
GPU Reduce, Scan, and Sort
CS 223 Guest Lecture

John Owens
Electrical and Computer Engineering, UC Davis

Credits

• Thanks to Andrew Davidson (reduce), Michael Garland
(Satish’s sort), and especially Duane Merrill (Merrill’s
scan and sort) for slides and discussions.

Programming Model (SPMD + SIMD): Thread Batching

• A kernel is executed as a grid of
thread blocks

• A thread block is a batch of
threads that can cooperate with
each other by:

• Efficiently sharing data through
shared memory

• Synchronizing their execution

• For hazard-free shared memory
accesses

• Two threads from two different
blocks cannot cooperate

• Blocks are independent

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Basic Efficiency Rules
• Develop algorithms with a data parallel mindset

• Minimize divergence of execution within blocks

• Maximize locality of global memory accesses

• Exploit per-block shared memory as scratchpad
(registers > shared memory > global memory)

• Expose enough parallelism

Expanding Manycore Territory

Slide via Mark Harris, NVIDIA

Today’s Big Picture

•Complexity = k(O(f(n)))

Rest of class

Today

Reduction

S05: High Performance Computing with CUDA 8

Tree-Based Parallel Reductions

Commonly done in traditional GPGPU
Ping-pong between render targets, reduce by 1/2 at a time
Completely bandwidth bound using graphics API
Memory writes and reads are off-chip, no reuse of
intermediate sums

CUDA solves this by exposing on-chip shared
memory

Reduce blocks of data in shared memory to save
bandwidth

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

CUDA Bank Conflicts !Appendix!G. Compute Capabilities!
! !

CUDA!C!Programming!Guide!Version!3.2! ! 167
!

Left:!Linear!addressing!with!a!stride!of!one!32Bbit!word!(no!bank!conflict).!
Middle:!Linear!addressing!with!a!stride!of!two!32Bbit!words!(2Bway!bank!conflicts).!
Right:!Linear!addressing!with!a!stride!of!three!32Bbit!words!(no!bank!conflict).!

Figure!GB2!! Examples!of!Strided!Shared!Memory!Accesses!for!
Devices!of!Compute!Capability!2.x!

31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31!31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31! 31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31!

Appendix(G. Compute Capabilities!

!

168((CUDA(C(Programming(Guide(Version(3.2
!

Left:(ConflictBfree(access(via(random(permutation.(
Middle:(ConflictBfree(access(since(threads(3,(4,(6,(7,(and(9(access(the(same(word(within(bank(5.(
Right:(ConflictBfree(broadcast(access((all(threads(access(the(same(word).(

31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31!31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31!31!
!

30!
!

29!
!

28!
!

27!
!

26!
!

25!
!

24!
!

23!
!

22!
!

21!
!

20!
!

19!
!

18!
!

17!
!

16!
!

15!
!

14!
!

13!
!

12!
!

11!
!

10!
!

9!
!

8!
!

7!
!

6!
!

5!
!

4!
!

3!
!

2!
!

1!
!

0!
!

Banks:!Threads:!

0!

1!

2!

4!

3!

5!

6!

7!

8!

9!

10!

12!

11!

13!

14!

15!

16!

17!

18!

20!

19!

21!

22!

23!

24!

25!

26!

28!

27!

29!

30!

31!

10

Parallel Reduction: Interleaved Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Thread
IDs

Thread
IDs

Interleaved addressing results in bank conflicts

• Arbitrarily	
 bad	
 bank	
 conflicts
• Requires	
 barriers	
 if	
 N	
 >	
 warpsize	

• Supports	
 non-­‐commuta>ve	
 operators

11

Parallel Reduction: Sequential Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict free

• No	
 bank	
 conflicts
• Requires	
 barriers	
 if	
 N	
 >	
 warpsize	

• Does	
 not	
 support	
 non-­‐commuta>ve	
 operators

x0 x1 x2 x7x3 x4 x5 x6 ⊕(x0..x1) ⊕(x4..x5) ⊕(x0..x3) ⊕(x4..x7)t2

x0 x1 x2 x7x3 x4 x5 x6 ⊕(x0..x1) ⊕(x4..x5) ⊕(x0..x3) ⊕(x0..x7)t3

x0 x1 x2 x7x3 x4 x5 x6 ⊕(x0..x1) ⊕(x2..x3) ⊕(x4..x5) ⊕(x6..x7)t1

t0 x0 x1 x2 x7x3 x4 x5 x6

⊕0 ⊕1

⊕0

⊕0 ⊕1 ⊕2 ⊕3

m0 m1 m2 m7m3 m4 m5 m6 m8 m9 m10 m11 m12 m13

Reduc0on
• Only	
 two-­‐way	
 bank	
 conflicts	

• Requires	
 barriers	
 if	
 N	
 >	
 warpsize	

• Requires	
 O(2N-­‐2)	
 storage
• Supports	
 non-­‐commuta>ve	
 operators

Reduction memory traffic

• Ideal: n reads, 1 write.

• Block size 256 threads. Thus:

• Read n items, write back n/256 items.

• Read n/256 items, write back 1 item.

• Total: n + n/128 + 1. Not bad!

Reduction optimization
• Ideal: n reads, 1 write.

• Block size 256 threads. Thus:

• Read n items, write back n/256 items.

• Read n/256 items, write back 1 item.

• Total: n + n/128 + 1. Not bad!

• What if we had more than one item (say, 4) per thread?

• “Loop raking” is an optimization for all the algorithms I
talk about today.

• Tradeoff: Storage for efficiency

Persistent Threads

• GPU programming model suggests one thread per item

• What if you filled the machine with just enough threads
to keep all processors busy, then asked each thread to
stay alive until the input was complete?

