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ABSTRACT

We introduce a technique to visualize the gradual evolutionary
change of the shapes of living things as a morph between known
three-dimensional shapes. Given geometric computer models of
anatomical shapes for some collection of specimens - here the
skulls of the some of the extant members of a family of monkeys
- an evolutionary tree for the group implies a hypothesis about the
way in which the shape changed through time. We use a statisti-
cal model which expresses the value of some continuous variable at
an internal point in the tree as a weighted average of the values at
the leaves. The framework of geometric morphometrics can then be
used to define a shape-space, based on the correspondences of land-
mark points on the surfaces, within which these weighted averages
can be realized as actual surfaces.

Our software provides tools for performing and visualizing such an
analysis in three dimensions. Beginning with laser range scans of
crania, we use our landmark editor to interactively place landmark
points on the surface. We use these to compute a “tree-morph” that
smoothly interpolates the shapes across the tree. Each intermediate
shape in the morph is a linear combination of all of the input sur-
faces. We create a surface model for an intermediate shape by warp-
ing all the input meshes towards the correct shape and then blending
them together. To do the blending, we compute a weighted average
of their associated trivariate distance functions and then extract a
surface from the resulting function. We implement this idea using
the squared distance function, rather than the usual signed distance
function, in a novel way.
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1 INTRODUCTION

Darwin’s theory of evolution was originally applied using morphol-
ogy - discrete qualitative features such as number of toes, and also
quantitative shape differences, such as elongation of a limb - to
place species within the tree of life. While genomic sequence data
is now the basis of most phylogenies (evolutionary trees), morphol-
ogy continues to be an essential part of evolutionary biology. One
important reason is that the morphology of fossils, rather than com-
parisons between genomic data, provides our only direct evidence
for extinct species.

For instance, the shape of the skull is very important in the study
of human evolution, and that of our primate relations. Quantita-
tive differences, such as shape of the brow ridge, are essential in
defining the criteria for comparison between skulls. The idea that
quantitative shape differences can be analyzed in terms of the trans-
formations required to “morph” one shape into another goes back
at least to d’Arcy Thompson’s classic 1917 book On Growth and
Form [24], from which Figure 1 is taken.

Figure 1: Spatial relationship between human, chimpanzee, and baboon skull,

as envisioned by d’Arcy Thompson in 1917. The overall shape is recognizably

similar, and the transformation between them describes the shape difference.

In modern morphometric studies, the statistical analysis of the transformation

is based on a matrix of selected landmark points from the surfaces, while warps

of the embedding space, which are illustrated here, are more often used for

visualization of the results.

The statistical analysis of geometric shape transformations is the
program of geometric morphometrics. In addition to evolutionary
biology, morphometric techniques are used widely in developmen-
tal biology, medical image analysis, and other areas. Morphomet-
rics defines “shape spaces” based on sets of homologous sets of
landmark points on the input objects. The spaces in which statisti-
cal analysis is generally done are linear spaces spanning the input
shapes, so that the interpolating shapes in the space, such as those
we use here, are linear combinations of the input shapes.



Using morphometrics, we have implemented a three-dimensional
“tree-morph” visualizing the evolutionary changes implied by a
given evolutionary tree. Surface meshes captured by a laser range
scanner from cranial specimens for extant (living) species appear at
the leaves. The interior nodes and interior points of the edges of the
evolutionary tree correspond to hypothetical ancestor species. We
realize these by computing synthetic surface meshes for the shapes
at the internal nodes and at a dense set of points sampled along the
tree edges. We then visualize the morph by displaying the precom-
puted meshes interactively, by sliding a cursor along tree edges, or
as an animation.

This specific project was chosen to drive the development of com-
puter tools for three-dimensional morphometric analysis and visu-
alization. Our aim is to use visualization and interactive tools to
support the kind of morphometric analysis that is currently done
in paleontology and other biological disciplines, producing images
which reflect the users’ existing theories about shape transforma-
tion and which are therefore perceived as credible and relevant to
the science. We do not propose in this initial project to change the
current analytic techniques. But we do expect that as better tools
make it possible to handle large amounts of three-dimensional data
a greater emphasis on automation will be inevitable, and that the
software framework we have developed here will make it easier to
innovate.

