write one program for any number of SM cores

e Program runs on any size GPU without recompiling

e Hierarchical execution model
e Decompose problem into sequential steps (kernels)

e Decompose kernelinto computing parallel blocks

This is very
important.

e Decompose blockinto computing parallel threads

e Hardware distributes independent blocks to SMs as available

Programming Model: A Highly Multi-threaded
Coprocessor
e The GPU isviewed as a compute device that:
e Isa coprocessor tothe CPU or host
e Has its own DRAM (device memory)

e Runs many threads in parallel

e Data-parallel portions of an application execute on the device as kernels
that run many cooperative threads in parallel

e Differences between GPU and CPU threads
e GPU threads are extremely lightweight
e Very little creation overhead
e GPU needs 1000s of threads for full efficiency

e Multi-core CPU needs only a few

CUDA Software Development Kit

Compiling CUDA for GPUs
Py

@WVEE) cPU Code
PTX Code

Generic

Specialized .t
GPU_ ... |GPU

Target device code

Programming Model (SPMD + SIMD): Thread Batching

e Akernelis executed as a grid of — —
thread blocks Crid 1
. Block Block Block
e Athread blockis a batch of Kernel 1 0.0 || 10 | (20
threads that can cooperate with Biock " Block | Block
each other by: .01 1) @1
e Efficiently sharing data through T "‘.
shared memory he
Kernel 2 -) 1R
® Synchronizing their execution ".
Block (1, 1) .
e For hazard-free shared memory
accesses Thread | Thread | Thread | Thread | Thread
0, 0) 1, 0) 2,0) @3,0) 4,0)
® TWO th I’eadS from tWO diﬁ:e rent Thread | Thread | Thread | Thread | Thread
0, 1) 1) 2,1) A3, 1) “,1)
blocks cannot cooperate
Thread | Thread | Thread | Thread | Thread
0, 2) 1,2) 2,2) @3,2) 4,2)
e Blocks are independent

Execution Model

e Kernels are launched in grids
e One kernel executes at a time
e Ablock executes on one multiprocessor
e Does not migrate, does not release resources until exit
e Several blocks can reside concurrently on one multiprocessor (SM)
e Control limitations (of compute capability 3.0+ GPUs):
e At most 16 concurrent blocks per SM
e At most 2048 concurrent threads per SM
e Numberis further limited by SM resources
o Register file is partitioned among all resident threads

e Shared memory is partitioned among all resident thread blocks

Execution Model

Thread Multiple levels of parallelism

@ Identified by threadldx
e Thread block

Thread Block e Upto 1024 threads per block (CC 3.0+)

Identified by blockldx
e Communicate through shared memory

e Threads guaranteed to be resident
Grid of Thread Blocks ® threadldx, blockldx

® _ syncthreads()

® Grid of thread blocks

Result dat
esult data array ® fc«nblocks, nthreads»»»(a,b,c)

o Global & shared memory atomics

Divergence in Parallel Computing

® Removing divergence pain from parallel programming

e S|MD Pain
e Userrequired to SIMD-ify
e User suffers when computation goes divergent
e GPUs: Decouple execution width from programming model
e Threads can diverge freely
e Inefficiency only when divergence exceeds native machine width

e Hardware managed

e Managing divergence becomes performance optimization

e Scalable

CUDA Design Goals

e Scaleto 100s of cores, 1000s of parallel threads
e Let programmers focus on parallel algorithms

e not mechanics of a parallel programming language
e Enable heterogeneous systems (i.e., CPU+GPU)

e (PU & GPU are separate devices with separate DRAMs

Key Parallel Abstractions in CUDA

e Hierarchy of concurrent threads

e Lightweight synchronization primitives

e Shared memory model for cooperating threads

Hierarchy of concurrent threads

e Parallel kernels composed of many threads Thread t
e allthreads execute the same sequential program §
e (Thisis “SIMT”)

e Threads are grouped into thread blocks Block b

e threadsinthe same block can cooperate
e Threads/blocks have unique IDs %

e Each thread knows its “address” (thread/block ID)