• Minus: More overhead per thread (register pressure)

• Minus: Violent anger of vendors

(Serial)	
 Raking	
 Reduc0on	
 Phase
• No	
 bank	
 conflicts,	
 only	
 one	
 barrier	
 to	
 aGer	
 inser>on	
 into	
 smem
• Supports	
 non-­‐commuta>ve	
 operators
• Requires	
 subsequent	
 warpscan	
 to	
 reduce	
 accumulated	
 par>als

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

⊕0 ⊕1 ⊕2 ⊕3

⊕4 ⊕5 ⊕6 ⊕7

⊕8 ⊕9 ⊕10 ⊕11

⊕12 ⊕13 ⊕14 ⊕15

• Less memory bandwidth overall

• Exploits locality between items within a thread’s
registers

t1 t2 t3

t2 t3

t3

t0

t1t0

t0

t2t1t0

t3t2t1

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

… … … … tT	
 -­‐	
 1tT/2	
 +	
 1tT/2	
 tT/2	
 +	
 2tT/4	
 +	
 1tT/4	
 tT/4	
 +	
 2 tT/2	
 -­‐	
 1t1t0 t2 tT/4	
 -­‐1 t3T/4+1t3T/4	
 t3T/4+2t3T/4	
 -­‐1

barrier

t1 t2 t3

t2 t3

t3

t0

t1t0

t0

t2t1t0

t3t2t1

barrier

barrier

barrier

vs.

Reduc>on

• Many-­‐To-­‐One
– Parameter	
 to	
 Tune	
 =>	
 Thread	
 Width	
 (total	
 number	

of	
 threads)

Parameter	
 selec>on	
 comparison	
 between	
 the	
 sta>c	
 SDK	
 and	

our	
 tuned	
 (thread	
 cap)	
 algorithm

We	
 see	
 some	
 of	
 the	
 problems	
 with	
 having	
 sta>c	
 thread	

parameters,	
 for	
 different	
 machines.

Parameter	
 Selec>on	
 Comparison
GTX280 8600GT

• Auto-­‐tuned	
 performance	
 always	

exceeded	
 SDK	
 performance
– Up	
 to	
 a	
 70%	
 performance	
 gain	
 for	

certain	
 cards	
 and	
 workloads

• Mark Harris, Mapping Computational Concepts to GPUs,
GPU Gems 2, Chapter 31, pp. 495–508, March 2005.

• Andrew Davidson and John Owens. Toward Techniques
for Auto-tuning GPU Algorithms. In Kristján Jónasson,
editor, Applied Parallel and Scientific Computing,
volume 7134 of Lecture Notes in Computer Science,
pages 110–119. Springer Berlin / Heidelberg, February
2012.

• NVIDIA SDK (reduction example)

Reduction papers

Scan (within a block)

Parallel Prefix Sum (Scan)
• Given an array A = [a0, a1, …, an-1]

and a binary associative operator ⊕ with identity I,

• scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

• Example: if ⊕ is addition, then scan on the set

• [3 1 7 0 4 1 6 3]

• returns the set

• [0 3 4 11 11 15 16 22]

Kogge-Stone Scan
Circuit family

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0 x0: x1 x0: x2 x0: x3 x0: x4 x0: x5 x0: x6 x0: x7 x0: x8 x0: x9 x0: x10 x0: x11 x0: x12 x0: x13 x0: x14 x0: x15

O(n log n) Scan
x0 x1 x2 x3 x4 x5 x6 x7

(x0..x0) (x0..x1) (x1..x2) (x2..x3) (x3..x4) (x4..x5) (x5..x6) (x6..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x1..x4) (x2..x5) (x3..x6) (x4..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6) (x0..x7)

d=1

d=2

d=3

• Step efficient (log n steps)
• Not work efficient (n log n work)
• Requires barriers at each step (WAR dependencies)

Alt. Hillis-Steele Scan Implementation
No WAR conflicts, O(2N) storage

x0 x1 x2 x7x3 x4 x5 x6

x0 ⊕(x0..x1) ⊕(x1..x2) ⊕(x2..x3) ⊕(x3..x4) ⊕(x4..x5) ⊕(x5..x6) ⊕(x6..x7)

x0 ⊕(x0..x1) ⊕(x0..x2) ⊕(x4..x7)⊕(x0..x3) ⊕(x1..x4) ⊕(x2..x5) ⊕(x3..x6)

x0 ⊕(x0..x1) ⊕(x0..x2) ⊕(x0..x3) ⊕(x0..x4) ⊕(x0..x5) ⊕(x0..x6) ⊕(x0..x7)

⊕1 ⊕2 ⊕3 ⊕4 ⊕5 ⊕6 ⊕7=0

=1 =2 =3 ⊕4 ⊕5 ⊕6 ⊕7=0

=1 ⊕2 ⊕3 ⊕4 ⊕5 ⊕6 ⊕7=0

t1

t2

t3

t0

Alt. Hillis-Steele Scan
Warp-synchronous: SIMD without divergence or barriers

ii i i

ii i i

x0 ⊕(x0..x1) ⊕(x1..x2) ⊕(x6..x7)⊕(x2..x3) ⊕(x3..x4) ⊕(x4..x5) ⊕(x5..x6)

x0 ⊕(x0..x1) ⊕(x0..x2) ⊕(x4..x7)⊕(x0..x3) ⊕(x1..x4) ⊕(x2..x5) ⊕(x3..x6)

x0 ⊕(x0..x1) ⊕(x0..x2) ⊕(x0..x7)⊕(x0..x3) ⊕(x0..x4) ⊕(x0..x5) ⊕(x0..x6)

x0 x1 x2 x7x3 x4 x5 x6

t1

t2

t3

t0

⊕1 ⊕2 ⊕3 ⊕4 ⊕5 ⊕6 ⊕7

⊕2 ⊕3 ⊕4 ⊕5 ⊕6 ⊕7

⊕4 ⊕5 ⊕6 ⊕7

⊕0

⊕1

ii i i

⊕0

ii i i

⊕2 ⊕3⊕1⊕0

m3m0 m1 m2 m4 m5 m6 m11m7 m8 m9 m10

• What if we truly had a SIMD machine?
• Recall CUDA warps (32 threads) are strictly SIMD
• “Warp-synchronous”

