
Blocked Randomized Incremental Constructions

Nina Amenta and Sunghee Choi y

Technical Report number TR-02-54
University of Texas at Austin

Abstract

Randomized incremental constructions are
widely used in computational geometry,
but they perform very badly on large data
because of their inherently random mem-
ory access patterns. We de�ne an inser-
tion order which removes enough random-
ness to signi�cantly improve performance,
but leaves enough randomness so that the
algorithms remain theoretically optimal, or
nearly so.

1 Introduction

A look at recent textbooks [1, 2] shows that
randomized incremental algorithms are a
central part of computational geometry.
Many randomized incremental algorithms
construct geometric structures; one of par-
ticular importance is the randomized incre-
mental construction of the Delaunay trian-
gulation of a set of input points. The algo-
rithm is simple to state: insert the points
into the triangulation one by one in ran-

yComputer Sciences Dept., Austin, TX 78712,

USA. Supported by an NSF CAREER award and

an Alfred P. Sloan Foundation Research Fellowship.

Contact: amenta,sunghee@cs.utexas.edu

0

dom order, updating the triangulation at
each insertion. It is also worst-case op-
timal and (compared to the alternatives)
easy to implement robustly. This accounts
for its importance in practice; there are sev-
eral robust and eÆcient implementations
for 3D Delaunay triangulation, including
Clarkson's hull, the CGAL Delaunay hi-
erarchy function, and Shewchuk's pyramid.

Given these excellent programs for three-
dimensional Delaunay triangulation, it is
natural to want to apply them to the large
data sets which arise in applications such
as mesh generation or surface reconstruc-
tion. But the optimality of randomized
incremental algorithms is based on access-
ing the geometric data structures randomly,
and random access to large data structures
works very poorly with modern memory hi-
erarchies. Most virtual memory systems
cache recently used data in memory, on the
assumption of locality or reference, that is,
that recently used data is likely to be used
again soon. Randomized incremental pro-
grams violate this assumption, and soon af-
ter the data structure exceeds the size of
physical memory, thrashing occurs and the
program grinds (audibly!) to a halt [3].

A simple �x is to insert points in an or-
der which improves the locality of reference,
while preserving enough randomness to re-
tain the optimality of the algorithm. In
section 2 we present such an insertion or-
der, which we call blocked randomized. We
prove in sections 3, 4 that this order gives

an optimal algorithm for 3D Delaunay tri-
angulation in the worst case, and reamins
nearly optimal under less severe but realis-
tic assumptions about the output complex-
ity. Using a blocked randomized ordering
with pyramid, we give experimental evi-
dence in section 5 that we can indeed solve
much larger problems than we could before.
We conclude in section 6 with a discussion
of when this analysis is applicable, in par-
ticular to the trapezoidation of sets of seg-
ments in the plane, and we point out some
directions for future work.

The development of randomized incre-
mental algorithms and their analysis was
a major project of computational geome-
try in the late eighties and early nineties,
as described in textbooks [2, 1] and sur-
veys [4, 5]. We touch on a few relevant
highlights. A classic paper by Clarkson
and Shor [6] showed that the randomized
incremental paradigm could be applied to
many problems, and gave a general anal-
ysis. Mulmuley [7, 8] and and Clarkson,
Mehlhorn and Seidel [9], among others, ex-
tended this theory. Seidel [10], harking
back to an an idea in an early paper of
Chew [12], popularized a simplifying idea
called backwards analysis. Unfortunately
we cannot see how to apply backwards anal-
ysis when using a blocked randomized in-
sertion order, so we build on results from
the earlier work, in particular the bounds
on � k-sets from Clarkson and Shor, and
Mulmuley's idea of probabilistic games. We
should also mention a nice paper by Dev-
illers and Guigue [17], similar in spirit to
this one, which analyzed the tradeo� be-
tween on-line and randomized insertion or-
der.

The traditional approach to thrashing is
to develop explicit out-of-core algorithms,
generally using divide-and-conquer. Unfor-
tunately the divide-and-conquer paradigm
seems to be much less practical than the
randomized incremental paradigm in com-
putational geometry; an exception is the

practical parallel 2D Delaunay triangula-
tion algorithm of Blelloch, Miller, and Tal-
mor [13]. Their approach, however, does
not immediately apply to either three-
dimensions or out-of-core computation.

