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ABSTRACT
Randomized incremental constructions are widely used in
computational geometry, but they perform very badly on
large data because of their inherently random memory ac-
cess patterns. We define a biased randomized insertion order
which removes enough randomness to significantly improve
performance, but leaves enough randomness so that the al-
gorithms remain theoretically optimal.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Geometrical problems and com-
putations

General Terms
Algorithms

Keywords
Randomized incremental construction, Delaunay triangula-
tion, virtual memory.

1. INTRODUCTION
A look at recent textbooks [13, 25] shows that random-

ized incremental algorithms are a central part of computa-
tional geometry. There are many randomized incremental
algorithms to build geometric structures; one of particular
importance is the randomized incremental construction of
the Delaunay triangulation of a set of input points. The
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algorithm is simple to state: insert the points into the tri-
angulation one by one in random order, updating the trian-
gulation at each insertion. It is also worst-case optimal and
(compared to the alternatives) easy to implement robustly.
This accounts for its importance in practice; there are sev-
eral robust and efficient implementations of the randomized
incremental Delaunay triangulation construction for R3, in-
cluding Clarkson’s hull 1, the CGAL Delaunay hierarchy
function 2, Shewchuk’s pyramid 3, and in the α-shapes soft-
ware 4 of Edelsbrunner et al.

Given these excellent programs for three-dimensional De-
launay triangulation, it is natural to want to apply them
to the large data sets which arise in applications such as
mesh generation or surface reconstruction. By their very
essence, randomized incremental algorithms access the geo-
metric data structures randomly, and random access to large
data structures works very poorly with modern memory hi-
erarchies. Virtual memory systems cache recently used data
in memory, on the assumption of locality of reference, that
is, that recently used data is likely to be used again soon.
Randomized incremental programs violate this assumption,
and soon after the data structure exceeds the size of physical
memory, thrashing occurs and the program grinds (audibly!)
to a halt [9]. This limits the size of the Delaunay triangula-
tions that can be computed in practice.

A simple fix is to insert points in an order which improves
the locality of reference, while preserving enough random-
ness to retain the optimality of the algorithm. In Section 2
we present such a scheme, which we call a biased randomized
insertion order (BRIO). We prove in Sections 4, 5, 6 that
this order is no worse than a completely randomized inser-
tion order in terms of asymptotic complexity: it gives an
optimal algorithm for Delaunay triangulation in the worst
case, and also under less pessimistic but more realistic as-
sumptions about the output complexity. Our evidence that
using a BRIO indeed reduces or eliminates thrashing is ex-
perimental. In Section 7 we show the results of using a BRIO
with three different three-dimensional Delaunay triangula-

1A program for convex hulls,
http://cm.bell-labs.com/netlib/voronoi/hull.html
2Computational Geometry Algorithms Library
http://www.cgal.org/
3Not yet published
43D alpha shapes software
ftp://ftp.ncsa.uiuc.edu/Visualization/Alpha-shape/



tion programs: hull, which implements the classic textbook
randomized incremental construction, the CGAL hierarchy
program, which uses a different but still optimal algorithm,
and pyramid, which sacrifices optimality for a small mem-
ory footprint. With all of them we can solve much larger
problems than were possible with a completely randomized
insertion order. Section 9 contains some further discussion
of the ideas.

The development of randomized incremental algorithms
and their analysis was a major project of computational ge-
ometry in the late eighties and early nineties, as described
in textbooks [13, 25] and surveys [26, 31]. We touch on
a few relevant highlights. A classic paper by Clarkson and
Shor [12] showed that the randomized incremental paradigm
could be applied to many problems, and gave a general anal-
ysis. Mulmuley [22, 23] and Clarkson, Mehlhorn and Sei-
del [11], among others, extended this theory. Seidel [30],
harking back to an an idea in an early paper of Chew [8],
popularized a simplifying idea called backwards analysis which
became the standard tool. Unfortunately we cannot see how
to apply backwards analysis when using a BRIO, so we build
on results from the earlier work, in particular the bounds on
(≤ k)-sets from Clarkson and Shor and from Mulmuley.