CUDA: Programming GPU in C

e Philosophy: provide minimal set of extensions necessary to expose power

e Declaration specifiers to indicate where things live
__global void KernelFunc(...); //kernelcallable from host

device void DeviceFunc(...); //function callable on device

device int GlobalVar; // variable in device memory

shared int Sharedvar; /[shared within thread block

e Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 5oo blocks w/ 128 threads each

e Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

e Intrinsics that expose specific operations in kernel code
__syncthreads () // barrier synchronization within kernel

CUDA: Features available on GPU

e Standard mathematical functions
sinf, powf, atanf, ceil, min, sqrtf, etc.

e Atomic memory operations (not in the class hw)
atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.

e Texture accesses in kernels

texture<float,2> my texture; //declaretexture reference

float4 texel = texfetch(my texture, u, v);

Example: Vector Addition Kernel

e (Compute vector sum C=A+B means:
e n = length(C)
e fori=oton-1:
o (Ji] =Ali] + Blil
e So C[o] =A[o] + B[o], C[1] = A[1] + B[1], etc.

Example: Vector Addition Kernel

// Compute vector sum C = A+B Device Code

// Each thread performs one pair-wise addition

__global void vecAdf(float* A, float* B, float* C)

{

int i |= threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1i];

int main|()
{
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C)
{

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + BI[1i];

Host Code

int main|()
{
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);

Synchronization of blocks

e Threads within block may synchronize with barriers

. Step 1 ..
___syncthreads (),
. Step 2 ..

e Blocks coordinate via atomic memory operations
e e.g.,increment shared queue pointer with atomicInc ()
e Implicit barrier between dependent kernels

vec minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);

What is a thread?

e [ndependent thread of execution
e hasits own PC, variables (registers), processor state, etc.
e no implication about how threads are scheduled

e CUDA threads might be physical threads
e ason NVIDIA GPUs

e CUDA threads might be virtual threads
e might pick 1 block =1 physical thread on multicore CPU

e Veryinteresting recent research on this topic

What is a thread block?

e Thread block = virtualized multiprocessor
e freely choose processors to fit data
e freely customize for each kernel launch
e Thread block = a (data) parallel task
e all blocksin kernel have the same entry point
e but may execute any code they want
e Thread blocks of kernel must be independent tasks

e program valid for any interleaving of block executions

Blocks must be independent

e Any possible interleaving of blocks should be valid
e presumed to run to completion without pre-emption
® canruninanyorder
e can run concurrently OR sequentially

e Blocks may coordinate but not synchronize
e shared queue pointer:

e shared lock: BAD ... can easily deadlock

e Independence requirement gives scalability

Big Idea #4

e Organization into independent blocks allows
scalability / different hardware instantiations

e Ifyou organize your kernels to run over many blocks ...

o ...the same code will be efficient on hardware that runs
one block at once and on hardware that runs many blocks
at once

Summary: CUDA exposes parallelism

e Thread parallelism

e eachthreadis anindependent thread of execution
e Data parallelism

e across threads in a block

e across blocks in a kernel
e Task parallelism

o different blocks are independent

e independent kernels

GPUs are not PRAMs

e Computational hierarchy, motivated by ...

e .. memory hierarchy

e Cost of execution divergence (SIMD vs. MIMD)
e Memory layout (coalescing)

e Synchronization (not a bulk synchronous model)

How would you program (in CUDA)
two separate (parallel) tasks (to run
in parallel)? How would that map to

the GPU?