2 The insertion order

We de�ne a blocked randomized insertion

order for a set P of n input objects, which
we shall call points. We partition P arbi-
trarily into blocks; there can be any number
of blocks, and they may be of di�erent sizes.

The insertion order of the n points is then
determined as follows. There are lgn + 1
phases, beginning with phase zero. In each
phase j, we visit all of the blocks in any ar-
bitrary order. Within each block, we visit
the uninserted points in the block in ran-
dom order, and select each uninserted point
for insertion with probability 2j=n. Since
we examine O(n) points in each of O(lgn)
phases, the total time spent determining
the insertion order is O(n lgn).

Of course in practice we choose a block-
ing scheme which improves locality of ref-
erence; blocks correspond to contiguous re-
gions of three-dimensional space, eg. the
cells of a kd-tree. We also visit the blocks
in an order chosen to improve locality of
reference.

The intuition is that in the early phases,
few if any points are inserted per block,
while in the last phase, all uninserted points
in a block are inserted in random order.
So the insertions in the early phases tend
to be sprinkled nearly randomly across all
the data, producing a nicely balanced data
structure, while in the later phases they
are clustered within blocks, accessing local
regions of the data structure mostly sepa-
rately.

3 Key Lemma

We analyze the use of a blocked inser-
tion order in the context of the incremental
construction of a three-dimensional Delau-
nay triangulation. There are O(n4) possi-

ble tetrahedra determined by choosing four
points of P as the vertices. Now consider an
incremental construction of the Delaunay
triangulation. Not every possible tetrahe-
dron appears as part of one of the interme-
diate triangulations, or in the �nal triangu-
lation. We begin our analysis by estimat-
ing the probability that a possible tetrahe-
dron does in fact appear during a run of the
blocked randomized incremental construc-
tion.

We will use some terminology due to
Mulmuley. Consider a tetrahedron � with
four points in P as its vertices, known as
its triggers, and with s other points of P
contained in its circumsphere, known as its
stoppers. Tetrahedron � appears in some
Delaunay triangulation if all of its triggers
are selected for insertion before any of its
stoppers. The probability that � appears
during the construction thus depends on s;
if jsj = 0, for instance, � belongs to the �nal
Delaunay triangulation and the probability
that it appears is one. It also depends on
the particular blocked randomized insertion
order, since the order in which triggers and
stoppers are considered for insertion is not
random.

Observation 1 The blocked randomized
insertion orders for which � is most likely

to appear are those in which

1) the blocks containing the triggers are dis-

joint from the blocks containing the stop-

pers, and

2) in every phase, the blocks containing all

of the triggers precede the blocks containing

all of the stoppers in the iteration through

the blocks.

We upper-bound the probability that � ap-

pears by assuming this worst case.

Tetrahedron � appears in or before round
j if all triggers are chosen in or before round
j, and no stopper is chosen in or before
round (j � 1). We have:

Pr[trigger t chosen in or before round j] �

jX
i=0

2i

n
�

2j+1

n

Hence

Pr[all four triggers chosen in or before round j] �

2j+1

n

!4

Meanwhile, for the stoppers:

Pr[no stopper chosen in or before round j�1] �

Pr[no stopper chosen in round j � 1] =
1�

2j�1

n

!s

Combining these two bounds, and using the

inequality
�
1� 1

r

�r
� (1=e),

Pr[� present in round j] �

2j+1

n

!4
1�

2j�1

n

!s

�

2j+1

n

!4 �
1

e

�s 2j�1

n

There are lgn+ 1 rounds, so:

Pr[� ever appears] �
lg nX
j=0

2j+1

n

!4 �
1

e

� s
n
2j�1

=

�
4

s

�4 lg nX
j=0

�
s

n
2j�1

�4 �1
e

� s
n
2j�1

The main idea now is to bound this sum
with an integral. For convenience, let us
de�ne

f(j) =

�
s

n
2j�1

�4 �1
e

� s
n
2j�1

so that

Pr[� ever appears] �

�
4

s

�4 lg nX
j=0

f(j)