We faced a number of design decisions and challenges in the
project. Morphometric techniques are based on user-defined sets
of landmark points, which are assumed to be exactly homologous.
Recent work in graphics has tended to instead to emphasize the au-
tomatic determination of homology. This would be appropriate to
the extent that it reliably corresponds to biological homology, but
this is a terrific research question rather than an accepted technique
to be applied. Our landmark editor supports existing practice by fa-
cilitating the placement of large sets of landmarks, using automatic
placement only very conservatively. This has had immediate and
obvious impact.

A second issue was producing the intermediate surfaces which lin-
early interpolate the input shapes, as defined in morphometric anal-
yses. The multiple-alignment and interpolation procedures we use
to handle the landmark point sets, while standard in morphometrics,
differ from those common in computer graphics. They are designed
to minimize the error induced by forcing the shapes into a linear
space. We then needed to develop a procedure to produce linearly
interpolated surfaces as well as linearly interpolated sets of land-
mark points. This is a different problem from standard morphing
or blending. Besides having several inputs instead of just two (not
all methods generalize in an intuitive way), we wanted to preserve
properties of linear interpolation. In particular, we wanted the oper-
ation to be commutative, meaning that, for instance, the surface one
third of the way from A to B (2/3A + 1/3B) should be the same as
the surface two-thirds of the way from B to A (1/3B + 2/3A); this
is not true for many existing two-input morphing methods. This
motivated our choice of a morphing method based on linear inter-
polation of implicit functions.

A third challenge was handling the somewhat messy scanned in-
put data, which does not even approximate a closed manifold sur-
face; there are large holes and only one side of the solid is captured
in most areas, while in others both sides are very close together
or even self-intersecting. In the implict function interpolations, we
use the squared distance function to the surface rather than the more
usual signed distance function, from which we extract an extremal
surface (defined in Section 2.5). This approach does not require
closed or oriented surfaces as input nor do we require any prepro-
cessing of the laser range scan surfaces.

1.1 Geometric Morphometrics

Geometric morphometrics is a branch of biostatistics dealing with
the analysis of shape [4, 27, 1]. Scientists need to be able to de-
fine and analyze statistically significant variables expressing bio-
logical shape. This task is difficult because the choice of what to
measure and analyze affects the results. Rather than measuring spe-
cific distances, angles, and so on, the approach used in geometric
mophometrics is to choose a discrete set of K homologous (or “cor-
responding”) landmark points Li = {x1,x2,x3, . . . ,xK},1 ≤ i ≤ N
on all N input object surfaces. The representation of the shape by
its set of landmark points subsumes measurements of specific dis-
tances between landmarks, angles produced by three landmarks,
etc. A dense enough landmark point set provides an adequately
sampled representation of the shape. Statistical analysis of land-
mark point sets provides a method for making assertions such as
“This fossil cranium resembles a macaque rather than a baboon,”
more precise and quantifiable.

The sum-squared distance between two sets of landmark points is

D(Li,L j) =

√

√

√

√
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n

)2
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Procrustes distance between them is the minimum of D(Li,L j)
over all rotations, scales, and translations of L j (with the scale of Li

normalized). Procrustes distance imposes a geometry on the space
of landmark configurations, forming a non-linear shape space. Un-
fortunately, the pairwise alignments do not produce a multiple mu-
tual alignment of all the landmark sets; if we align La to Lb and Lc

to Lb, we find that La is not aligned to Lc. The common practice is
to compute an averaged consensus landmark point set and align all
of the landmark point sets to this consensus configuration. Using
a process called General Procrustes Alignment (GPA), a consen-
sus landmark set is chosen to minimize the total squared difference
between the aligned input landmark sets and the consensus config-
uration [9]. Statistical analysis can then be performed on the data
matrix formed by the aligned landmark sets. This is treated as a lin-
ear space, in which standard statistical techniques can be applied di-
rectly. This linear space is an approximation to the non-linear shape
space defined by the Procrustes distances, and the choice of a good
consensus configuration is important to reduce the error caused by
forcing the data into a linear space.