Brent Kung Scan
Circuit family

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0 x0:x1
x0:x2 x0:x3

x0:x4 x0:x5
x0:x6 x0:x7

x0:x8 x0:x9
x0:x10x0:x11

x0:x12x0:x13
x0:x14x0:x15

Ti
m

e

U
ps

w
ee

p
ph

as
e

D
ow

ns
w

ee
p

ph
as

e

O(n) Scan [Blelloch]

x0 x1 x2 x3 x4 x5 x6 x7

x0 (x0..x1) x2 (x2..x3) x4 (x4..x5) x6 (x6..x7)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x4..x7)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x0..x7)

d = 2

d = 1

d = 0

0 x0 (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6)

x0 x2 (x0..x1) x4 (x0..x3) x6 (x0..x5)

x0 (x0..x1) x2 x4 (x4..x5) x6 (x0..x3)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x0..x7)

Zero

d = 0

d = 1

d = 2

• Not step efficient (2 log n steps)
• Work efficient (O(n) work)
• Bank conflicts, and lots of ‘em

Hybrid methods

• Daniel Horn, Stream Reduction Operations for GPGPU Applications, GPU Gems 2, Chapter 36, pp. 573–589, March 2005.

• Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A Work-Efficient Step-Efficient Prefix Sum Algorithm. In
Proceedings of the 2006 Workshop on Edge Computing Using New Commodity Architectures, pages D–26–27, May 2006

• Mark Harris, Shubhabrata Sengupta, and John D. Owens.Parallel Prefix Sum (Scan) with CUDA. In Hubert Nguyen, editor,
GPU Gems 3, chapter 39, pages 851–876. Addison Wesley, August 2007.

• Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan Primitives for GPU Computing. In Graphics
Hardware 2007, pages 97–106, August 2007.

• Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manferdelli, “Fast scan algorithms on graphics processors,” in ICS
'08: Proceedings of the 22nd Annual International Conference on Supercomputing, 2008, pp. 205–213.

• Shubhabrata Sengupta, Mark Harris, Michael Garland, and John D. Owens. Efficient Parallel Scan Algorithms for many-core
GPUs. In Jakub Kurzak, David A. Bader, and Jack Dongarra, editors, Scientific Computing with Multicore and Accelerators,
Chapman & Hall/CRC Computational Science, chapter 19, pages 413–442. Taylor & Francis, January 2011.

• D. Merrill and A. Grimshaw, Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer
Science, University of Virginia, 2009, 54pp.

• Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan: fast scan algorithms for GPUs without global barrier
synchronization. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP '13). ACM, New York, NY, USA, 229-238.

Scan papers

Scan (across blocks)

Scan-then-propagate (4x)

efficiency, we need to do more computation per thread. We employ a technique sug-
gested by David Lichterman, which processes eight elements per thread instead of two
by loading two float4 elements per thread rather than two float elements (Lichter-
man 2007). Each thread performs a sequential scan of each float4, stores the first
three elements of each scan in registers, and inserts the total sum into the shared mem-
ory array. With the partial sums from all threads in shared memory, we perform an
identical tree-based scan to the one given in Listing 39-2. Each thread then constructs
two float4 values by adding the corresponding scanned element from shared mem-
ory to each of the partial sums stored in registers. Finally, the float4 values are writ-
ten to global memory. This approach, which is more than twice as fast as the code given
previously, is a consequence of Brent’s Theorem and is a common technique for im-
proving the efficiency of parallel algorithms (Quinn 1994).

39.2 Implementation 863

Scan Block 0

Scan Block Sums

Add Scanned Block
Sum i to All Values of
Scanned Block i + 1

Store Block Sum to Auxiliary Array

Scan Block 1 Scan Block 2 Scan Block 3

Initial Array of Arbitrary Values

Final Array of Scanned Values

+ ++

Figure 39-6. Algorithm for Performing a Sum Scan on a Large Array of Values

639_gems3_ch39 6/28/2007 2:28 PM Page 863
FIRST PROOFS

Logb(N) –level upsweep/downsweep
(scan-and-add strategy: CudPP)

Scan

Scan

Scan-then-propagate (4x)

Logb(N) –level upsweep/downsweep
(reduce-then-scan strategy: Matrix-scan)

Reduce

Scan

Scan

Reduce-then-scan (3x)

Merrill’s 2–level upsweep/downsweep
(reduce-then-scan)

Scan

Scan

Reduce

• Persistent threads
• Requires only 3 kernel launches vs. log n
• Fewer global memory reads in intermediate step

(constant vs. O(n))

• Serialize reduce chain

• Atomic counter assigns blocks in proper order (no
deadlocks)

• Global array, one element per block: “ready” flag +
reduce value

StreamScan (2x)

barrier is needed here. Finally in the last phase, each thread scans
its corresponding row again taking the corresponding results of
array C to the first element. Potential local memory bank conflicts
can be reduced substantially by appropriate column padding to the
matrix.

2.2 Motivation of this work
All fast scan implementations on GPUs partition the input array
into multiple blocks, and perform computation and synchroniza-
tion at block granularity. However, the main issue with all vari-
ants of the three-phase approach is the global barrier synchroniza-
tion. Because of the limitation of the on-chip memory, global
barrier will suffer global memory traffic overheads. If the global
barrier is implemented via kernel invocations, there are also extra
runtime overheads.

There is another perspective to understand the scan problem,
especially when the problem size is large. Instead of partitioning
the computation horizontally into three phases, it’s possible to
partition the data into multiple blocks, and perform scan at block
granularity sequentially. Although the parallelism at the block
level is decreased (there is data dependence between adjacent
blocks), there is ample parallelism while scanning within the
block. In this case, synchronization occurs only between adjacent
blocks, global barriers are not necessary. In this algorithm, we
need to cache the processing data in the on-chip memory until the
whole work completed in the same block. However, we only need
to invoke one kernel and since the early exit workgroups will free
the on-chip resources, the number of global memory accesses can
be reduced to approximate 2N. There are two major challenges to
this approach. First, how to fully exploit the parallel computation
power of the GPU while scanning one block? Second, how to
determine the optimal block size in order to balance between
synchronization overheads and kernel performance?