Now de�ne
x =

s

n
2j�1

and
f(j) = g(x) = x4e�x

Then

dg=dx = 4x3e�x � x4e�x

Setting the derivative equal to zero, we �nd
a minimum of g(x) at x = 0 and a maxi-
mum of g(x) at x = 4. Since x is monotone
as a function of j, f(j) has a single maxi-
mum at

j = log n� log s+ 3

at which f(j) = 44e�4. This value of j
is not in general an integer. So let M =
blog n�log s+3c, so that f(M+1) � 44e�4.
We divide the summands into the mono-
tonically increasing part (sum from 0 to
M)and the monotonically decreasing part
(sum from M + 2 to logn).

lg nX
j=0

f(j) �
MX
j=0

f(j) +
lg nX

j=M+2

f(j) + 44e�4

Now bounding the monotonic sums with in-
tegrals,

lg nX
j=0

f(j) �

Z M+1

j=0
f(j) dj +

Z lg n

j=M+1
f(j) dj + 44e�4 �

Z
1

0
f(j) dj + 44e�4

We restate this in terms of x. Since

dx = (ln 2)
s

n
2j�1dj = x ln 2 dj

we get:

Z
f(j) dj =

Z �
s

n
2j�1

�4 �1
e

� s
n
2j�1

dj =

Z
(x4e�x)

dx

x ln 2
=

1

ln 2

Z
(x3e�x) dx (1)

Also, Z
1

0
(x3e�x) dx = 6 (2)

So the probability that a tetrahedron �
with s stoppers ever appears is at most

�
4

s

�4 1

ln 2

Z
1

0
x3e�x dx+ 44e�4 (by 1)

�

�
4

s

�4 � 1

ln 2
6 + 44e�4

�
(by 2)

= O

�
1

s4

�

4 Running Time

First, we review the analysis of the
usual randomized incremental algorithm
for three-dimensional Delaunay triangula-
tion ([6, 9] or see [1, 2]). The running
time can be divided into two parts, the
time required to �nd where each new point
should be inserted into the Delaunay tri-
angulation (location time) and the time re-
quired to delete old tetrahedra and create
new tetrahedra so as to actually perform
the insertion (update time). Point location
can be done in various ways; the theoreti-
cally optimal methods have been shown to
be O(c(n)), where c(n) is a quantity known
as the total con
ict size. The total con-

ict size is the sum, over all tetrahedra �
which ever appear in the construction, of
the number of stoppers of � . Total update
time is proportional to the total number of
tetrahedra which appear over the course of
the construction.

In the worst case, the size of a Delaunay
triangulation of n points in IR3 is O(n2),
and it turns out this is also the bound on
the total con
ict size and hence the running
time. But in practice the size of the Delau-
nay triangulation is generally O(n). If we

assume in the \realistic case" that the ex-
pected size of the Delaunay triangulation of
a random sample of r of the points is O(r)
(which also seems to be true [3]), we get a
more realistic bound of O(n lgn) on the to-
tal con
ict size and the running time. We
show that the algorithm remains optimal
using a blocked randomized insertion order
in the worst case, and is nearly optimal in
this \realistic case".

We begin the analysis of the blocked ran-
domized construction by bounding the ex-
pected total number of tetrahedra created.
Let ks be the number of possible tetrahedra
with s stoppers, out of the O(n4) total pos-
sible tetrahedra, and let Ks be the number
of tetrahedra with at most s stoppers. Us-
ing the result of the previous section, the
expected number of tetrahedra which ap-
pear is:

k0 +
nX

s=1

ksO

�
1

s4

�

Clarkson and Shor proved that Ks is at
most fn=ss

4 as n=s ! 1, where fn=s is
the expected number of tetrahedra in a De-
launay triangulation of a randomly chosen
subset of n=s points. This gives us a bound
of ks = O(Ks) = O(n2s2) in the worst case,
and ks = O(Ks) = O(ns3) in the \`realis-
tic" case.

These upper bounds do not, however,
completely determine the values of the ks
for all s, which vary from point set to point
set. In particular, the total number of pos-
sible tetrahedra de�ned by n points is only
O(n4) and

nX
s=0

O(ns3) =
nX

s=0

O(n2s2) = O(n5)

so the Ks provide only loose upper bounds
on the corresponding ks.