After GPA we can linearly interpolate our set of input configura-
tions, producing intermediate configurations which also lie in the
approximating linear space. All of our intermediate landmark sets
in the tree-morph belong to such an interpolating linear space, with
the weights for the linear combinations determined as described in
Section 2.2.

It is common practice in morphometrics to visualize an averaged
configuration by warping one of the input surfaces so that its land-
marks coincide with the averaged configuration using a thin-plate
spline (TPS) warp. The TPS is favored because the resulting sur-
face interpolates the landmarks (which are the “real” data being
visualized), because it is the smoothest such warp, minimizing the
bending energy, which is related to the curvature, and because it is
fairly straightforward to compute.

1.2 Application to Primate Evolution

We use this well-accepted morphometric framework to define the
biologically “correct” interpolation of the skull shapes for five
species of Old World monkeys. The Old World monkeys evolved



in the same time and place as early humans, making them a partic-
ularly interesting group to study. There are many extinct species of
Old World monkeys, known from fossils, so that there is a lot of in-
teresting data related to their evolutionary history. Yet this history,
defined as the exact shape of the evolutionary tree, continues to be
a matter of controversy.

We have used a laser range scanner to capture three-dimensional
shapes of the crania of many species of Old World monkeys, both
extant and fossil, as part of a larger effort at the American Mu-
seum of Natural History to develop a database of three-dimensional
primate morphology. Here, we use five of these surface models
to develop and apply a method for visualizing morphometric esti-
mates of skull-shape variation that is relevant to the evolution of
the group. We selected five extant species sampling both subfami-
lies of Old World monkeys, and use a best-estimate for the evolu-
tionary tree of the five species, derived from DNA sequence data,
which is only available for the extant species. We then visualize
what the sequence-based tree implies about the morphology of an-
cient monkeys by interpolating the cranial shapes across the fixed
tree. Figure 2 shows the tree.

Visualizations of the intermediates (the hypothetical species at any
interior point of the tree) are interesting in at least two ways. Sci-
entists want to answer questions like, “Are the skull shapes pre-
dicted by this model biologically plausible?” and “Where would
this known fossil fit into the tree we hypothesize from genomic
data?” The visualization of the subset of the skull shape-space de-
fined by the tree helps to answer both kinds of questions.

1.3 Technical Overview

Our goal is to produce a three-dimensional tree-morph visualiz-
ing the evolutionary hypothesis presented by a specific evolutionary
tree using as input surface models captured by a laser range scan-
ner and the transformations specified by the morphometric model.
The output of our procedure is a set of polygonal surface models,
each one representing an intermediate shape corresponding to an
interior point of the tree. Each of these intermediate models is a
weighted average of the input models; they differ only in the choice
of the weights. We developed a weighted average blending proce-
dure, applicable to rigid objects. It is not intended to handle inputs
in which the conformation varies as well as the shape (such as an
arm bending at the elbow). Here is a brief description of each step;
more details are provided in the following sections.

1. Landmark specification: The user interactively places land-
mark points at biologically meaningful locations providing
homologous points on each of the input specimens.

2. Alignment and target computation: For each set of weights,
we produce a weighted average target configuration for the
landmark points, and aligne the input landmark sets to the
target configuration, using GPA.

3. Warp: We compute a TPS warp taking the landmark points
on each input surface to the target configuration and use it to
warp the entire input surface.

4. Blend: We compute a distance function for each warped sur-
face and take their weighted average. Extracting an extremal
surface from this function produces the output surface.

The early steps follow the conventional course of a geometric mor-
phometrics analysis, which is the “gold standard” for the scientists
in terms of how they model shape change. We relay on user-defined
landmark points, which we accept as truly homologous. We focus

on making it easy for the user to define many landmarks, provid-
ing more data for the landmark-based statistical model. We use the
GPA alignment procedure followed in morphometric analysis. Our
warping step uses the TPS warp, which is well-accepted for the rea-
sons discussed above. The final blending step meets two objectives.
First, it carries through the principle of constructing the intermedi-
ate shapes of the morph as a linear combination of the input shapes,
by representing the shapes as trivariate functions for which linear
combinations are unambiguously well-defined. Second, our choice
of trivariate function works well for the raw captured data meshes,
which are not manifold and have holes, and which contain very thin
shell-like regions and occasional self-intersections which are diffi-
cult to morph.

