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Finding a Line Transversal of Axial Objects

in Three Dimensions

Nina Amenta*

Abstract

An axial ob~t in @ is a box or rectangle, all of whose edges

are parallel to the coordinate axes. A line transversal of a

setofaxialob~cts isa line that intersects every object. We

present an algorithm which finds a line transversal, if one

exists, in expected linear time. In the process, we generalize

a randomized linear programming algorithm, and prove that

the set of line transversals of axial objects has a constant

number of connected components.

1 Introduction

A line which intersects every member of a given set of

objects is a line transversal (or stabbing line) for the

set. Let us call a line in E3 that is parallel to either

the z,y or z axis an axial line. An azial boz or an axial

rectangle is one whose edges are all segments of axial

lines. In this paper, we give an algorithm to find a line

transversal of a set of n axial boxes and axial rectangles

in E3, in expected O(n) time.

The general dimensional version of this problem

arises in statistics, when one wants to find a linear ap-

proximation for data given by ranges in each dimension

[Pen 91]. The three dimensional case is particularly im-

portant in computer graphics, when one wants to find a

line of sight through a sequence of rectangular windows

or holes [Tel 91].

Our algorithm improves an O(n lg n) expected time

algorithm of Hohmeyer and Teller [HT91]. For the more

general problem of finding a line transversal for a set of

polyhedra with a constant number of edge directions,

Pellegrini gives an 0(n2 lg n) algorithm [Pel 90]. For

general polyhedra in E 3, the problem of finding a liue

transversal was studied in [AW87], [M088], and [PS90],

where they give an 0(n3 + 2@) algorithm to find all

extremal line transversals.

Here, we reduce the problem to a more general one

involving directed lines in E3, which we solve using a

generalization of Seidel’s randomized linear program-

ming algorithm [RS 90]. We give a set of geometric

conditions under which Seidel’s algorithm works, and
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show that this problem satisfies the conditions.

We also prove a geometric theorem of independent

interest. For general polyhedra, the set of line transver-

sals can have Q(nz) connected components [Pel 90]. We

show that the set of line transversals of a set of axial ob-

jects has a constant number of connected components.

2 The Algorithm

Here we present a generalized version of Seidel’s linear

programming algorithm, and give some geometric con-

ditions under which it runs correctly in expected O(n)

time. The input to the generalized algorithm is an or-

dered set O of points and a finite set L of constraints. In

linear programming, O is Rd and Lisa set of linear half-

spaces. Every m E O and 1 c L are related by a subrou-

tine .sMe(i, m) which takes values {+1, O, –l}. We say

that m is feasible with respect to 1 when side(l, m) z O,

and m is cm 1 when side(i, m) = O. The algorithm

searches for the minimal point m which is feasible with

respect to every 1, by trying to partition L into two sets

B and L’, such that the minimum feasible m is on all

1 E 1?. A second subroutine rein(B) returns the mjn-

imum m which is on all 1 E B, if such a point exists.

Observe that for m = rein(B), every 1 E B k on m.

initialize B = {}

algorithm GLP(B, L)

if L = B then

m = rein(B) /* base case */

else

1 = RandomEiement(L)

m = GLP(B, L – {1})

if side(i, m) <0

m = GLP(B U {/}, L – {1})

return m

Now we describe a set of geometric conditions on

the sets O and L, under which this algorithm can be

applied. A path is a continuous mapping of the closed

interval [0, 1] to O. Let m., ml c O be two points. From

now on, witout loss of generality let ml > mo.

CONDITION 1: For every mo, ml E O, there is a canon-
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ical path pafh(mo, ml), which satisfies:

CROSSING CONDITION: If, for any 1 E L, sicfe(l, ml ) ~

0 and uide(i, mo) <0, then for some m 6 path(mo, ml),

6ide(J, m) = 0,

ENDPOINT CONDITION: For any m G path(mo, ml),

ml~m~w.

CONVEXITY CONDITION For any 1 E L, either

side(l, m) = O for every m E path(rno, ml) , or

side(l, m) = O for at most one m E path(mo, ml ) .

