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Abstract

We present a closed-form solution for the symmetrization problem, solving for the optimal deformation that rec-

onciles a set of local bilateral symmetries. Given as input a set of point-pairs which should be symmetric, we first

compute for each local neighborhood a transformation which would produce an approximate bilateral symmetry.

We then solve for a single global symmetry which includes all of these local symmetries, while minimizing the de-

formation within each local neighborhood. Our main motivation is the symmetrization of digitized fossils, which

are often deformed by a combination of compression and bending. In addition, we use the technique to symmetrize

articulated models.

Categories and Subject Descriptors (according to ACM CCS): http://www.acm.org/class/1998/ I.3.5 [Computer
Graphics]: Computational geometry and object modeling—I.3.8 Applications

1. Introduction

Symmetrization is an important way of correcting and beau-
tifying captured data, and it is a useful modeling operation
for applications such as remeshing, deformation, hole filling,
and texturing. It is particularly appropriate for paleontology,
where it has long been used as a way to estimate the original
shape of fossils, and to restore their missing parts.

Detecting local symmetries in 2D images or 3D shapes
is a difficult problem, with a large literature, eg. [Ata85,
ZPA95, SS97]. Recent work on the symmetrization prob-
lem in computer graphics [MGP07, GPF09] builds on
many recent advances in symmetry detection for three-
dimensional models including [MGP06, PSG∗06, KCD∗03,
SKS06,MSHS06,XZT∗09, RBBR10, BBW∗09, PMW∗08].
We define symmetrization, as opposed to symmetry detec-
tion, as the problem of blending together a given set of local
symmetries to produce a globally symmetric output model.

In this paper we treat only bilateral symmetry. Sym-
metrization in this case means deforming the model so that
all of the local planes of bilateral symmetry coincide. We
give a simple least-squares formulation for this problem. Our
overall system uses this formulation to symmetrize objects
for which the local symmetries are obscured by additional
transformations. Two applications are shown in Figure 1.
First, we symmetrize an originally bilaterally symmetric ob-

ject which has been subjected to local affine transformations
as well as a free-form deformation which has destroyed the
symmetry. Second, we put articulated models into a sym-
metric pose; here the additional transformations are the joint
rotations.

The first application was motivated by the symmetriza-
tion of fossils, which is an important question in paleontol-
ogy. As organic matter deteriorates and is replaced by min-
erals during fossilization, an animal’s bones are deformed,
often losing symmetry. Paleontologists are interested in re-
constructing the original shapes of these bones, particularly
skulls. The reason for this is that almost all of our informa-
tion on how extinct species are related to each other, and to
existing species, and on the appearance and behavior of ex-
tinct species, comes from the analysis of the shapes of bones.
Many fossil skulls are somewhat “flattened” or “deflated", as
well as bent; Figures 1 and 5 show examples. We model this
as local affine transformations.

1.1. Overview:

A schematic overview of the algorithm is shown in Figure 2.
Our formulation takes as input a set of corresponding pairs of
points which should be bilaterally symmetric in the output.

Step 1: First, for each point-pair we estimate a transforma-
tion which would produce approximate local bilateral sym-
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Figure 1: Some results; inputs are gray and outputs are gold. The input cow, center left, is bent and then compressed by an

affine transformation. We remove the compression in the central cow, making each neighborhood locally symmetric, and then

blend these local deformations to get the globally symmetric cow on the right. Our main motivation is applying this process to

restore approximate symmetry of deformed fossils, such as the hominid cranium on the left. We apply an analogous two-step

process to articulated models, right.

metry in its neighborhood; for “standard" symmetrization
[MGP07,GPF09], step one would be omitted. Our two appli-
cations require different first steps. For articulated models,
we find the minimum rotation which makes the two neigh-
borhoods approximately bilaterally symmetric. For com-
pressed models, we compute the minimum local stretch that
corrects for affine compression while making the two lo-
cal neighborhoods bilaterally symmetric. This formulation
is based on a recent paper by Kazhdan et al. [KAG∗09].