1.4 Related Work

Existing geometric morphometric software has mainly focused on
the alignment and multivariate statistical analysis of specimens,
with less emphasis on either the landmark placement user inter-
face or on visualization. Morpheus [22], morphologika [18], and
the TPS suite of programs [19] are the packages most widely-used
by morphologists.

Placing landmark points on 3D specimens for morphometric anal-
ysis is generally done using 3D contact digitizers on the actual ob-
jects where the collected points stored in a spreadsheet. This is
extremely tedious, so that landmark point sets consisting of tens
of points are typical. For virtual 3D images of specimens, such as
laser range surfaces or CT scans (ideal when the actual specimen
cannot be obtained firsthand), there are generic software packages
can be used, but these programs are not specialized for landmark
placement, so the process remains quite cumbersome.

The interesting visualization problem of morphing primate skull
shapes across an evolutionary tree was first approached by Delson
et al. [8] using the three-dimensional analog of the practice from
morphometrics mentioned above, in which the transformation from
one shape to another determined by the landmark points is visual-
ized by warping one of the input surface models. This approach
has the drawback that the visualization of an intermediate produced
by warping one input surface is not the same as the visualization
produced by warping another instead. Our work improves on this
approach in that we produce a single surface for each intermediate
that represents the desired proportions of the input shapes. Also,
since we can generate many more landmarks, we achieve a better
representation of the shape and its variation in the resulting model.

When the shapes are captured by computed tomography (CT) rather
than laser range scans, the trivariate density functions for the differ-
ent specimens can be blended, after warping to align significant
features. This idea has been applied to visualizing the evolution of
toads by Hodges et al. [10]. The problem of merging similar sur-
faces is replaced, in this case, with the problem of isosurfacing as
the function is averaged across time, which is also non-trivial.

Subsol et al. [23] produced an interesting morph between a CT scan
of a modern human skull and that of a fossil humaniod. Their goal
was to compare the two shapes using a deformation, and to demon-
strate some possible applications of three-dimensional geometry
processing in paleontology. They establish correspondences using
automatically selected crest lines; the crest lines are noisy, the cor-
respondences between them are approximate, and they fail to cover
many areas of the skull such as the brain case. So Subsol et al.
used them with a non-interpolating warp including a regularization
component. This is a demonstration of the potential of possible
automatic techniques, while we concentrate on the facilitation and



Figure 2: The input surface meshes, from laser range scans of the crania of existing monkey species, are shown on the right-hand side at the leaves of this tree.

The surface meshes at the internal nodes, placed at the estimated dates at which the species are hypothesized to have diverged, represent the skull shapes of the

hypothetical ancestors as computed using our system.

visualization of existing techniques which are actually used in sta-
tistical shape analysis.

We also draw on methods known in computer graphics and visual-
ization. We were inspired by one particularly relevant project [2],
in which a collection of full-body scans of humans was aligned to a
closed synthetic “base mesh.” The base mesh could then be warped
to resemble any of the inputs, or a linear combinations of the in-
puts. This method produces a “space of human body shapes” useful
in computer graphics, for instance for generating crowds of digital
extras. In morphometrics, there is a strong emphasis on produc-
ing results that are derived from the data rather than introduced for
computational convenience, so we wanted to avoid the synthetic
base mesh; also, we had no appropriate mesh to use.

Instead, we use a warp-and-merge paradigm to produce the inter-
mediate surface models. An early example of this paradigm is due
to Lerios, Garfinkle and Levoy [12]. Their system included a user
interface which allowed user to establish correspondences between
curves and regions on the input models, similar to features of our
landmark editor. The morphing method which formed their back
end was more focused on efficiency and less on the accuracy of the
intermediate shapes than some later approaches, including ours, and
their method for color blending is somewhat similar to ours. Our
morphing method is most closely related to that of Levin, Cohen-
Or and Solomovici [7] (and see also [25]). Their method uses the
TPS to warp the surfaces so that they resemble each other closely.