The traditional approach to thrashing is to develop ex-
plicit out-of-core algorithms, usually using divide-and-conquer.
Examples in computational geometry include some Delau-
nay algorithms for 2D [2, 21, 33], which as far as we know are
unimplemented. The divide-and-conquer paradigm in gen-
eral seems to be much less practical than the randomized
incremental paradigm in computational geometry. Divide-
and-conquer has been useful for providing output-sensitive
“theoretical algorithms” (e.g. [7]) but even the relatively
simple early divide-and-conquer Delaunay triangulation al-
gorithm of Clarkson [10] seems difficult to implement ro-
bustly. An exception is the practical parallel two-dimensional
Delaunay triangulation algorithm of Blelloch, Miller, and
Talmor [6]. Their approach, however, does not immediately
apply to either three dimensions or to out-of-core computa-
tion. In this paper, we stick to the randomized incremental
paradigm but define an insertion order that, heuristically,
helps the memory hierarchy work effectively.

2. INSERTION ORDER
We define a biased randomized insertion order for a set P

of n points. The points are inserted in rounds, from round
0 through round lg n. For simplicity, we assume that n is a
power of 2.

To allocate points to rounds, we choose each point inde-
pendently with probability 1/2 to be inserted in the final
round. We choose each of the remaining points indepen-
dently with probability 1/2 to be inserted in the next-to-last
round, and so on. When we get to round zero, we choose
any remaining points with probability one. Thus the prob-
ability that a point is chosen in round i > 0 is 2i−1/n, and
the remaining probability 1/n goes to the event that the
point is chosen in round zero. As far as our proof of asymp-
totic optimality is concerned, the points can be inserted in
an arbitrary order within each round.

This restricted requirement on the randomness allows us
to bias the insertion order to favor locality. The approach we
take here is to organize the points into blocks which respect
locality within three-dimensional space; in our experiments
we used either an oct-tree or a kd-tree (e.g., [13]) to di-

vide space into blocks. Within each round, we group the
points by block, and we order the blocks themselves within
a round to favor locality in by taking them in depth-first
order. Within each block we order the points randomly.

The intuition is that in the early rounds the insertions
tend to be sprinkled nearly randomly across all the data,
producing a nicely balanced data structure, while in the later
rounds they are grouped by blocks, accessing local regions
of the data structure mostly independently.

Notice that our ordering, which improves locality in R3,
only indirectly attacks the question of locality in the layout
of the data structure in virtual memory, which is the essen-
tial problem. The hope is that inserting points with locality
in R3 encourages locality in virtual memory. However, this
depends on the storage management scheme used by the
specific Delaunay program, and may be hard to predict. We
return to this issue when we discuss the experiments.

3. ANALYSIS SETUP
We analyze the use of a BRIO in the context of the incre-

mental construction of a three-dimensional Delaunay trian-
gulation. First, we review the analysis of the usual random-
ized incremental algorithm for three-dimensional Delaunay
triangulation ([12, 11] or see [13, 25]). The running time can
be divided into two parts, the time required to find where
each new point should be inserted into the Delaunay tri-
angulation (point location time) and the time required to
delete old tetrahedra and create new tetrahedra so as to
actually perform the insertion (update time). Point loca-
tion can be done in various ways; the theoretically optimal
methods have been shown to be Θ(X(n)), where X(n) is a
quantity known as the total conflict size.

Total update time is Θ(C(n)), where C(n) the total num-
ber of tetrahedra which appear over the course of the con-
struction.

3.1 The “realistic” case.
In the worst case, the size of a Delaunay triangulation of

n points in R3 is O(n2), and it turns out that this is also
the bound on the total conflict size and hence the running
time. But in practice the size of the Delaunay triangulation
is often O(n).