CONDITION 2: There is some constant k, such that,

for any A ~ L, if rein(A) exists, then there are at most

k constraints 1 G A such that min(A – {1}) < rein(A).

In linear programming, the canonical paths are line seg

ments, and the constant k = d.

THEOREM 2.1. For any pair of sets O and L which

uaiisjy conditions 1 and 2, algon”ihm GLP finds a

minimum m G O feasible wiih respect to every 1 ~ L, if

one ezisti, in ezpecfed time O(k!ra).

Proof. We use the notation

C(B) = {m : side(l, m) = O, V/E l?}

First we show that GLP(B, L) correctly finds the

minimum m, if one exists, such that m 6 C(B) andl

m is feasible with respect to L. This is true when

L = {}. Now wwume, for the induction, that m. =

GLP(B, L – {1}) is correct. If side(f, mo) ~ O, then

mo = GLP(B, L). If uide(i, mo) < 0, we show by

contradiction that the correct ml is on 1. If not,

then some m E path(rno, ml) is on 1 because of the

Crossing Condition, so m is feasible with respect to

1. Since both mo, ml E C(B), m must also be in

C(B) by the Convexity Condition. This m is alscj

feaaible with respect to every ? ~ L - {1}, by the

Convexity Condition. And m < ml, by the Endpoint

Condition. This contradicts the assumption that ml is

the correct GLP(B, L), so ml must be on 1. Therefore

ml = GLP(B U {/], L - {/]) = GLP(B, L). Since the

algorithm is correct for any B, itis correct for B = {},

and returns the minimum feasible m ~ O.

For the time bound, note that we are guaranteed

that at every level of recursion GLP(B, L) will be on

every 1 E B. Because of condition 2, the probability that

the removal of 1 changes the minimum is < (k -- lBl)/n.

Condition 2 also implies that it is always true that,

IBI ~ k, since an object only gets added to B if its

removal changes the minimum. Assuming that min(l?)

can be computed in time O(IBI), and that side(i, m) can

be computed in constant time, we get the recu~rrence

T(n, k)~T(n - l,k)+O(l)+#T(n - l,k - 1)

whose solution k O(k!n) [RS 90].

We will now show that finding a line transversal
of axial objects can be reduced to a geometric problem

which satisfies conditions 1 and 2.

3 Linespace

We will reduce the problem of finding a line transversal

of axial objects to a problem invcdving directed lines

in E3. Before we can state the new problem, we need

to give some definitions and describe some geometric

properties of directed lines.

Let (PS, pv, p. ) be a point in E3. An ordered pair
of distinct points determines a directed line. Linespace

is the space of directed lines in ~.

Let 1 and m be two directed lines, defined by points

(/1, /2) and (m], m2) respectively. Define side(f, m) as

the sign of the determinant

This function depends only on 1 and m and not on

the choice of the four points. Geometrically, a line m

with uign(l, m) > 0 is tangent to some helix turning

clockwise around 1 as it moves in the direction of 1, and

m with sign(l, m) > 0 is tangent to a counterclockwise

helix.

Figure 1: side(l, m) >0

sign(l, m) = O when m and 1 intersect, or when m

and 1 are parallel. A fixed line 1 divides linespace imto

three equivalence classes, where sign(i, m) has the s~e

value for all m in any class.

A continuous mapping of the closed interval [0,1]

to linespace is a path. We can think of any path in

Iinespace as a motion of a line in E3, from a position

m. to another position ml. If, for some directed line 1,

side(l, ml ) ~ O, and side(f, mo) s O, there is no motion

which takes ~ into ml without either intersecting 1 or

becoming parallel to /. This immediately gives us

LEMMA 3.1. Any path in linespace satisjies the

Crossing Condition.

A set f in hnespace is connecied if between any

two points in ~ there is a finite-length path, completely
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contained in f. For example, for a fixed line 1, the

equivalence class {m : side(l, m) > O} is connected

because you can move any line in the set into any other,

without intersecting 1.

A set L of n lines induces a partition of lines-

pace into equivalence classes, where, for each 1 E L,

sign(l, m) has the same value for every m in any class.