The design space of the intra-block scan implementation also
deserves detailed exploration. First, is the traditional intra-block
scan approach still suitable for the StreamScan? Second, since the
algorithm is memory intensive, how to access the global memory
efficiently? Third, due to the large register file size of modern
GPUs, how to fully leverage its space to increase the solvable
problem size on-chip for the scan problem? Fourth, optimal im-
plementations on different GPUs depend on a set of key parame-
ters. An automatic parameter searching and tuning framework is
necessary to generate optimal code versions for various GPU
platforms. Table1 summarizes key features of our approach. We
will all challenges in detail in the next section.

3. StreamScan
In this section, we present StreamScan, our approach for fast scan
implementation on GPUs. We first review StreamScan architec-

ture, and especially how this organization can fully exploits the
parallel computation capability of modern GPUs. We then discuss
the synchronization mechanism between adjacent blocks. In Sec-
tion 3.3 we present various intra-block scan algorithms within the
StreamScan framework.

3.1 Inter-Block orchestration
Figure 4 illustrates the high level architecture of StreamScan. The
input data array is partitioned into multiple blocks. Then each
block is scanned with a three-phase Reduce-Scan-Scan intra-block
algorithm. After all blocks have been scanned, results are written
to the output array.

However, there are data dependences between adjacent blocks.
That is, scan of block i must take the accumulated result of all
previous blocks as input. Luckily this accumulated result can be
generated after the first reduce phase of the intra-block scan. Thus
inter-block synchronization happens only after the first phase.
Note that the first reduce phases of all blocks can proceed simul-
taneously. Abundant inter-block parallelism is available.

Modern GPUs have a hierarchy of parallel processing units.
For AMD GPUs, one chip has multiple compute units (CU), with
each CU containing a number of processing cores. For StreamS-
can to work on practical problem sizes, typically the number of
blocks is much larger than the number of CUs. We therefore map
all intra-block scans on blocks to all CUs. Since adjacent block
synchronization occurs only after the first phase, there is still
ample parallelism to keep all CUs busy.

The mapping of intra-block scan to all cores within the com-
pute unit is critical to performance. In order to eliminate global
barriers completely, we assign one workgroup for each block scan.
Parallelism in all three phases is mapped uniformly among all
cores. The thread organization within the workgroup is tuned
automatically to ensure proper computation overlap and latency
hiding. Design details are in Section 3.3. Note that the paralleliza-
tion and computation mapping framework can be applied to Nvi-
dia GPUs in a similar way.

3.2 Block synchronization
Inter-block synchronization is performed via shared global memo-
ry. Like previous algorithms [20], we also need an intermediate
array I to store reduction results of all workgroups. The difference
is that in our approach, the array I not only stores reduction results
but also serves as a flag variable array for adjacent block synchro-
nization. At the beginning, we initialize all elements of the flag
array to a fixed value F. Since we can’t guarantee the execution
order of different workgroups, we initialize the array on the host
side before upload it to GPU memory. Compared to the input
array to be scanned, the size of the intermediate array is very
small (~2K elements for the input array with 16M elements). Thus
the upload overhead of the initial intermediate array is negligible.

Table 1. Comparison of Our Work to Previous Works.
Strategy Global mem-

ory accesses
Global Bar-

riers
Cross Plat-

form Analy-
sis

Scan-Scan-
Add[23]

~4N >=2 No

Reduce-Scan-
Scan[20]

~3N >=2 No

StreamScan ~2N None Yes Figure 4. StreamScan Architecture (P is the sync condition).

Scan

Reduce

While(Pk)

Scan

Reduce

While(Pk+1)

Scan

Reduce

While(Pi-2)

Scan

Reduce

While(Pi-1)

Scan

Reduce

Block k Block k+1 … Block i-1 Block i

Output array

Input array

231

Radix Sort

Radix Sort Fundamentals

Decoded flag vectors

Input sequence

0 0 0 0 0 0 0 01 1 1 11 11 1

Scanned flag vectors
(relocation offsets) 1 2 4 4 4 5 6 64 5 6 71 20 3

0s 1s

0s 1s

1110 1010 1100 10000011 0111 0101 0001
0 2 4 51 3 6 7

1 3 6 72 40 5 1 3 6 72 40 5

1 3 6 72 40 5 1 3 6 72 40 5

Distribution-pass
output

0 2 4 51 3 6 7

1110 1010 1100 1000 0011 0111 0101 0001

scatter—not efficient!

Goals: (1) minimize number of scatters;
(2) maximize coherence of scatters

Radix Sort Memory Cost

Revisiting Sorting for GPGPU Stream Architectures ! 2/2010

6

Figure 4. Example of a radix r = 2 distribution sort on the first digit-place of a sequence of eight keys in which a prefix scan of flag vectors is used to determine the
scatter destinations for each key.

The ranking process can be constructed from one or more parallel prefix scan operations used to partition the keys based the digits
contained at a given digit-place. In their promotion of prefix scan, Blelloch et al. demonstrated a distribution sort using a binary split
primitive comprised of prefix scans over two n-element binary flag vectors: the first initialized with 1s for keys whose digit was 0, the
second to 1s for keys whose digit was 1 [29]. The two scan operations are dependent: the scan of the 1s vector can be seeded with the
number of zeros from the 0s scan, or equivalently the two vectors can be concatenated and processed by one large scan as shown in Figure
4. After the scans, the ith element in the appropriate compacted flag vector will indicate the relocation offset for the the ith key. An
optimization for radix r = 2 is to obviate the 1s scan: the destination for a 1s key can be determined by adding the total number of 0 keys to
the processor-rank and then subtracting the result from compacted 0s vector [30].

Step% Kernel% Purpose% Read%Workload% Write%Workload%
1% binning% Create&flags& n&keys& nr&flags&
2% bottom*level%reduce%

Compact&flags&
(scan&primitive)&

nr&flags& (insignificant%constant)&
3% top*level%scan% (insignificant%constant)& (insignificant%constant)&
4% bottom*level%scan% nr&flags&+&(insignificant%constant)& nr&offsets&
5% scatter% Distribute&keys& n&offsets&+&n&keys&(+&n&values)& n&keys&(+&n&values)&
% % & % %
% % & Total%Memory%Workload:% (k/d)(n)(r&+&4)&keys&only&

(k/d)(n)(r&+&6)&with&values&

Figure 5. A naïve distribution sorting GPGPU stream constructed from a black-box parallel scan primitive and binning and scatter kernels with d-bit radix digits, radix r
= 2d, and an n-element input sequence of k-bit keys.