This nicely coincides with the common practice in morphometrics,
where the TPS is favored. The surfaces are then merged by con-
verting each input surface into a signed distance function defined
over a finite three-dimensional domain in the target space, taking a
weighted average of the functions, and extracting the zero-set of the
resulting function. This is appealing in our application since we can
take a weighted average of several input functions in a straightfor-
ward way. Their method works well for closed manifold input sur-
faces, and reasonably well on our messy inputs except where there
are self-intersecting surfaces or oppositely-oriented surfaces pass-
ing very close to each other. We developed an alternative method
based on averaging the squared distance function, which produces
a single-sheet output in such areas, with somewhat better results.

Other morphing paradigms, which are better in the traditional
graphics context where a surface A is morphed into another surface
B, are not appropriate in our application. For example, the attrac-
tive level-set method of Breen and Whitaker [6] produces a morph
by moving every point of surface A with velocities controlled by
the distance field of B. We do not see a straightforward way in
which this can be modified to produce a linear combination of sev-
eral input surfaces. Also, the intermediate shape one-third of the
way from A and B in the level-set morph is different from the in-
termediate shape two-thirds of the way from B to A, so it cannot
reasonably be interpreted as a linear interpolation.



2 SYSTEM DETAILS

2.1 Landmark Specification

An essential part of the project was developing the interactive land-
mark editor. A basic, but important, feature is that the homology be-
tween the landmarks on different input surfaces is shown explicitly;
with conventional methods, the user had to imply the homology by
carefully placing landmarks in a specific order. In the landmark ed-
itor, two surface meshes are shown at the same time in the main
window. Figure 3 shows a screenshot. A dialog window shows the
correspondences between pairs of landmark points; the windows
are linked, so that when editing a correspondence in the dialog win-
dow the selected points on the surface meshes are highlighted.

Figure 3: Screen capture of our landmark editor. Two input meshes are

shown in the large pane and upper-left pane while the two warped models are

overlayed in the lower-left pane. The yellow arrow indicates the selected patch

orientation.

Points can of course be added, deleted and adjusted in any order.
We show the surface normal as well as the point itself as the user
adjusts the landmark, which helps to place it exactly, especially on
high-curvature features.

Not all shape differences can be captured by single points. To cap-
ture curvature of an eye socket or the area of the brain case, we want
to establish correspondences between curves and surface patches
as well as points. Since morphometrics is based on the analysis
of matrices of homologous points, in morphometrics this is done
by distributing points, called semi-landmarks, across such features.
We implement this by allowing the user to place the control points
of Bézier curves or patches on the surface. The system automati-
cally generates a user-controlled number of semi-landmark points
across the curve or patch, in a fixed order derived from the order of
the control points. The semi-landmarks are then projected onto the
surface. The user establishes correspondences between the control
points two curves or two patches, implicitly defining the correspon-
dences between all pairs of semi-landmarks on the primative. The
orientation of curves and the orientation and rotation of patches is
shown with arrows, since it is easy to get these swapped (by placing
the control points in different orders on the two surfaces), and the
user can re-orient a patch or curve to correct a mismatch without
having to move the points.

Bookstein [5] introduced a method for optimizing the positions of
semi-landmarks on a curve or surface, minimizing the bending en-
ergy of the induced TPS warps. We have implemented this method,
and it seems to have minimal effect on our semi-landmarks, which
are generally well-spaced to begin with.

We have also implemented a method that transfers landmark prim-
itives from one surface to another semi-automatically. The user
places at least four landmarks to produce a crude warp, which is
then used to transfer the rest of the landmarks; the user then has to
adjust their positions, but just transferring the overall configuration
greatly simplifies the experience and reduces errors. We can also
export the landmark points, which allows existing morphometric
packages to use them.

Figure 4: A full set of 853 landmarks placed on one of the scanned crania.

These were created using 45 are single points, 32 curves and 9 surface patches.

Using this interface, it is easy to create large sets of correctly cor-
responding landmark and semi-landmark points (Figure 4). While
placing these was indeed tedious (it took our novice users about
three hours per skull), it would have been completely infeasible us-
ing previous methods

The landmark editor is currently being used by the primatologists
on our team for a separate research project investigating congruence
between joint surfaces in the primate skeleton, in which a grid of
points are placed on the opposing joint surfaces. Landmarks have
been collected on laser range scan surfaces of over 80 primate lower
limb-bone specimens, and results are being analyzed. The software
is greatly facilitating an otherwise lengthy and complex process.