Usually these equivalence class are open sets. The clo-

sure of such an equivalence class is a face, by analogy

with the faces in an arrangement, The faces in linespace

induced by a general set of lines need not be connected

[CEGS 89], [Pel 90].

For a set B of directed lines, C(B) is the set of

lines which intersect, or are parallel to, all the lines in

B. For example, C’({l}) is the three-dimensional set of

lines which intersect or are parallel to 1.

4 Parameterization and Octants

Any line in E3 can be represented parametrically by

u + tw,where u is a point on the line, w is a direction

vector, and t is a scalar parameter. If we give up the

ability to represent lines normal to the z axis, we can

normalize the vectors, so that v = (z + z’, y + ~, 1),

and u = (z, y, O), where x’ and ~ are the slopes dx/d.z

and dy/dz. Thus the four parameters (x’, y’, z, y) can

represent almost any directed line m. We use the

notation x’(m) to represent the z’ parameter of line m,

and so on.

We divide linespace into octants based on the sign

of x’ and y’. Consider, without loss of generality, the

positive octant.

0 = {m: z’(m) >0 and d(m) > 0}

O is an open set. In order to be able to define the min-

imum of the octant, we consider instead a compact set

O defined using an arbitrarily small symbolic constant

~. For any m c O,

Notice that the lines in the set ~ = {m : z’(m) =

O or Y(m) = O} belong to no octant.

We assign a lexicographic ordering to the param-
eters, which imposes a total ordering on the set of di-

rected lines. We test whether two lines have the relation

m. < ml by comparing z’(me) < z’(ml ), and, if they

are the same, z’(me) < z’(ml), and so on.

For O or any compact subset of O, the most

significant parameter xl is a continuous function on the

set, & is a continuous function on the compact subset

consisting of the points with minimal z‘, and so on.

Since there is a total ordering on the points, the set has

a unique minimum.

We define the subroutine rein(B) to return the min-

imum m c C(B) n O. This is theoretically computable
in constant time; it can also be implemented efficiently.

The e constraints can be interpreted as directed axial

lines, forming a bounding box around O. We can avoid

having to intersect C(B) with a bounding box, however,

by calling different subroutines based on the number of

lines in B parallel to each axis. Intuitively, we can find

in each case m = rein(B) by considering the minimum

such m as x’ and ~ go to zero.

5 Line Transversal of Boxes and Rectangles

In this section, we reduce the problem of finding a

line transversal of a set of axial boxes and rectangles

to finding a feasible line in a linespace arrangement

induced by axial lines, using ideas from [Pel 90] and

[HT91]. The overall approach is to search the set ~

of lines on the boundary of the octants, and then each

octant in turn for a line transversal.

There is a simple O(n) algorithm to search ~. For

each axis a in turn, we search for a line transversal

normal to a. First we find a plane P normal to a which

intersects all of the objects, if one exists, by examining

each object and keeping track of the interval on a which

might intersect P. If we succeed, we try to find a line

transversal of the traces of the objects in P. This two

dimensional version of the problem can be formulated

as linear programming problem with two variables a~d

O(n) constraints. So this simple algorithm runs in O(n)

time, and illustrates that the set of line transvers~s

normal to each axis a is connected.

The rest of the paper is devoted to the algorithm

to search a particular octant for a line transversal. We

consider without loss of generality the positive octant

o.
For any axial rectangle AR, consider picking apy

arbitrary m e Q intersecting AR. We direct the liqes

supporting the edges of AR so that they form a cycle,

and m is feasible with respect to all of them. All the

lines of O which intersect the rectangle are exactly those
which are feasible with respect to all four of the directed

axial lines.

Now consider the projection of an axial box AB

onto the plane z = O along an arbitrary line m G O. For

any m, the boundary of the projected figure is formed

by the projections of the same six lines. Again we direct

these six lines so that they forma cycle and a line m E O

intersects AB if and only if m is feasible with respect

to all the directed axial lines.
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Figure 2: reduction to directed lines problem

Thus we reduce the problem of finding a line

transversal of a set of axial boxes and rectangles to eight

instances of the following problem:

PROBLEM 1: Given a set of =ial lines L, find a line
m E O which is feasible with respect to every 1 c L.