We get a tighter upper bound on the ex-
pected total number of tetrahedra by �nd-
ing the values for ks, for all s, which obey
the bound of Clarkson and Shor, but which

maximize the upper bound. Note that the
bound only holds for s such that n=s!1.
Let m = bn1�Æc where 0 < Æ < 1 is some
constant. Then we can say that the bound
holds for 1 � s � m.

We will work through the argument in
the \realistic" case �rst (when k0 = O(n)).
In this case Clarkson and Shor showed that
Ks = O(ns3) for 1 � s � m. For larger s,
we just use the trivial upper bound of Ks =
O(n4). Fixing an appropriate constant c,
we de�ne

bs =

8><
>:

0; s = 0
cns3; 1 � s � m
cn4; m+ 1 � s � n

Now, �xing another constant a, we need to
choose ks for 1 � s � n which maximizes

g(k1; : : : ; kn) =
nX

s=1

aks
s4

and such that the constraint

Ks =
sX

i=1

ki � cns3 = bs (3)

is satis�ed for all 1 � s � n and also

Kn =
nX
i=1

ki � cn4: (4)

is satis�ed.

Intuitively, making ks as large as possi-
ble for the smaller values of s maximizes
g(k1; : : : ; kn). The following claim formal-
izes that idea.

Claim 2 g(k1; : : : ; kn) is maximized when

ks = bs � bs�1

for all 1 � s � n

Notice that given the de�nition of bs, this
means that ks = cn(3s2 � 3s + 1) for 1 �
s � m, km+1 = c(n4�nm3), and ks = 0 for
all m+ 1 < s � n.

We prove the claim by induction on s.
When s = 1, k1 = b1 maximizes g(k1). Now
suppose the claim is true for s�1. We break
the possible choices of the ki into three
groups: those depending on whether Ks�1

is less than, equal to, or greater than bs�1.
The case in which Ks�1 > bs�1 violates the
constraint. When Ks�1 = bs�1, we see that
g(k1; : : : ; ks) is maximized when ks is cho-
sen to be bs � bs�1 and g(k1; : : : ; ks�1) is
maximized, which, together with the induc-
tive assumption, satis�es the claim. Finally
we consider the case in which Ks�1 < bs�1.
Notice that when the claim is satis�ed for
k1; : : : ; ks�1,

Ks�1 =
s�1X
s=1

bs � bs�1 = bs�1

Hence, the pigeon hole principle implies
that in the current case, whenKs�1 < bs�1,
there must exist some 1 � j � s � 1 such
that kj � bj � bj�1. Now we note that

g(k1; : : : ; kj + 1; : : : ; ks � 1) =

g(k1; : : : ; ks) + a(
1

j4
�

1

s4
)

and hence g cannot be maximized in this
case. This establishes the claim.

Now, replacing ks as de�ned in Claim 2,
we �nd that the expected total number of
tetrahedra is

� O(n) +
mX
s=1

cn(3s2 � 3s+ 1)O

�
1

s4

�

+c(n4 �m3)O

�
1

m4

�

� O(n) +
mX
s=1

O

�
n

s2

�
+ cn4Æ

= O(n+ n4Æ)

= O(n)

when Æ � 1
4
.

We can use a similar argument to bound
the total con
ict size and hence the loca-
tion time. The total con
ict size assesses

a charge of s for every tetrahedron with s
stoppers that appears over the course of the
construction, and hence is:

c(n) =
nX

s=1

ksO

�
1

s4

�
� s

Again, c(n) is maximized by assuming that
the tetrahedra which appear have as few
stoppers as possible, so that the total con-

ict size is at most
mX
s=1

cn(3s2�3s+1)O

�
1

s3

�
+c(n4�m3)O

�
1

m3

�

�
mX
s=1

O

�
n

s

�
+ cn1+3Æ

= O(n lgn+ n1+3Æ) = O(n1+3Æ)

We also get optimal bounds under the
quadratic worst-case assumption (when
k0 = O(n2)) about the expected size of the
Delaunay triangulation and the values of
the ks. In this case bs = cn2s2. To bound
the total number of tetrahedra created, we
want to �nd ks for 1 � s � n which maxi-
mizes

g(k1; : : : ; kn) =
nX

s=1

aks
s4

such that

Ks =
sX

i=1

ki � cn2s2 = bs

for all 1 � s � m and

Kn =
nX
i=1

ki � cn4

.