Memory model

Thread Block

Per-thread
Local Memory

Per-block
Shared

Memory

)
D>
) E——
) I—
D> —
<

Using per-block shared memory

Block

e Variables shared across block

shared int *begin, *end;

e Scratchpad memory

shared int scratch[blocksize];

scratch[threadIdx.x] = begin[threadIdx.x];
// .. compute on scratch values ..
begin[threadldx.x] = scratch[threadldx.x];

e Communicating values between threads

scratch[threadIdx.x] = begin[threadIdx.x];

__syncthreads() ;
int left = scratch[threadIdx.x - 1];

Memory model

Kernel o

AR

2553955

L

25355

Per-device
Global

Memory

Sequential
Kernels

Memory model

Device o

ﬁ
memory

cudaMemcpy ()

ﬁ

Host

memory

Device 1

memory

CUDA: Runtime support

e Explicit memory allocation returns pointers to GPU memory

cudaMalloc (), cudaFree ()

e Explicit memory copy for host < device, device < device

cudaMemcpy () , cudaMemcpy2D (), ...
e Texture management
cudaBindTexture (), cudaBindTextureToArray (), ...

e OpenGL & DirectX interoperability

cudaGLMapBufferObject (), cudaD3D9MapVertexBuffer (), ..

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C) {

int 1 = threadlIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1i];

int main () {
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory
float *h A = ., *h B = ..;

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc((void**) &d A, N * sizeof(float))

cudaMalloc((void**) &d B, N * sizeof(float))

cudaMalloc((void**) &d C, N * sizeof(float))

// copy host memory to device

cudaMemcpy(d A, h A, N * sizeof(float), cudaMemcpyHostToDevice)) ;

cudaMemcpy(d B, h B, N * sizeof(float), cudaMemcpyHostToDevice)) ;

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);

Example: Parallel Reduction

e Summing up a sequence with 1 thread:

int sum = 0;

for (int i=0; i<N; ++i) sum += x[i];
e Parallel reduction builds a summation tree

e ecach thread holds 1 element

e stepwise partial sums %
e nthreads need log n steps >§§< >§§<

® one possible approach:

Butterfly pattern >< >< >< ><

Example: Parallel Reduction

e Summing up a sequence with 1 thread:

int sum = 0;

for (int i=0; i<N; ++i) sum += x[i];
e Parallel reduction builds a summation tree

e ecach thread holds 1 element

e stepwise partial sums ////

e nthreads need log n steps >§§< //j/
7~

® one possible approach:

Butterfly pattern >< >< >< //

Parallel Reduction for 1 Block

// INPUT: Thread i holds value x i
int i = threadldx.x;

shared int sum[blocksize];

// One thread per element

sum[i] = x i; syncthreads();

for (int bit=blocksize/2; bit>0; bit/=2)
{
int t=sum[i]+sum[i*bit]; _ syncthreads() ;

sum[i]=t; __syncthreads() ;

}

// OUTPUT: Every thread now holds sum in sumqi]

=
R K
X X X X

Example: Serial SAXPY routine

Serial program: computey = a x + y with a loop

void saxpy serial(int n, float a, float *x, float *y)

{
for(int i = 0; i<n; ++i)
y[i] = a*x[i] + y[i]’

Serial execution: call a function

saxpy serial(n, 2.0, x, y);

Example: Parallel SAXPY routine

Parallel program: compute with 1 thread per element

__global
void saxpy parallel(int n, float a, float *x, float *y)

{
int i = blockIdx.x*blockDim.x + threadIlIdx.x;

if(i<n) yI[i] = a*x[i] + y[i];

Parallel execution: launch a kernel

uint size = 256; // threads per block
uint blocks = (n + size-1) / size; // blocks needed

saxpy parallel<<<blocks, size>>>(n, 2.0, x, y);

SAXPY in PTX 1.0 ISA

cvt.u32.ul6| Sblockid, ; I/ Calculate i from thread/block IDs
cvt.u32.ulo| Sblocksize, ;
cvt.u32.ulo| Stid, ;
mad24.lo.u32 $1, S$blockid, Sblocksize, S$tid;
ld.param.u32 $n, [N]; // Nothingtodo ifn<i
setp.le.u32 pl, Sn, $i;
@$pl bra SL finish;

mul.lo.u32 Soffset, $i, 4; [V Lloady]i]
ld.param.u32 Syaddr, [Y];

add.u32 Syaddr, $yaddr, Soffset;
l1d.global.f32 Sy i, [Syaddr+0];
ld.param.u32 $xaddr, [X]; // Load X[i]
add.u32 Sxaddr, S$xaddr, Soffset;
1d.global.f32 $x_ i, [$Sxaddr+0];

ld.param.£f32 Salpha, [ALPHA]; // Compute and store alpha*x[i] + yl[i]
mad.f32 $y i, Salpha, $x i, Sy i;
st.global.f32 [Syaddr+0], Sy i;