A simple, naïve GPGPU distribution sort implementation can be constructed from a black-box parallel scan primitive sandwiched between
separate binning and scatter kernels. The binning kernel would be used to create a concatenated flag vector in global memory and the
scatter kernel to redistribute the keys (and values) according to their compacted offsets������������
�����
���������	����l invocations is
shown in Figure 5, where the middle three kernels comprise the parallel scan primitive that compacts the concatenated flag vectors. The
top-level scan kernel is unsaturated and contributes negligible performance overhead for sorting problems large enough to saturate the other
kernels. The scatter kernel need not read in all nr offsets; only those corresponding to the particular digits (re)decoded from the keys.

The naïve approach suffers from excessive use of global device memory. The number of flags that are moved through memory is O(rn),
i.e. it has a linear coefficient that is exponential in terms of the number of radix digit bits d. In this case, selecting the number of radix digit
bits d = 1 will always minimize the total overhead for k/d passes. The entire radix sort requires the memory subsystem to process 448n
words (320n if obviating the 1s scan) when sorting 32-bit keys and values. The aggregate memory workload will set a lower bound on the
achievable performance.

For SPMD architectures, the number of parallel processors has historically been smaller than the input sequence size, making it natural to
distribute portions of the input to processors in blocks of b keys. Instead of collectively producing an n-element binary flag vector for each
radix digit, the processors can each write out an r-element histogram of digit-counts. This reduces the intermediate storage requirements by
a factor of b. Processors write their digit-histograms in column-major to global memory in a grid, i.e., a matrix where each row is
comprised of the processor counts for a specific digit. After performing a parallel scan operation upon the grid of histograms in a row-

Flag vectors

Key sequence

0 0 0 0 0 0 0 01 1 1 11 11 1

1110 1010 1100 10000011 0111 0101 0001

Compacted flag vectors 1 2 4 4 4 5 6 64 5 6 71 20 3

0s 1s

0s 1s

0 2 4 51 3 6 7

1 3 6 72 40 5 1 3 6 72 40 5

1 3 6 72 40 5 1 3 6 72 40 5

• d-bit radix digits
• radix r = 2^d
• n-element input sequence of k-bit keys

© 2009 NVIDIA Corporation

Parallel Radix Sort

Assign tile of data to each block (1024 elements)

Build per-block histograms of current digit (4 bit)

Combine per-block histograms (P x 16)

Scatter

Satish uses 256-thread blocks
and 4 elements per thread

this is a reduction

this is a scan

© 2009 NVIDIA Corporation

Per-Block Histograms

Perform b parallel splits for b-bit digit

Each split is just a prefix sum of bits
each thread counts 1 bits to its left

Write bucket counts & partially sorted tile
sorting tile improves scatter coherence later

© 2009 NVIDIA Corporation

Combining Histograms

Write per-block counts in column major order & scan

0 1 15
0

1

p-1

cf. Zagha & Blelloch, Radix sort for vector multiprocessors, SC’91.

radix 4—16 elements

calculate
histogram
for p blocks

Satish’s Radix Sort Memory Cost

• d-bit radix digits
• radix r = 2^d
• n-element input sequence of k-bit keys
• b bits per step

Revisiting Sorting for GPGPU Stream Architectures ! 2/2010

7

major order, each processor can then obtain the relative digit-offsets for its block of keys from the resulting matrix. These offsets can then
be applied to the local key rankings within the block in order to redistribute the keys. [31,32]

Step% Kernel% Purpose% Read%Workload% Write%Workload%
1% local%digit*sort% Maximize(coherence(n(keys((+(n(values)% n(keys((+(n(values)%
2% histogram% Create(histograms(n(keys(nr/b(counts(
3% bottom*level%reduce%

Scan(histograms(
(scan(primitive)(

nr/b(counts((insignificant%constant)(
4% top*level%scan% (insignificant%constant)((insignificant%constant)(
5% bottom*level%scan% nr/b(counts(+((insignificant%constant)(nr/b(offsets(
6% scatter% Distribute(keys(nr/b(offsets(+(n(keys((+(n(values)(n(keys((+(n(values)(
% % (% %
% % (Total%Memory%Workload:% (k/d)(n)(5r/b(+(7)(keys(only(

(k/d)(n)(5r/b(+(9)(with(values(

Figure 6. GPGPU stream representative of the Satish et al. method for distribution sorting with d-bit radix digits, radix r = 2d, local block size of b keys, and an n-
element input sequence of k-bit keys.

Several GPGPU radix sort implementations have followed this histogram-based approach, treating each CTA as a logical processor
operating over a block of b keys [33,34,18]. Of these, we consider the radix sort implementation described by Satish et al. to be
representative of the current state-of-the-art. Their procedure is depicted in Figure 6. Although the overall memory workload still has a
linear coefficient that is exponential in terms of the number of radix digit bits d, common CTA block-sizes of 128-1024 keys will
significantly reduce the overall memory workload. For these implementations, the block-size factor elicits a bathtub effect in which an
optimal d exists to produce a minimal memory overhead for a given block size b. The Satish et al. implementation uses a block size b =
512 and a radix digit size d = 4 bits, requiring the memory subsystem to process 73.3n words for an entire sort of 32-bit keys and values.
(If their stream kernels were all memory bound, the optimal radix digit size d would be 8 bits.)

Their design incorporates a kernel that locally sorts individual blocks of keys by their digits at a specific digit-place. This helps to
maximize the coherence of the writes to global memory during the scatter phase. Stream processors such as the NVIDIA GPUs obtain
maximum bandwidth by coalescing concurrent memory accesses, i.e. the addresses referenced by a SIMD half-warp that fall within a
contiguous memory segment can be combined into one memory transaction to provide higher overall utilization. The local sorting stage
serves as the first phase in a two-stage software scatter: ordered subsequences of keys can then be contiguously scattered to global memory
in a subsequent kernel. This sorting phase is relatively expensive in terms of memory and computational workloads.