A similar proof show that choosing ks =
bs � bs�1 = cn2(2s � 1) for 1 � s � m
and km+1 = c(n4 � n2m2) and ks = 0 for
m+ 1 < s � n maximizes g.

Under the worst-case assumption, then,
the expected number of tetrahedra ever cre-
ated is at most

O(n2)+
mX
s=1

n2c(2s�1)O

�
1

s4

�
+c(n4�m4)O

�
1

m4

�

= O(n2) +
nX

s=1

O

n2

s3

!
+O(n4Æ)

= O(n2)

when Æ � 1=2.

and the expected number of total con
ict
change is at most

mX
s=1

n2c(2s�1)O

�
1

s3

�
+c(n4�m4)O

�
1

m3

�

=
mX
s=1

O

n2

s2

!
+O(n1+3Æ)

= O(n2)

when Æ � 1=3.

5 Experiments

We used Clarkson's hull and Shewchuk's
pyramid to test the e�ect of our blocked
randomized insertion order on the thrash-
ing behavior of a three-dimensional Delau-
nay triangulation program. We used hull

because it implements the theoretically op-
timal randomized incremental algorithm on
which our analysis is based. Due to the
huge size of its point location structure,
history DAG, hull begins to thrash rel-
atively early and therefore cannot handle
large data. Shewchuk's pyramid is a more
recent three-dimensional Delaunay triangu-
lation program. It is faster and it can
process a lot more data than hull, us-
ing theoretically non-optimal point location
scheme, without history DAG or con
ict
graph. We want to show that our blocked
randomized insertion order still enables it
to process a lot bigger data even faster.

While we expected the e�ect of the in-
creased locality of reference on the per-
formance to be bene�cial, it is not easy
to predict. A fundamental problem with
the algorithm is that insertions in one part
of the Delaunay triangulation also a�ect

parts that may be quite distant in three-
dimensional space. Moreover, since the
Delaunay triangulation is represented by
a pointer structure, there is no require-
ment that adjacent tetrahedra are stored
together in virtual memory; this is im-
plementation dependent. Both hull and
pyramid do their own memory manage-
ment, to avoid making too many calls to
malloc. Tetrahedra are stored in a list, and
in pyramid records are freed as tetrahedra
are destroyed and reused as new tetrahedra
are created, further reducing spatial local-
ity. 1

0

1000

2000

3000

4000

5000

6000

7000

8000

30000 60000 90000 120000 150000 180000

T
im

e
(s

ec
on

ds
)

Number of Points

Random
Blocked

Figure 1: The running time of Hull on
MTD data using random order and blocked
random order

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000 600000

T
im

e
(s

ec
on

ds
)

Number of Points

Blocked

Figure 2: The running time of Hull on B1
data using blocked random order

The data come from two sources - iso-
surfaces of volumetric data (MTD, B1) and
laser range scanner (happy budda). The

1We thank Jonathan Shewchuk for pointing out

this issue.

MTD dataset (184895 points) are samples
from an iso-surface of electron density map
of a protein, and the B1 data (525296
points) is obtained by applying one level
of butter
y subdivision scheme to MTD to
make a denser, bigger data set. The\happy
budda" data is from the Stanford 3D scan-
ning repository. We chose the raw scan-
ner data, consisting of 2643633 points with
some noise, as better example of typical in-
put to a surface reconstruction computa-
tion than the smaller, cleaner, and more
evenly distributed vertex set of the com-
pleted model. Since we were interested in
pushing the limits our our technique, we
made larger data sets by duplicating and
translating the budda data, making inputs
that were the union of two and of four bud-
das. We divided the data into blocks using
a kd-tree, stopping when we had 512 blocks
for the MTD and B1 data and 4096 blocks
for all of the \happy budda" datasets.

0

5000

10000

15000

20000

25000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
im

e
(s

ec
on

ds
)

Number of Points

Happy

Figure 3: The running time of pyramid for
happy budda data using blocked random
order

For the hull experiment, we used Linux
machine using Intel Pentium III (864 MHz)
with 511 M RAM with 4 GB of virtual
memory. Note that the large virtual mem-
ory is essential; the program fails once vir-
tual memory is exceeded.