Step 2:Next, these local transformations are applied and the
local symmetries are combined into a deformation which
makes the input pairs exactly symmetric across a single,
global plane, while preserving shape in the local neighbor-
hoods as well as possible in a least-squares sense. To for-
mulate this as a least-squares problem, we use a heuristic
to estimate the optimal rotation Qi which makes each lo-
cal neighborhood parallel with the y-z plane. The algorithm
is controlled by three parameters specifying the size of the
neighborhoods for estimating the local deformation, the size
of the neighborhoods to be preserved during symmetriza-
tion, and a stiffness factor controlling how strongly the dis-
tances between point-pairs are preserved.

2. Prior Work

2.1. Symmetrization:

Least-squares solutions play various roles in existing sym-
metrization algorithms. Mitra et al. [MGP07] demonstrate
impressive results using a method based on clustering the lo-
cal symmetry planes. The planes within a cluster are merged
by solving for the perfectly symmetrical set of point-pairs
which minimizes the least-squares distances to the original
positions. Symmetrization of the object is then achieved by

iteratively merging local clusters. Our method (using just the
second step) gives similar results (eg. Figure 7), via a single
global least-squares optimization.

Like us, Golovinskiy et al. [GPF09] give a global least-
squares formulation for symmetrization. Their cost function
is a weighted sum combining symmetry error with a defor-
mation error based on maintaining the vectors between pairs
of adjacent vertices [PMG∗05], with the distances from the
original vertex positions used as a regularization term. This
symmetrization step is alternated with the detection of ad-
ditional point-pairs in an ICP-like framework. Their defor-
mation error measure is not rotation-invariant, so that their
method is only applicable to inputs in which the original lo-
cal symmetry planes are not too different. This drawback is
addressed in our method by including the rotations Qi in the
global optimization.

In summary, our second step produces global symmetriza-
tion, with results comparable to those of Mitra et al. but us-
ing a formulation as simple as that of Golovinskiy et al. The
introduction of the first step is a new contribution, that allows
us to handle models in which the symmetry is obscured by
another transformation such as affine deformation or articu-
lation.

Our approach is related to the Frenet frames deformation
method of Lipman et al. [LSLCO05]. They break the com-
putation of a deformation meeting a given set of constraints
into two least-squares problems: one solving for rotations,
and the other for displacements, between adjacent vertices.
In our case the rotations Qi are determined by the symmetry
constraint, and we only solve for the displacements.
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Figure 2: Schematic sketch of the algorithm in 2D. We assume that the original object, a vertical rectangle, has been deformed

first by bending and then by an affine compression (the green arrow), as shown in (a). To recover the original shape, we identify

corresponding point-pairs on the surface (b), and compute weighted centroid associated with each point-pair (shown as white

dots in (c)). For each pair, we estimate a non-orthogonal coordinate frame from their local neighborhoods, as shown in (d).

We compute the minimal stretch required to orthogonalize each local frame. After stretching, we rotate all of the local frames

so that the estimated plane of symmetry is parallel to the y-axis. Finally, we integrate these local stretches and rotations in a

global solve for the point-pairs on the output model. The rest of the surface is transformed using a thin-plate spline. (e) shows

the result of our algorithm on the input point-pairs shown in (b).

2.2. Application:

Symmetrization has long been a subject of interest in pale-
ontology (references date back to the 1840’s). The method
we use for estimating the local symmetrizing affine trans-
formation is a weighted version of a method recently pro-
posed by Kazhdan et al. [KAG∗09] for symmetrizing an en-
tire shape, which in turn is based on a well-known method
in paleontology [ZPdL06]. These approaches “correct" for
compression by stretching the fossil along the axis in which
it appears to be compressed. This intentionally increases the
volume while symmetrizing. A somewhat different closed-
form solution was proposed by Motani [Mot97]. Another
recent method proposed in the paleontology literature also
handles free-form bending as well as affine compression, us-
ing a series of optimizations [ONNI06]. This method again
is based on minimizing the distance to the original points,
so that large deformations would not be handled well. More
constraints can be applied when multiple specimens are all
deformed by a similar force (eg. many trilobites in a rock,
multiple vertebrae from one specimen) [SS07].