3.2 Other)Sorting)Approaches)
����������
����
��	�����
��������������scussed make certain positional and symbolic assumptions regarding the bitwise representations of
keys. When these assumptions do not hold for a given set of ordering rules, a comparison-based sorting method is required. Unlike radix
sorting methods, comparison-based sorting methods must have work-complexity O(nlog2n) [1], making them less efficient as problem size
grows.

Sorting networks such as Batcher�s bitonic and odd-even networks were among the first proposed methods for parallel sorting [35].
Because the sequence of comparisons is fixed beforehand, mapping their computation onto SIMD and SPMD architectures is often
straightforward. Global sorting networks have been implemented for GPGPUs by Kipfer et al. [36], He et al. [37], Gre� et al. within GPU-
ABiSort [38], and Govadaranju et al. within GPUTeraSort [39]. Although the O(nlog2

2n) work complexity for these sorting networks
causes performance to suffer for large inputs, other hybrid strategies make use of sorting networks for small, local sequences of keys
[18,37]. Bitonic merging has also been used to compose blocks of keys ordered by other local sorting methods [40]. In this report, we
demonstrate that our local radix sorting strategy is more efficient than these local sorting networks.

Sorting algorithms based upon O(nlog2n) top-down partitioning and bottom-up merging strategies have also been adapted for the GPGPU.
Cederman et al. [41] and He et al. [37] have demonstrated parallel quicksort implementations, He et al. have implemented a version of
most-significant-digit radix sort [34], and Leischner et al. [42] and Dehne et al. [43] have adapted sample-sort (a multi-pivot variation of
quicksort) as well. Satish et al. have also developed an efficient GPGPU merge-sort to compliment their radix sorting method [18]. The
number of recursive iterations for these methods is logarithmic in the size of the input sequence, typically with the first or last 8-10
iterations being replaced by a small local sort within each CTA.

Merrill’s 3-step sort

CTA0

C
TA

0

CTA0

...

...

CTA1

...

CTA2

...

CTA3

...

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

S
ca

tte
r

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

Lo
ca

l S
ca

n

CTA1

...

CTA2

...

CTA3

...

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

B
in

ni
ng

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Accumulate

Local Reduce Local Reduce Local Reduce Local Reduce

Local Scan

U
ps

w
ee

p
R

ed
uc

tio
n

To
p-

le
ve

l S
ca

n
D

ow
ns

w
ee

p
R

ed
uc

tio
n

in
ke

ys
 7

:

in

ke
ys

 0

in
ke

ys
 15

 :

in

ke
ys

 8

in
ke

ys
 N

-1
 :

in
ke

ys
 N

-8

in
ke

ys
 7

:

in

ke
ys

 0

in
ke

ys
 15

 :

in

ke
ys

 8

ou
tk

ey
s

7 :

ou
tk

ey
s

0

ou
tk

ey
s

15
 :

ou
tk

ey
s

8

in
ke

ys
 N

-1
 :

in
ke

ys
 N

-8

ou
tk

ey
s

N
-1

 :

ou

tk
ey

s
N

-8

ou
tk

ey
s.

..

ou
tk

ey
s.

..
ou

tk
ey

s.
..

ou
tk

ey
s.

..

ou
tk

ey
s.

..
ou

tk
ey

s.
..

ou
tk

ey
s.

..

ou
tk

ey
s.

..
ou

tk
ey

s.
..

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

in
ke

ys
...

Global Device
Memory

Merrill’s sort, costs

Revisiting Sorting for GPGPU Stream Architectures ! 2/2010

9

In prior work, we developed several efficient GPGPU scan strategies that use a two-level reduce-then-scan meta-strategy for problem
decomposition across SM cores [23]. This meta-strategy is composed of three stream kernels: a bottom-level reduction, a top-level scan,
and a bottom-level scan. Instead of allocating a unique thread for every input element, our bottom-level kernels deviate from the data-
parallel programming paradigm and instead dispatch a fixed number C of CTAs in which threads are re-used to process the input sequence
in successive blocks of b elements each. Reduction and scan dependencies between blocks are carried in thread-private registers or local
shared memory. Figure 7 shows how these kernels have been supplemented with visiting logic and multi-scan capability.

The bottom-level reduction kernel reduces n inputs into rC partial reductions. Our reduction threads employ a loop-raking strategy [44] in
which each thread accumulates values in private registers. The standard gather functionality has been replaced with binning logic that is
parameterized with the current digit-place, the number of threads in the CTA, and the local block size b. When threads in the binning logic
read in a block of keys, each decodes the digits at that digit-place for its keys and returns the corresponding digit-counts for each of the r
�����������
�����������
�����������������������
������	�������������
����������������k, the threads within each CTA perform cooperative
reductions in which their accumulated values are reduced into r partial reductions and written out to global device memory, similar to
Harris et al. [45].

The single-CTA, top-level scan has been generalized to scan a concatenation of rC partial reductions. For our purposes here, a single scan
is performed over these sets of partial reductions. The top-level scan is capable of operating in a segmented-scan mode for multi-scan
scenarios that produce independent sequences of input.

In the bottom-level scan kernel, CTAs enact the distribution sort for their portions of the input sequence, seeded with the appropriate prefix
sums provided by the top-level scan. Each CTA serially reads consecutive blocks of b elements, re-bins them into r local flag vectors, and
scans these vectors using a local parallel scan strategy. After the local scans have completed, the scatter logic is presented with the r prefix
sums specific to each key. The scatter operation uses this information to redistribute the keys. It is also responsible for loading and
similarly redistributing any satellite values. The aggregate counts for each digit are serially curried into the next b-sized block.

Step% Kernel% Purpose% Read%Workload% Write%Workload%
1% bottom%level)reduce)

Create&flags,&
compact&flags,&
scatter&keys&

n&keys& (insignificant)constant)&
2% top%level)scan) (insignificant)constant)& (insignificant)constant)&
3% bottom%level)scan) n)keys&(+&n&values)&+&

(insignificant)constant)&
n)keys&(+&n&values)&

%) &))
%) & Total%Memory%Workload:% (k/d)(3n)&keys&only&

(k/d)(5n)&with&values&

Figure 8. Our distribution sorting GPGPU stream constructed from a parallel multi-scan primitive and visiting binning and scatter kernels with d-bit radix digits, radix r
= 2d, and an n-element input sequence of k-bit keys.