In Figure 1, the running time for ran-
dom insertion order and our blocked ran-
domized insertion are shown. We could �n-
ish the B1 data using blocked randomized

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

Number of Points

4 happy buddas
2 happy buddas
1 happy budda

Figure 4: The running time of pyramid on
1,2,4 happy budda data sets using blocked
random order and without selecting n1=4

random samples for point location

insertion as shown in Figure 2. Though the
slope becomes steep around 120000 points
where there was a serious thrashing for ran-
dom order, the blocked order maintains a
roughly constant slope and shows a near-
linear running time.

For pyramid, we used a much less power-
ful machine, a Sun UltraSPARC 360 MHz
CPU with a small 128M physical memory,
con�gured with four gigabytes of local disk
as virtual memory.

Using the blocked randomized insertion
order, we were able to complete the De-
launay triangulation of the \happy budda",
but we found that as the size of the data
structure grew, the asymptotic e�ects of
the point location strategy began to domi-
nate the running time. See Figure 3.

Pyramid uses a non-optimal jump-and-
walk point location strategy; at the inser-
tion of the ith point pi, it selects O(i1=4)
already-inserted points at random, and
�nds the closest of these to pi. It then
selects either this point, or the last point
inserted, whichever is closer to pi, and be-
gins \walking" in the Delaunay triangula-
tion from there to �nd the place at which to
insert pi. Using the blocked insertion order,
the last point inserted was almost always
the closest to pi, and the expensive search

for a closer point was generally wasted.

Eliminating the O(i1=4) search and al-
ways starting from the last point inserted
gave us an essentially linear running time,
as seen in Figure 4. We could complete the
Delaunay triangulation of four buddas, over
10 million points. Of course, with this point
location strategy the theoretical bounds on
the expected running time are very bad.

6 Other applications

Although we give the proofs in terms of
the 3D Delaunay triangulation construc-
tion, the analysis applies to other similar
randomized incremental constructions, in
particular the optimal construction of the
trapezoidation of a set of non-intersecting
segments in the plane [6, 7, 8] (and the sim-
ilar construction for intersecting segments).
This algorithm is practical, and using it on
large input sets of segments might be im-
portant, for instance in geographic informa-
tion systems.

Let us refer generically to the objects cre-
ated in the incremental construction (eg.
Delaunay tetrahedra in previous sections)
as the regions. A drawback of the analy-
sis in this paper is that it depends on ev-
ery region having the same number of trig-
gers. Thus, although it seems natural to
use trapezoids as the regions in an analy-
sis of trapezoidation, we cannot apply this
analysis as a trapezoid may have as many as
four or as few as two triggers. Fortunately,
as pointed out by Mulmuley [7], trapezoi-
dations can be analyzed using attachments

as the regions. An attachment is the verti-
cal line segment inserted at the endpoint of
an input segment; it is de�ned by the end-
point and the two segments hit by the top
and the bottom of the attachment, hence
its number of triggers is always three. The
stoppers of an attachment are the segments
intersecting the attachment.

In general, when the number of triggers is
b, the analysis of section 3 implies that the
probability that a region with s stoppers
appears in the incremental construction is
O(1=sb), in this case O(1=s3). The bound
of Clarkson and Shor on Ks, the number of
possible regions with at most s stoppers, is
in general fn=ss

b. For trapezoidation we get
Ks = O(ns2), since fn=s = O(n=s). Using
the argument in section 4 to get a worst-
case choice of the ks, we get a bound of
O(n) on the expected total number of at-
tachments and of O(n1+Æ) on the expected
running time.

For both trapezoidation and Delau-
nay triangulation, it seems likely that
the O(n1+Æ) bounds can be improved to
O(n lgn). It would also be nice to �nd an
analysis that handles situations in which
the number of triggers can di�er, but is
upper-bounded by some constant.

We believe that our analysis also ap-
plies to randomized incremental algorithms
which use tracing, such as Seidel's practical
O(n lg� n) algorithm for trapezoidation of a
simple polygon [11], and we are currently
working in this direction.