3. Method

We first describe the second step of our method, which com-
bines local symmetries to do “standard" symmetrization. We
then go on to discuss the computation of the two kinds of lo-
cal transformations (stretching and rotation) in the two vari-
ants of the first step. In both cases we estimate the smallest
transformation which establishes an approximate local sym-
metry.

3.1. Global symmetrization

The input to our second global optimization step is a set
of 3-tuples, each encoding a bilateral symmetry on the two
surface neighborhoods surrounding a point-pair. A tuple
((pi,qi),ni, (Mpi ,Mqi)) includes the point-pair (pi,qi), the
normal ni of the local plane of mirror symmetry, and a pair of
affine transformations (Mpi ,Mqi) to be applied to the neigh-
borhoods of pi and qi in order to approximate the local sym-
metry. For “standard" symmetrization, (Mpi ,Mqi) approxi-
mate to identity.

The vector field formed by the ni must be consistently ori-
ented; this is simple in our examples (we choose the normal
closer to the negative x-axis), but for more difficult inputs a
more sophisticated method (eg. [HDD∗92]) could be used.
For each ni, we first compute a rotation matrix Qi, which
takes ni to the negative x-axis. There are many possible such
rotations; our heuristic is to choose the smallest one.

Our goal now is to solve for new positions ri, si of the
point-pairs, symmetric across the y− z plane, while keeping
the vectors connecting neighboring points on the surface as
similar as possible to the corresponding vectors on the trans-
formed input. We express this by minimizing the following
functional:

∑
i

∑
j

φi, j[(ri− r j)−QiMpi (pi− p j)]
2

+φi, j[(si− s j)−QiMqi(qi− q j)]
2

+αφi, j[(ri− s j)−Qi(pi− q j)]
2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



D. Ghosh, N. Amenta & M. Kazhdan / EG Closed-form Blending of Local Symmetries

+αφi, j[(si− r j)−Qi(qi− p j)]
2

with constraints:

ri,x = −si,x, ri,y = si,y, ri,z = si,z

Here, φi, j are Gaussian weights on the connection be-
tween points i and j:

φi, j =min

{

e
−d2(pi−p j )

h2 ,e
−d2(qi−q j )

h2

}

(1)

These weights define the neighborhoods around each of
the pi,qi pairs based on the Euclidean distance, d(). We em-
pirically select a different width h for each model, which is
approximately 5 times the average distance between a land-
mark and its closest neighbor. The constant α is usually 0.01;
the last two terms of the functional ensure that the two sides
of the object are spaced apart from each other correctly. We
omit Mpi and Mqi from the last two normalization terms. In
the application in which they are two different rotations, the
vector (Mpi pi −Mqiqi) changes by an arbitrary translation,
depending on where the center of rotation is chosen (notice
that this is not an issue in the more important first two terms
of the functional). We could choose the center of rotation so
as to minimize the change in distance between pi and qi; in-
stead we use this simpler approximation of maintaining the
original vector.

We base the weights on the larger of the two distances
d(pi, p j),d(qi,q j); this is again a heuristic. With inputs like
the dragon in Figure 7 in mind, we assume the side with the
larger distances is the “correct" one.

The normal equations for this functional form three linear
systems, for x,y and z. We substitute ri for si, according to
the equality constraints. Solving these linear systems gives
us the points ri. Finally, we use a thin-plane spline warp to
move the rest of the mesh into the new symmetric position
consistent with the placement of ri.

3.2. Local symmetries for affinely deformed models

In the first step of our system, we compute the matrices
Mpi ,Mqi for inputs which are deformed by compression as
well as bending (eg. fossils). Within each local neighbor-
hood, we want to estimate the smallest stretch that makes
the resulting neighborhood locally symmetric. We use a
the weighted version of the recent method of Kazhdan et
al. [KAG∗09]. There are two steps: first we estimate a tar-
get plane H∗, which should be transformed into the plane of
symmetry by our transformation, and then we compute the
minimum stretch such that the neighborhood does indeed be-
come symmetric across H∗.