The memory workloads for our distribution-sorting scan primitive are depicted in Figure 9. Only a constant number of memory accesses
are used for the storage of intermediate results, and the overall workload no longer has a linear coefficient that is exponential in terms of
the number of radix digit bits d. This implies that there is no optimal d to produce a minimal memory overhead. Because memory
workload monotonically decreases with increasing d, our strategy is positioned to advantage itself of additional computational power that
may allow us to increase d in the future. Current NVIDIA GPUs can afford our strategy a radix digit size d = 4 bits before exponentially-
growing demands on local storage prevent us from saturating the device. This configuration only requires the memory subsystem to
process 40n words for an entire sort of 32-bit keys and values.

4.2 Local)Strategy)
While the details of the reduction kernel are fairly straightforward, the local operation of our scan kernels warrants some discussion. Of
our designs for scan primitives, the SRTS variant is the most efficient at processing blocks of contiguous elements [23]. In this subsection,
we briefly review the details of its operation and describe the manner in which we adapt it for distribution sorting.

• d-bit radix digits
• radix r = 2^d
• n-element input sequence of k-bit keys
• Current GPUs use d=4 (higher values exhaust local storage)

Results (NVIDIA GTX 285)

Revisiting Sorting for GPGPU Stream Architectures ! 2/2010

12

when r 8 (two or more composite scans), the local scanning efficiency of our approach will be much lower than that of a popc()-based
strategy. Because of the small overheads for each additional composite scan, the discrepancy between the two approaches is likely to be
several factors for our GT200-based strategies in which r = 16.

5 Evaluation+
This section presents the performance of our SRTS-based radix sorting strategy along with the CudPP v1.1 implementation as a reference
for comparison. Our core evaluation topics are overall sorting throughput, overall memory and computational workloads, and individual
kernel memory and computational workloads.

For primary testing, we used a Linux system with an Intel i7 quad-core CPU and an NVIDIA GTX-285 GPU. Unless otherwise noted, our
analyses are derived from performance measurements taken over a suite of 1,521 input problems initialized from keys and values sampled
from a uniformly random distribution. We composed our input suite from three subsets:

 750 problems with sequence sizes sampled uniformly from the range [25, 226]
 750 problems with sequence sizes sampled log-normally (base-2) from the range [25, 226]
 21 problems with sequence sizes comprising the powers-of-two between 25 and 226

The data points presented are the averages of measurements taken from two iterations of each problem instance. The measurements
themselves (e.g., elapsed time, dynamic instruction count, warp serializations, memory transactions, etc.) are taken from hardware
performance counters located within the GPU itself. The results they provide are very deterministic, eliminating the need for averaging
over large numbers of redundant tests. Our analyses is reflective of in situ sorting problems: it precludes the driver overhead and the
overheads of staging data onto and off of the accelerator, allowing us to directly contrast the individual and cumulative performance of the
stream kernels involved.

Figure 10 plots the measured radix sorting rates exhibited by our implementation and the CUDPP primitive. For all NVIDIA GT200 and
G80 GPUs, we best parameterize our strategy with radix r = 16 digits (digit size d = 4 bits). We have also overlaid the keys-only sorting
results presented Chhugani et al. for the Intel Core-2 Q9550 quad-core CPU [20], which we believe to be the fastest hand-tuned numerical
sorting implementation for multi-core CPUs. As expected, we observe that the radix sorting performances plateau into steady-state as the
	��#��������������������
���
������
��
���������������������������
���
�������������
�e device,
our key-value and key-only implementations provide smoother, more consistent performance across the sampled problem sizes.

Recent publications for this genre of sorting problems have set a precedent of comparing the sorting performances of the !�����
�
��
���"�
many-core GPU and CPU microarchitectures. At the time, Chhugani et al. championed the performances of Intel's fastest consumer-grade
Q9550 quad-core processor and cycle-accurate simulations of the 32-core Larrabee platform over G80-based NVIDIA GPUs [20]. Shortly
afterward, Satish et al. presented GPGPU performance that was superior to the Q9550 from the newer NVIDIA GT200 architecture [18].
We extended our comparison to a superset of the devices evaluated by these publications. The saturated sorting rates on these devices for

Device& Key)value&Rate&& Keys)only&Rate&
& & (106&pairs&/&sec)& (106&keys&/&sec)&

Name% Release%
Date%

CUDPP%
Radix%

SRTS&Radix&
(speedup)&

CUDPP%
Radix%

SRTS&Radix&
(speedup)&

NVIDIA>X&285& Q1/2009' 134' 482& (3.6x)& 199' 550& (2.8x)&
NVIDIA>X&280& Q2/2008' 117' 428& (3.7x)& 184' 474& (2.6x)&
NVIDIA&Tesla&C1060& Q2/2008' 111' 330& (3.0x)& 176' 471& (2.7x)&
NVIDIA&9800>X+& Q3/2008' 82' 165& (2.0x)& 111' 226& (2.0x)&
NVIDIA&8800>& Q4/2007' 63' 129& (2.1x)& 83' 171& (2.1x)&
NVIDIA&9800>& Q3/2008' 61' 121& (2.0x)& 82' 165& (2.0x)&
NVIDIA&8800>X& Q4/2006' 57' 116& (2.0x)& 72' 153& (2.1x)&
NVIDIA&Quadro&&
&&&&FX5600&

Q3/2007' 55' 110& (2.0x)& 66' 147& (2.2x)&

'' '' '' '' '' Merge%[20]%
Intel&Q9550&quadGcore& Q1/2008'

' ' '
138'

Intel&Larrabee&32Gcore& Cancelled'
' ' '

386'

Figure 10. GTX-285 key-value and key-only radix sorting rates for the CUDPP and our
4-bit SRTS-based implementations, overlaid with Chhugani et al. key-only sorting rates
for the Intel Core-2 Q9550 quad-core CPU.