2.2 Weights

Each internal point of the tree corresponds to a set of consensus
landmark points, which is a weighted average of the landmark
points at the leaves. The weights are determined using a princi-
ple known in evolutionary biology as squared-change parsimony:
the integral of the squared change of a variable v (in this case, a sin-
gle landmark point coordinate) over the tree is minimized, within
the constraints imposed by the values of v at the leaves. This princi-
ple is sometimes used to estimate the structure of the evolutionary
tree from the values at the leaves [26]. Here instead we have the
much easier problem in which the structure of the tree, including
the lengths of the branches, is fixed, and we just want to compute
the values of the variables at internal points in the tree.

A generalized least-square method for this problem was introduced
by Matrins and Hansen [14]. A covariance matrix for the values of
v at the nodes is derived from the structure of the tree and used to
weight a least-squares fit of the values at the internal nodes to the
actual leaf data. The value v0 of v at the root is assumed to change
randomly as it evolves through the tree. The value of v at some
point in the tree is assumed to follow a Gaussian distribution, with



mean v0 and and variance proportional to the distance from the root
(this is the Brownian motion model of evolution). The covariance
for two points x and y in the tree is proportional to the distance from
the root to their least-common ancestor (lca); we assume the values
of v changed independently on the two separate paths from the lca
to x and y.

This method is discussed in Rohlf [20]; his Equations 16 and 17
give the weights found by the least-squares fit as closed-form for-
mulas. We use them to assign, for a given internal node in the tree,
a set of weights w1, . . . ,wN for each of the N input surfaces. Along
each tree edge, we linearly interpolate the weights of the endpoints.

2.3 Alignment and Target Configuration

Given N sets of homologous landmark points Li,1 ≤ i ≤ N and a
set of weights w1, . . . ,wN , the next step is Generalized Procrustes
Alignment (GPA) [9]. This is an iterative procedure that simulta-
neously determines the positions of the landmarks on the output
surface and aligns the input landmark sets to this target configura-
tion.

We begin by scaling each input set of landmark points so that the
sum of the squared distances between all of the points and the center
of gravity is one. Thus, if gi =

(

∑K
n=1 Li

n
)

/K is the center of gravity
for point set i and the sum for each set is di = ∑K

n=1 ‖Li
n − gi‖2

then the scaling factor for each point set relative to the first is si =
di/d1,1 ≤ i ≤ N. The scale variation can be re-introduced into the
visualization at the end, as was done to make the images in Figure 2.

We pick one of the input configurations of landmark points, arbi-
trarily, as the first iteration of the target configuration. Then in each
iteration, we align all of the input landmark sets to the proposed
target configuration. We use Horn’s algorithm [11], which gives an
efficient and closed form solution to the problem of finding the ro-
tation and translation of an input landmark set minimizing the sum
of squared distances between each landmark point and the homolo-
gous point in the target configuration. After aligning all input land-
mark sets, we compute the new target configuration by taking the
weighted average of all of the homologous copies of each landmark
point. We terminate the iterative process when the target configura-
tion is “stable.” Fewer than ten iterations are typically needed.

2.4 Warp

The next step is to warp all surface models into the target configu-
ration space using the thin-plate spline (TPS). The TPS warp is de-
fined using an input set of landmarks and the target set of consensus
landmark points, and it brings the input landmarks into coincidence
with the target set. Taking the surface mesh through the same trans-
formation warps the surface into the target space. Warping all N
surfaces into this target space results in all surfaces being close to
one another.

Conveniently, it is possible to get a closed-form solution for the
TPS warp, since it can be expressed as a weighted sum of radial
basis functions centered at the landmark points. The weights are
determined by solving a linear system, which we do in a straight-
forward manner.

2.5 Merging

The final step is merging the N surfaces, which after the warp lie
very close together. This merge interpolates the surface details.