Weighted neighborhoods Pi,Qi around each pi,qi are de-
fined by Gaussian weights θi, j , similar to the φi, j in Equa-
tion 1. To shorten notation we will write P,Q= Pi,Qi for the
rest of this section.

To fit a target plane H∗ to (P,Q), we use a “well-known"
idea in symmetry detection [OO96]. A point set is isotropic
if the principal components of its covariance matrix are
all unit vectors. Consider a bilaterally symmetric point set
P′ ∪Q′, and an affine transformation A such that (P,Q) =
(AP′,AQ′) is no longer bilaterally symmetric (ie. A includes
a shear or non-uniform scale). An affine transformation T for
which TP∪TQ is isotropic restores the bilateral symmetry
(although in general (TP,TQ) 6= (P′,Q′)). We will find such
a matrix T and then the best plane of symmetry H. The tar-
get plane of symmetry for (P,Q), back in the original space,
is set to H∗ = T−1H. T can be computed from the weighted
covariance matrix of P∪Q. Define t as the center of mass of
P∪Q. The covariance matrix is

C = ∑
j

θi, j((p j− t)(p j− t)T +(q j− t)(q j− t)T ) (2)

We set T = C−1/2, where C−1/2 is a matrix such that
C−1/2C−1/2 =C−1; such a matrix can be obtained by com-
puting the SVD factorization ofC and replacing the diagonal
(eigenvalue) matrix with the diagonal matrix of the square-
roots of the reciprocals.

Next, we find the optimal plane of symmetry H with nor-
mal n for the bilaterally symmetric point set (TP,TQ), via
weighted least-squares, as in [MGP07, ONNI06, KAG∗09].
Finally, we transform H and n back into the space of (P,Q),
that is, we set H∗ = T−1H and n∗ = T−1n. In general, H∗

will not be orthogonal to n∗ (as in Figure 2), because T−1

reintroduces the non-homogeneous part of the affine trans-
formation A.

Now that we have H∗, we want to find a stretch that we
can apply to the coordinate frame that will make n∗ perpen-
dicular to H∗. There are many such symmetrizing stretches,
so we seek the one with minimum stretching factor γ. The
direction vector v of this minimal symmetrizing stretch lies
in the plane spanned by n∗ and the normalized projection m

of n∗ onto H∗:

v = (n∗−m)/2

γ = tan(β/2)

where β is the angle between vectors n∗,−m.

Let Si be the matrix that expresses this stretch. In the
global step we set (Mpi ,Mqi) = (Si,Si), that is, we apply Si
to both sides in the same way to achieve approximate bilat-
eral symmetry, and we set ni = Sin

∗, the normal of the plane
of symmetry after the stretch.
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3.3. Local symmetries in articulated models

An articulated model has joints, which can bend or ro-
tate, so that neighborhoods on corresponding parts of the
model that are symmetric when the model is in a symmet-
ric pose (eg. a person’s two hands) are not bilaterally sym-
metric in an arbitrary pose. For each neighborhood (Pi,Qi),
we find the rotation Zi with minimal angle, such that using
(Mpi ,Mqi) = (Z−1

i ,Zi) makes P and Q bilaterally symmet-
ric. The translation of the two neighborhoods is handled by
the global symmetrization in Step 2.

We begin by translating the two point sets Pi,Qi so that
their two centroids are both located at the origin; note that
rotation and reflection are commutative on a point-set cen-
tered at the origin. We would like to solve for the rotation R

and reflectionU minimizing:

∑
i

‖pi−URqi‖
2.

Denoting by A the antipodal map, A(p) =−p, we have:

∑
i

‖pi−URqi‖
2 = ∑

i

‖pi− (AU)RA(qi)‖
2.

If we set V to be the rotation V = (AU)R, we get:

∑
i

‖pi−URqi‖
2 = ∑

i

‖pi−V (Aqi)‖
2.