Figure 11. Saturated sorting rates for input sequences larger than 16M
elements.

4Gcore&CPU&(keys)&[20]&

SRTS&(pairs)

CUDPP&(pairs)

SRTS&(keys)

CUDPP&(keys)

0

100

200

300

400

500

600

0 8 16 24 32 40 48 56 64

So
rt
in
g&
Ra
te
&&&
(1
06

[k
ey
s|
pa
ir
s]
&/
&s
ec
)

Sequence&Size&(millions)

Merge Sort

© 2009 NVIDIA Corporation

Merge Sort

Divide input array into 256-element tiles

Sort each tile independently

Produce sorted output with tree of merges

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge

© 2009 NVIDIA Corporation

Sorting a Tile

Tiles are sized so that:
a single thread block can sort them efficiently
they fit comfortably in on-chip memory

Sorting networks are most efficient in this regime
we use odd-even merge sort
about 5-10% faster than comparable bitonic sort

Caveat: sorting networks may reorder equal keys

© 2009 NVIDIA Corporation

Merging Pairs of Sorted Tiles

Launch 1 thread block to process each pair of tiles

Load tiles into on-chip memory

Perform counting merge

Stored merged result to global memory

sort sort sort sort sort sortsort sort

merge merge mergemerge

My grad-student-days merge

874

39.3.4 Previous Work
Scan was first proposed in the mid-1950s by Iverson as part of the APL programming
language (Iverson 1962). Blelloch was one of the primary researchers to develop effi-
cient algorithms using the scan primitive (Blelloch 1990), including the scan-based
radix sort described in this chapter (Blelloch 1989).

On the GPU, the first published scan work was Horn’s 2005 implementation (Horn
2005). Horn’s scan was used as a building block for a nonuniform stream compaction
operation, which was then used in a collision-detection application. Horn’s scan imple-
mentation had O(n log n) work complexity. Hensley et al. (2005) used scan for
summed-area-table generation later that year, improving the overall efficiency of Horn’s
implementation by pruning unnecessary work. Like Horn’s, however, the overall work
complexity of Hensley et al.’s technique was also O(n log n).

Chapter 39 Parallel Prefix Sum Scan with CUDA

Sorted
Input A

Sorted
Input B

Flip B, pairwise compare to A

Smallest element in each comparison
yields smallest p elements overall in a

bitonic sequence

Figure 39-15. Merging Two Sorted Subsequences into One Sorted Sequence Is an Efficient Operation
The second sequence is flipped and compared against the first sequence in parallel; the smallest
element from each comparison will be included in the output. The result of the parallel comparison
is bitonic and can be sorted efficiently.

639_gems3_ch39 6/28/2007 2:28 PM Page 874
FIRST PROOFS

© 2009 NVIDIA Corporation

Counting Merge

A[i-­‐1] A[i] A[i+1] ·∙	
 ·∙	
 ·∙·∙	
 ·∙	
 ·∙

B[j-­‐1] B[j] B[j+1] ·∙	
 ·∙	
 ·∙·∙	
 ·∙	
 ·∙

upper_bound(A[i],	
 B)	
 =	
 count(
 j	
 where	
 A[i]	
 ≤	
 B[j]	
)

lower_bound(B[j],	
 A)	
 =	
 count(
 i	
 where	
 B[j]	
 <	
 A[i]	
)

Use binary search since A & B are sorted

© 2009 NVIDIA Corporation

Counting Merge

A[i-­‐1] A[i] A[i+1] ·∙	
 ·∙	
 ·∙·∙	
 ·∙	
 ·∙

B[j-­‐1] B[j] B[j+1] ·∙	
 ·∙	
 ·∙·∙	
 ·∙	
 ·∙

upper_bound(A[i],	
 B)	
 =	
 count(
 j	
 where	
 A[i]	
 ≤	
 B[j]	
)

lower_bound(B[j],	
 A)	
 =	
 count(
 i	
 where	
 B[j]	
 <	
 A[i]	
)

scatter(
 A[i]	
 -­‐>	
 C[i	
 +	
 upper_bound(A[i],	
 B)]	
)
scatter(
 B[j]	
 -­‐>	
 C[lower_bound(B[j],	
 A)	
 +	
 j]	
)

© 2009 NVIDIA Corporation

Merging Larger Subsequences

Partition larger sequences into collections of tiles

Apply counting merge to each pair of tiles

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge

© 2009 NVIDIA Corporation

Two-way Partitioning Merge

Pick a splitting element from either A or B

Divide A and B into elements below/above splitter

Recurse

A[i] ·∙	
 ·∙	
 ·∙·∙	
 ·∙	
 ·∙

A[i] A[j]	
 >	
 A[i]	
 A[j]	
 ≤	
 A[i]

B[j]	
 >	
 A[i]	
 B[j]	
 ≤	
 A[i]

A[i]A[j]	
 ≤	
 A[i]

B[j]	
 ≤	
 A[i]
merge :

A[j]	
 >	
 A[i]

B[j]	
 >	
 A[i]
merge :

found by binary search

© 2009 NVIDIA Corporation

Multi-way Partitioning Merge

Pick every 256th element of A & B as splitter

Apply merge recursively to merge splitter sets
recursively apply merge procedure

Split A & B with merged splitters

Merge resulting pairs of tiles (at most 256 elements)

256 256 256 256·∙	
 ·∙	
 ·∙

B0

A0

B1

A1 A2

B2

·∙	
 ·∙	
 ·∙

·∙	
 ·∙	
 ·∙

• Mark Harris, Shubhabrata Sengupta, and John D. Owens.Parallel Prefix Sum
(Scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39, pages 851–
876. Addison Wesley, August 2007.

• N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for
manycore GPUs,” IPDPS 2009: IEEE International Symposium on Parallel &
Distributed Processing, May 2009.

• D. Merrill and A. Grimshaw, Revisiting Sorting for GPGPU Stream Architectures.
Technical Report CS2010-03, Department of Computer Science, University of
Virginia, 2010, 17pp.

Sort papers