$L finish: exit;

Sparse matrix-vector multiplication

e Sparse matrices have relatively few non-zero entries
e Frequently O(n) rather than O(n?)

e Only store & operate on these non-zero entries

Example: Compressed Sparse Row (CSR) Format

. \ Rowo Row2 Row3
3010 Non-zerovalues Av[7] = { 3, 1, 2, 4, 1, 1, 1 };
0000 B I ’
02 4 1 Column indices anj[7] = { 0, 2, 1, 2, 3, 0, 3 };
L1 00 1J Row pointers pap[5] = { 0, 2, 2, 5, 7 };

Sparse matrix-vector multiplication

float multiply row(uint rowsize, //number of non-zerosinrow
uint *Aj, //columnindices forrow
float *Awv, //non-zero entries forrow
float *x) /] the RHS vector

float sum = 0;

for (uint column=0; column<rowsize; ++column)
sum += Av[column] * x[Aj[column]];

return sum;

} Rowo Row2 Rows3
{3,1, 2, 4,1, 1, 1 };

Non-zero values Awv[7]

Column indices A [7]

{06, 2,1, 2, 3, 0, 3 };

Row pointers Ap[5] { 0, 2, 2, 5, 7 };

Sparse matrix-vector multiplication

float multiply row(uint size, uint *Aj,
float *Av, float *x);

void csrmul serial (uint *Ap, uint *Aj, float *Av,
uint num rows, float *x, float *y)

{

for (uint row=0; row<num rows; ++row)

{

uint row _begin = Ap[row];
uint row end = Ap[row+l];
y[row] = multiply row(row end-row begin,

Aj+row_begin,
Av+row begin,
X);

Sparse matrix-vector multiplication

float multiply row(uint size, uint *Aj,
float *Av, float *x);

__global
void csrmul kernel (uint *Ap, uint *Aj, float *Av,
uint num rows, float *x, float *y)

{
uint row = blockIdx.x*blockDim.x + threadIdx.x;

if(row<num rows)

{
uint row begin = Ap[row];
uint row_end = Ap[row+1l] ;

y[row] = multiply row(row _end-row begin,
Aj+row begin, Av+row begin, x);

Adding a simple caching scheme

glObal void CsrmUl_CaChed (EEE EEN EEE EENE EEN NN I) {
uint begin = blockIdx.x*blockDim.x, end = begin+blockDim.x;

uint row = begin + threadIdx.x;

__shared float cache[blocksize]; /[array to cache rows

if(row<num rows) cache[threadIdx.x] = x[row]; // fetch to cache
__syncthreads() ;

if (row<num rows) {
uint row_begin = Ap[row], row_end = Ap[row+l]; float sum = 0;

for (uint col=row _begin; col<row _end; ++col) {
uint j = Aj[col];

/| Fetch from cached rows when possible
float x j = (j>=begin && j<end) ? cache[j-begin] : x[]];

sum += Av[col] * x j;

}

y[row] = sum;

Basic Efficiency Rules

e Develop algorithms with a data parallel mindset
e Minimize divergence of execution within blocks
e Maximize locality of global memory accesses

e Exploit per-block shared memory as scratchpad

e Expose enough parallelism

Summing Up
e CUDA=C+ afewsimple extensions

e makes it easy to start writing basic parallel programs

e Three key abstractions:
hierarchy of parallel threads
corresponding levels of synchronization

corresponding memory spaces

e Supports massive parallelism of manycore GPUs