6 Canonical Paths and Connectivity

Now we show that the sets O and L in this problem

satisfy conditions 1 and 2, which means that it can be

solved by the GLP algorithm.

We have already seen that any path in linespace sai-

isfies the Crossing Condition. To establish the Convex-

ity Condition and the Endpoint Condition, we define a

canonical path path(mo, ml) between any nql, ml 60.

There are two kinds of canonical paths.

If rno and ml are contained in a common plane P,

then they intersect at some point p E P (when rb

and ml are parallel, we can think of p as a point at

infinity). Let N be the pencil of lines in P through p.

N intersects O in a single connected component, which

contains both m. and ml. We define path(rw, ml) as

the clmed segment of that pencil bounded by rno and

ml. This is a planar canonical path.

If mo and ml do not lie in a common plane, we

can construct three non-intersecting axial lines {a, b, c}

through them, where a, b and c are parallel Ito the z, y

and z axes, respectively. The set H = C({a, b, c})

of tines through a, b and c is one set of ruling lines

on a hyperboloid of one sheet, which we shall call a

hyperboloid of lines.

The intersection of this hyperboloid of lines with

the positive octant O, that is, the part of it where both
slopes a? and y’ are positive, is a connected set of lines.

To make all this more credible, we define If ~explicitly.

Leta=(z, ay, az, 1) be the line parallel tcl the z axis

Figure 3: a hyperboloid of lines

with y = av and z = ai. A line (z’, #,z, V) E C({a}) if

o aY a= 1

1 av az 1 =
z v 01 0

Z+z’ y+y’ 1 1

Evaluating this determinant gives us an equation with

coefficients dependent on the constants % and ag. We

get similar equations from the lines b = (b=, y, b,, 1) and
c = (C=, Cv, Z, 1), producing a system of three equations

in the four unknowns (z’, y’, z, y).

ay+a.(y’)-v=O

b= -bz(z’)+z=O

c=(#) + Cy(y) + (2/ – yz’) = o

We can solve this system to express ~,z,and y in terms

of z’. We find that the two direction parameters ?re

related by

(6.1)
(ay - cY)z’

ti = (b= - c=)+ (bz – az)z’

For any m 6 H t7 O, z’(m) and #(m) must satisfy this

equation. For convenience, we write this

(6.2) d=-=-
C2+ z’

Clearly y’ is defined for any z’, so without loss of

generality, let m E lf with z’(ml) z z’(m) ~ z’(me).

At both mo and ml, the parameter y’ z c, so the sign of

c1z’ must be equal to the sign of cz + z’. If c1 >0, then

they are both positive at both ~ and ml. Since CIZ’

and C2+ z’ are linear, they must also both be positive at

any m inbetween rno and ml. So z’(m) >0, i(m) >0,

and m E O.

If c1 <O, asymmetrical argument shows again that

any m E O. Thus H fl O is connected. We define
the canonical path path(mo, ml ) as the segment of lf

bounded by mo and ml. This is a hyperbolic canonical

path.
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Figure 4: m has to be in O

LEMMA 6.1. All canonical paths in O satisjy the

Conveziiy Condition with wspect to a sei L of azial

lines.

Proof. Recall that the Convexity Condition states
that for any mo, ml E O, and any axial line 1, ei-

ther path(w, ml) ~ C({l}) or path(mo, ml) intersects

C({l}) in at most a single line.

Either path(rno, ml) is planar or hyperbolic. In

the first csse, an ruial line 1 either lies in the plane P

mntaining the pencil N, or intersects it in a point p, or

it fails to intersect it at all. If 1 lies in P,, every m G N

is also in C({l}). If p is the common point of the lines

of N, again every m E N is also in C({i) ). Otherwise

only the single Iine m E N containing the point p is in

C({l}), and m may or may not be in path(mo, ml). If
1 fails to intersect P, then N n C({l)) is empty.

In the second cose path(rno, ml) is a segment of the

hyperboloid of lines H = C({a, b, c}). Assume, without

10SSof generality, that 1 is parallel to a, so that they lie

in some common plane P. The lines b and c intersect

P, and, since b and c are disjoint, they do so in two

distinct points. So there is one line m g P which is

both in H and in C({l}), and again m may or may not

be in path(mo, ml),

In any case, there is at most one line m ~

path(mo, m~) n C({/}).