Another important class of randomized
incremental algorithms are the LP-type
(aka GLP) problems, which optimize an ob-
jective function over a set of input regions.
Blocked randomized insertion orders may
also give optimal algorithms for LP-type
problems, although the fact that many LP-
type problems have regions which are inher-
ently de�ned by di�erent numbers of trig-
gers will require a di�erent analysis. In any
case, this research direction, while natural,
does not seem as pressing since LP-type al-
gorithms do not build large data structures.

On the other hand, the performance
of LP-type algorithms can be enhanced
in other ways by heuristic insertion or-
ders [15]. Similarly Barber's qhull pro-
gram for arbitrary-dimensional convex hull
uses a heuristic insertion order designed to

insert points on the convex hull early [16].
Particular blocked randomized insertion
orders, or some other partially-random
scheme, might allow these heuristics to be
applied while still maintaining optimality.

Finally, we have in no way shown that a
blocked randomized insertion order is guar-
anteed to improve the performance of an in-
cremental construction. Theoretical results
in this direction would certainly be interest-
ing.

References

[1] K. Mulmuley. Computational Geom-
etry: An Introduction Through Ran-
domized Algorithms. Prentice Hall,
New York, 1993.

[2] M. de Berg, M. van Kreveld,
M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algo-
rithms and Applications. Springer-
Verlag, Berlin, 1997.

[3] S. Choi and N. Amenta. Delaunay tri-
angulation programs on surface data,
The 13th ACM-SIAM Symposium on
Discrete Algorithms, 2002.

[4] R. Seidel. Backwards analysis of of
randomized geometric algorithms. In
J. Pach, editor, New Trends in Dis-
crete and Computational Geometry,
Pages 37-68, Springer-Verlag, Berlin,
1993.

[5] K. Mulmuley and O. Schwarzkopf.
Randomized Algorithms, Chapter 34
in "Handbook of Discrete and Com-
putational Geometry", J. E. Good-
man and J. O'Rourke, eds. CRC
Press, 1997.

[6] K.L. Clarkson, and P.W. Shor, Appli-
cations of random sampling in com-
putational geometry, II. Discr. and
Comp. Geometry 4 (1989), pp. 387{
421.

[7] K. Mulmuley. A Fast Planar Parti-
tion Algorithm, I, Journal of Sym-
bolic Computation, (1990) 10, 253-
280.

[8] K. Mulmuley. A Fast Planar Parti-
tion Algorithm, II. Journal of the
ACM, 38(1):74-103, January 1991

[9] K. L.Clarkson, K.Mehlhorn, and
R.Seidel. Four results on randomized
incremental constructions. Comp.
Geom.: Theory and Applications,
pages 185{121, 1993.

[10] R. Seidel. Small-dimensional linear
programming and convex hulls made
easy. Discr. and Comp. Geometry 6
(1991), pp. 423{434.

[11] R. Seidel. A simple and fast in-
cremental randomized algorithm for
computing trapezoidal decomposi-
tions and for triangulating polygons.
Comput. Geom. Theory Appl., 1:51{
64, 1991.

[12] L. P. Chew. Building voronoi dia-
grams for convex polygons in lin-
ear expected time. CS Tech Report
TR90-147, Dartmouth College, 1986.

[13] G. Blelloch, J.Hardwick, G.Miller,
and D.Talmor. Design and Imple-
mentation of a Practical Parallel
Delaunay Algorithm. Algorithmica,
24(3/4), 1999.

[14] P. K. Agarwal, M. de Berg, J. Ma-
tousek, and O. Schwarzkopf. Con-
structing levels in arrangements and
higher order Voronoi diagrams. SIAM
J. Comput., 27:654{ 667, 1998.

[15] E. Welzl. Smallest enclosing disks

(balls and ellipsoids), in New Results
and New Trends in Computer Sci-
ence, (H. Maurer, ed.), Lecture Notes
in Computer Science 555 (1991) 359{
370.

[16] C. B. Barber, D. Dobkin, and H.
Huhdanpaa, The quickhull algorithm

for convex hulls, ACM Trans. Math.
Software 22(1996), 469-483.

[17] O. Devillers and P. Guigue. The shuf-

ing bu�er, International Journal of
Computational Geometry and its Ap-
plications, 11:5, pp 555{572, (2001).