We can solve for this rotation V that optimizes the align-
ment error between the sets pi and Aqi (eg. using Horn’s
algorithm [Hor87]). Although V is unique, it does not mean
that there is only one rotation R which optimizes bilateral
symmetry. If we set D to be a rotation by 180 degrees about
any axis, then settingU = AD and setting R= DV , we get:

∑
i

‖pi−V (Aqi)‖
2

= ∑
i

‖pi−AADDV(Aqi)‖
2

= ∑
i

‖pi−AUR(Aqi)‖
2

= ∑
i

‖pi−URqi‖
2

That is, for any choice of D, we can find a rotation R and
a reflection U minimizing the symmetry error. Again, we
would like to choose D so that R = DV is as close to the
identity as possible (i.e. so that we rotate the points qi as
little as possible to align them with the pi).V is a rotation by
an angle of 0 ≤ θ ≤ π about some axis a. So D should also
be chosen as a rotation about a, and the minimal rotation

Figure 3: Point-pairs are place on our input models using

the interactive Landmark software. The input points do not

need to be dense, nor do they need to be uniformly spaced.

The symmetrized result (just Step 2) is on the right.

R= DV is a rotation around a of angle γ = θ−π. Denoting
Zi to be a rotation by angle γ/2 about a, we set (Mpi ,Mqi) =
(ZT

i ,Zi), and ni to be the normal to the plane of reflection
associated withU .

4. Results

4.1. Input generation

We take as input a set of point-pairs which are intended to
be symmetric on the output surface. In our examples we
indicated these input correspondences interactively, using
our Landmark software, which was designed for this pur-
pose [WAA∗05]. Landmark allows us to efficiently indicate
dense correspondences along curves and patches defined by
a small set of user placed points, as shown in Figure 3. Be-
cause we interactively generate correspondences, we can use
imperfect meshes that have holes, and may not be manifolds;
this is important in applications. Fossils are also often bro-
ken or deformed in ways which make automatic symmetry
detection difficult even when given a clean mesh. Interac-
tion also gives an expert the freedom to indicate features that
might not be evident in a digitized fossil, but are visible on
the original specimen or are characteristic of its species.

4.2. Results

Symmetrizing two-dimensional data sets has been a topic of
interest in paleontology for more than 150 years, and trilo-
bites like the one in Figure 4 are a classic test case [Sal64,
CAC05]. Based on the assumption that the fossil underwent
an affine compression, the symmetrization stretches the ob-
ject, intentionally increasing the area.

We have applied our combined affine stretching and
straightening method to digitized 3D models of several fos-
sil crania. Crania are particularly important in studies of pri-
mate evolution, including the evolution of hominids like our-
selves. The model in Figure 1 is from a cast of the Homo
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Figure 4: Stretching the image of a trilobite to restore sym-

metry, a classic example from paleontology. Many specie of

trilobites flourished during the Paleozoic era; they are dis-

tinguished by the shapes of their fossilized exoskeletons.

Figure 5: Both affine stretching and bending are necessary

to approximately symmetrize this three-dimensional cranium

of Paradolichopithecus, an extinct Old World monkey. The

pattern in which the more rigid jaw is bent with respect to

the flattened back of the skull is typical of fossil crania.

habilis ER 1813 fossil, a possible human ancestor. The ap-
parent compression in the fossil is removed by the stretching
in Step 1 of our method. Figure 5 shows the symmetrization
of a fossil monkey skull from below, showing a typical pat-
tern of distortion which is also evident in the Homo habilis

cranium.

We are able to symmetrize articulated models as shown
in Figures 1, and 6. In Figures 3, 7, 8 we present results
on models that are locally bent. Treating them as articulated
models, Mi approximates the identity. We compare one of
our results with that of Mitra et al. [MGP07] in Figure 7,
observing very similar results. Both seem shorter than one
would expect, as the dragon does not lengthen while un-
winding. We believe that both our user-indicated local sym-
metries and the automatically detected local symmetries fail
to capture the “true" local symmetries near the sharp curves.