This leads to

THEOREM 6.1. Eveyface in O induced by a set of

azial lines is connected.

Proof. A face f is connected if there is some path,

completely contained in f, between any two points

~,ml G j. We establish that path(mo, ml) is such a
path. If there were some point m c path(mo, ml) such

that m # ~, then for some axial line 1, side(i, m) <0

while side(l, mo) ~ O and side(f, ml ) ~ O. But then

path(mo, ml)n C({f}) must consist of at least two lines,

which is impossible. So path(mo, ml) ~ f and ~ is

connected.

The set of feasible lines m E O is a face induced by

the set L of axial linea, so it is connected. Since there are

only eight octants, and the set of line transversals in the

‘o

m1°

Figure 5: this can’t happen

set ~ has a constant number of connected components,

we have:

COROLLARY 6.1. The set of directed line transver-

sals of azial objects has a constant number of connected

components.

Theorem 6.1 can also be interpreted as the solution

of a three-dimensional motion planning problem.

PROBLEM 2: Given a set of obstacles consisting of n

axial lines in O, and two lines mo, ml c O, compute a

collision-fwe motion, if one ezists, from mo to ml.

In O(n) time we can determine if m and ml are in

the same face. If so, the canonical path path(mo, WI)

defines a collision-free motion, and can be computed in

constant time. If not, no such motion exists.

7 Remaining Conditions

LEMMA 7.1. All canonical paths in O satisjy the

Endpoint Condition.

Proof. Recall that the Endpoint Condition states

that for any canonical path pafh(mo, ml), with ml >

mo, if m ●path(mo, ml), then ml ~ m > ~.

First we show that every canonical path either has

the same value everywhere for z’ or has at mast one line

with any particular z’. Ifpath(mo, ml) is planar, either
z’(m) is the same for every m c path(rno, ml), or, for

any ~, there is at most one m E path(~, ml) such that

z’(m) = p. On a hyperbolic path, each ~ determirp

a unique z’ in O, so for any ~, there is at most ope

m c path(mo, ml) such that z’(m) = /3. We can make

a similar argument for the other parameters.

Now assume, for the purpose of contradiction, that
path(mo, ml) does not satisfy the Endpoint Condition.

Since z’ is the moat significant parameter, either z’

is constant along paih(mo, ml), or there is some m E

path(mo, ml), such that z’(m) > z’(ml) > z’(me). But

Z’ is continuous along pat h(mo, ml), so there must be

another point m’, in between m and ~, with z’(m’) =

z’(ml ), which is impossible.

It remains possible that z’ is constant along

path(mo, ml ). But since all the parameters cannot be
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constant, every path(rno, ml ) must satisfy the Endpoint

Condition.

Finally, we need to establish that the sets (O and L

satisfy Condition 2.

LEMMA 7.2. For any A ~ L, if rnirz(A) exists,

then there are at most 4 axzal hnes 1 G A such that

min(A – {1}) < rein(A).

Proof. Let B = {/ :min(A - {1}) < rnin(A)}. If

IBI <4, the lemma is trivially true. Assume IBI ~ 4,

and consider any B’ ~ B with IB’ I = 4. At least

two 1 6 B’ have to be parallel to the same axis, by

the pigeon-hole principal. These two define a plane P

which must contain m. The other two must intersect P

in two distinct points, otherwise one could be removed

from B’ without changing min(B’). These four define

a unique line m, such that C(B’) n O = {m}, so

min(B’) = m. Any other line 1 G A must Ibe on m,

otherwise C(A) n O = {} and rein(A) is undefined. %

rein(A) = m. The removal of any 1 E A such that 1 @ B“

doea not change the minimum, and B = B’.

This concludes the proof that the sets O and L

satisfy conditions 1 and 2. This means that a line m c O

feasible with respect to a set L of directed axial lines

can be found by the Generalized Linear Programming

algorithm, which in turn gives an O(n) expected time

algorithm to find a line transversal for a set of axial

boxes or rectangles.
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