We initially implemented the method of [7], computing a signed
distance field around each surface, computing the weighted aver-
age of those distance fields, and extracting the zero set. This works
well in most regions, but introduced holes in regions where both
sides of a thin sheet-like region of the object are captured in the
input scans. If these thin sheets are not perfectly aligned by the
warp, holes appear in the output surface, even at arbitrarily high
resolution (Figure 6). This occurs because even in the continuous
case there are regions where the averaged function is positive over
the whole neighborhood of the input surfaces and does not achieve
zeros. These (and other artifacts near the boundaries) led us to con-
sider an alternative approach, based on linearly interpolating the
squared distance function rather than the signed distance function
of the surface. Our new method is also somewhat less sensitive to
discretization artifacts.

The squared distance function di(x,y,z) associated with one input
surface Mi is zero at points of Mi and positive elsewhere, and its
gradient at points of Mi is the zero vector; Mi lies at the bottom
of the two-dimensional “valley” in the three-dimensional function
di. The weighted average of the di, d(x,y,z) = ∑widi, is similar
to a squared distance function, in that there is still a distinct two-
dimensional “valley” in the function. The points at the bottom of
this valley have small but not zero values of d, and the gradient is
exactly zero only at a set of discrete minimum points. We extract
the surface tracing out the bottom of this valley. Notice that even at
points where the averaged distance function fails to achieve a zero,
the averaged squared distance function still has a valley.
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Figure 5: Averaging multiple squared distance functions produces a function

that is similar to a squared distance function, but generally not zero anywhere.

In one dimension, the squared distance function is a parabola in two-space, and

the average of several is also a parabola. In higher dimensions the situation

is similar, although complicated by the fact that the input surface normals do

not match exactly. Taking a directional derivative in a direction v, roughly

perpendicular to the desired surface, produces a signed function, with its zeros

defining the bottom of the parabolic “valley.”

To extract a surface from a two-dimensional valley in a trivariate
function we use an extremal surface construction. Extremal sur-
faces were introduced for extracting surfaces from noisy tensor
fields [17], and they have been used recently for defining surfaces
from point clouds [3]. We consider the directional derivative of d
in a direction v roughly perpendicular to the valley. Once we have
an appropriate vector field v, the directional derivative

g =
∂d
∂v

=
∇d ·v

2
(2)

is a signed function, whose zero set is taken as the desired output
surface (Figure 5). Since the function g is locally nearly linear,
extracting the output surface using marching cubes [13] works well
and produces smooth surfaces free of “jaggy” artifacts, except again
in regions where the input formed thin sheets (Figure 6).

To find a vector field v roughly perpendicular to the valley, we use
the directions perpendicular to the input surfaces. Specifically, we
average the unoriented gradient directions ∇d iof all of the input
squared distance fields di; by unoriented we mean the directions of
the lines supporting the vectors, so that the vectors v and −v are
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Figure 6: Comparison of signed distance field blending, on the left, and our

novel unsigned blending procedure on the right. In the first row, we use a high

resolution voxel grid of 300 × 192× 147. The signed distance field produces

a merged surface with a hole behind the eye socket, where two oppositely-

oriented surface are close to each other, even though none of the input surfaces

had a hole. Our method of averaging the squared distance functions produces

the correct topology, although there is still some discretization noise in the

difficult region. At lower resolution (in the second row, 150 × 96× 73), our

method is less sensitive to discretization artifacts.

considered to be the same. Even in the difficult regions in which
the objects form thin sheets, the unoriented gradient directions are
roughly consistent with each other (while the oriented gradient di-
rections can point in opposite directions), so the averaged unori-
ented vector field is smooth near the surface.

We then propagate a consistent orientation through v. Again, this
has to be done carefully in the difficult regions in which the objects
form thin sheets. We detect the difficult regions while extracting the
distance function, as we describe in a moment. With this informa-
tion, we can propagate the orientation of v first in the easier regions
and then in the more difficult ones.