Figure 6: Result (right) of symmetrization of an articulated

object

Figure 7: The result of Mitra et al. is on the left, the input at

the center, with our symmetrized result to the right.

Finally, we use our method to fill in missing or erroneous
regions. This is important in paleontology, as illustrated by
the example in Figure 9. We interactively attached the miss-
ing left canine using a mesh editing tool, to provide an ap-
proximate mesh for the large missing feature. We then sym-
metrize the model using our system, giving the canine on the
correct right side a weight of one and the canine on the left
a weight of zero. The landmark pair weights, α is also set
to zero for missing regions. Using the symmetrization step
alone, we removed the broken region near the chin of the
Igea model in Figure 8.

5. Limitations and discussion

Table 1 shows the computation time in seconds, measured
on an Intel dual-core 2.4GHz with 2GB RAM. These tim-
ings do not include interactively indicating point-pair cor-
respondences. Even using the Landmark interface, this is
time consuming. Automatic detection of symmetric corre-
spondences would make this easier, although in paleontol-
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Figure 10: Results of using different number of correspondences. (a) is the asymmetric input pose. Results of symmetrization

using 22 (b), 265 (c) and 606 (d) point correspondences.

Figure 8: Figure on the right shows Igea after symmetriza-

tion. Our technique is able to fix the broken region on her

chin, by indicating the broken region as “missing", and us-

ing the symmetrized points from the other side.

Figure 9: Left shows a scan of a cast of Victoriapithecus

macinnesi, the oldest known cranium of an Old World Mon-

key. We symmetrize the model, and add the missing fang, by

first using a mesh editing tool to add a fang, and then sym-

metrizing it with the one that is present (right).

ogy and archeology applications it would still be important
to retain the option of user interaction at every step. Symme-
try detection methods in computer graphics so far have not
addressed the automatic detection of bilateral symmetries
masked by non-uniform affine transformations. In computer
vision, however, the detection of the symmetries of 3D ob-
jects in perspective images leads to a very similar problem,
and there is a well-developed literature on so-called skew-
symmetries [VGMP96].

Table 1: Table showing the time taken to symmetrize, after

placing the required set of point-pairs on a model. The num-

ber of user-placed points on one side of the model is shown

in the second column, and the number of automatically gen-

erated points (based on user-placed curves and patches) is

in the third.

Model User-placed Auto Time (in secs)
Bunny 60 130 6.61
Igea 69 191 7.6

Dragon 183 761 173.5
Hominid 72 448 38.5
Paradol 106 616 90.8
Vic 95 148 8.41
Ben 161 774 109.48

Armadillo 181 425 63.45
WoodDoll 115 252 18.4

Our method includes the heuristic choice of the Qi as the
smallest rotations taking each local plane of symmetry to
the vertical plane. A method with no heuristics, so that the
result would be guaranteed to minimize deformation, would
be more satisfying. Simultaneously minimizing the Qi and
the the positions (ri, si) would have to be formulated as a
non-linear problem, as far as we can see, which might have
local optima. An alternative research direction might be to
find better a better heuristic.

There are three weighting parameters, the standard devia-
tions of the Gaussian weight functions φ and θ, and the pa-
rameter α controlling the weight of connections between the
pi and qi. These can be set so as to produce incorrect re-
sults. In particular, when φ is too large the distances between
points which are not adjacent on the surface are preserved,
so that bent models are shortened by the symmetrization. But
φ also has to be large enough so that neighboring points are
connected. In Figure 10 we reduce the number of correspon-
dences, so that φ has to be increased to maintain connectivity.
When the number of correspondences becomes very small,
the result is shrunken and the shape is not well-preserved. A
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better way of reflecting the shape using a weighted graph on
surface samples would allow sparser sampling.

We currently assume that any non-homogeneous affine
deformation is due to compression. A volume-preserving
assumption might be a better choice in other applications.
Our overall framework might also be applied to morphing
between differently-shaped objects and to animating articu-
lated models by generating intermediate poses.
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