We compute the squared distance function di for each surface on a
voxel grid using the closest point transform (CPT) code distributed
by Mauch [16], which implements his robust computational-
geometry-based method [15]. This code finds for each voxel x the
nearest foot-point on the polyhedral input surface; a foot-point is
a surface point p such that a sphere centered at x is tangent to the
surface at p. The nearest foot-point is also the closest surface point.
We modified the code to find not only the closest foot-point but
also the second-closest foot-point as well. When the object forms
a thin sheet, or at a sharp corner, the second-closest foot-point is at
nearly the same distance as the closest. We use the difference be-
tween the distance to the closest and the second-closest foot-points
as a measure of the difficulty of orienting v. For efficiency, we also
modified the CPT code to only compute the squared distance field
around each input surface mesh Mi to within a small distance α (we
use 1/10 the largest dimension of the model). We use the CPT code
to find the trivariate squared distance function d i for each Mi and
also the exact gradient ∇di of the squared distance. Note that the
gradient is the same as the unsigned distance function times two. A
weighted average of all di functions produces a single scalar trivari-
ate function d, and, because of the linearity of the derivative opera-
tor, averaging the ∇di functions produces its exact gradient ∇d.

Color is also averaged. Each triangle in the input mesh is assigned
the average color of its three vertices (we could have interpolated
the vertex colors across the triangle but the differences are negligi-
ble at the grid resolution we are using). Every voxel closest to this

triangle inherits this triangle color. The colors at the voxels are then
averaged along with the distance functions. After the surface is ex-
tracted, color is assigned to each surface vertex by interpolating the
surrounding voxel colors.

The resulting surfaces still have some extraneous parts. One issue
is that g = 0 at ridges of d as well as at valleys, that is, near the the
medial axis of the desired surface as well as the surface itself. We
handle this simply by taking the single largest connected compo-
nent of the output surface; this removes the medial axis components
and also some small noise artifacts. We also delete any part of the
surface where |g| is not nearly zero (zero crossings at transitions
between large positive and large negative values of g). These occur
near boundaries.

Finally, at voxels where v is hard to define because the averaged
gradients at the vertices point in very different directions, we do
not compute g directly. Instead, we compute g for the surrounding
voxels and then interpolate the values, by averaging, to the empty
voxels. Note that this hole-filling would not be possible without a
consistent orientation for v and hence a consistent sign for g.

3 RESULTS

Figure 2 illustrates our results. The main point is that the synthetic
skulls, created by averaging the input meshes, are virtually indistin-
guishable from the original models. A video, including an anima-
tion of the tree-morph and some examples of interaction with the
landmark editor, accompanies this paper.

The input surface meshes varied in size, from 797K to 433K tri-
angles, except for the Papio model, for which only a 75K trian-
gle mesh was available. Computing the trivariate distance function
from the input mesh is the most expensive part of the computation,
and this is roughly linear in the size of the input mesh. For the
animation, we simplified all of the meshes down to about 75K tri-
angles, since more detail would not be resolved at video resolution.
Note that the trivariate distance function has to be computed for
each frame, since the warp for each frame is different. We used the
full resolution input meshes for the figures.

We did our processing on four Intel 3.2GHZ Hyperthreaded work-
stations, each with 2GB of memory. The distance field for the high-
resolution meshes is computed in about 500 seconds per model on
a voxel grid of size 300× 192× 147. Other processing, including
the GPA, the TPS warp, and the extraction of the extremal surfaces,
required about an hour altogether and was minor compared to the
time required to generate the distance functions.

4 DISCUSSION AND FUTURE RESEARCH

This application raises a number of research questions that we are
interested in pursuing. With respect to primate evolution, we plan
to compare the average ancestral shapes predicted by the statistical
model and illustrated in this visualization with the shapes of known
fossils, both visually and statistically. Integration of fossil evidence
with a trees such as ours, whose structure is inferred from genomic
sequence data on existing species, has to be based on morphological
features. Visualizations such as these help paleontologists develop
intuition about morphological change and encourage them to accept
or reevaluate statistical models.

Generating landmarks automatically in a way that users would find
sufficiently accurate and biologically meaningful is an important
area for future research. As more data becomes available, the need



for automation becomes more pressing. For instance, it would be
very helpful to be able to attract landmark points onto significant
geometric features, especially ridges. More ambitiously, it would
be useful to be able to develop reliable surface correspondences us-
ing only a small number of landmarks, and hence transfer large sets
of landmarks almost automatically. There has been some work on
this problem in the graphics community [21] and extending these
techniques to handle inputs that are not closed manifolds would be
helpful.

Finally now that we have a method for producing intermediate sur-
faces, we can use it to construct a base mesh to use in a system
such as that of [2], which might produce more attractive or more
efficient warps.
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