We make a slightly stronger assumption: in the “realis-
tic” case the expected size of the Delaunay triangulation of
a random sample of r of the points is O(r). That is, we
define a “realistic” instance to be a point set P for which
the Delaunay triangulation of a random subset of r points
has expected size O(r), for every r. Experiments with data
from various sources [9] give evidence that many instances
are in fact “realistic”.

In the “realistic” case there is a more realistic bound of
O(n lg n) on the total conflict size and the running time
for the standard randomized incremental construction. We
show below that the algorithm remains optimal using a block
randomized insertion order in the worst case, and also in this
“realistic” case.

More generally, we can consider a probability distribution
of “practical” instances P , and the O(r) size requirement
should hold for a random (uniform) r-subset of a random
problem instance (according to the given distribution). Our
results about expected running time are then average-case
results (in addition to the expectation with respect to the
random choices of the algorithm).



3.2 The general framework.
We will use some terminology of Mulmuley. The four ver-

tices of a tetrahedron are known as its triggers, and the
other points of P contained in its circumsphere are called
its stoppers. Every choice of four points of P as triggers
determines a possible tetrahedron, but in a particular run
of the randomized incremental construction not every pos-
sible tetrahedron appears as part of one of the intermediate
triangulations, or in the final triangulation. A tetrahedron
appears in some Delaunay triangulation if and only if all of
its triggers are selected for insertion before any of its stop-
pers. The probability that a tetrahedron appears during
the construction thus depends in part on its number s of
stoppers; if s = 0, for instance, the tetrahedron belongs to
the final Delaunay triangulation and the probability that it
appears is one.

The structure of the analysis follows the scheme in the
early papers [12, 23, 24]. Let ps be the probability that a
tetrahedron with s stoppers appears in some triangulation
of the construction, and let ks be the number of tetrahedra
with s stoppers for point set P . Then we can write the
expected total number of tetrahedra that appear as

E[C(n)] =

n∑
s=0

ksps

The total conflict size is the sum, over all tetrahedra τ which
ever appear in the construction, of the number of stoppers
of τ . Thus, the expected total conflict size is

E[X(n)] =

n∑
s=0

kspss.

Now all we need are upper bounds on ks and ps.

4. ONE TETRAHEDRON
Let us consider a tetrahedron τ with s stoppers. If s is

zero, τ has to appear in the Delaunay triangulation. If s is
non-zero and τ appears in some intermediate triangulation,
inevitably in some later insertion one of τ ’s stoppers will
be chosen and τ will be popped (it will no longer be part of
the triangulation). In other words, the probability that τ
appears is the same as the probability that τ is eventually
popped.

We bound the probability ps that τ appears by considering
each round i of the BRIO, building on the following.

Observation 1. The probability that a point x ∈ P is
chosen in round i is 2i−1/n for i ≥ 1 and 1/n for i = 0.
Each point is assigned to a round independently.

Lemma 2. A tetrahedron τ with s stoppers appears with
probability ps = O(1/s4).

Proof. If τ is popped in round i, it must be case that all
triggers of τ were chosen in or before round i and that the
first stopper is chosen in round i. Since these events are
independent, the probability that τ appears is bounded as
follows.

ps ≤
lg n∑
i=0

P [ first stopper in round i ]×

P [ all triggers in round i or earlier ] (1)

Let ai be the probability that a particular point has been
chosen at the beginning of round i, so that

a0 = 0, a1 = 1/n, a2 = 2/n, a3 = 4/n, . . . , alg n+1 = 1,

and in general ai = 2i−1/n. Then we have

ai+1 = 2ai (2)

for i > 0. The probability that all of the triggers are chosen
in or before round i is a4

i+1 since the events are independent.
The probability that the first stopper is selected in round

i is denoted by Gi = (1 − ai)
s − (1 − ai+1)

s. By (1), the
probability that τ appears is

ps ≤
lg n∑
i=0

Gi · a4
i+1.

We split off the first term, and for the remaining terms we
use (2).

ps ≤ 1/n4 +

lg n∑
i=1

Gi · 16a4
i

To bound the latter sum, note that Gi ·a4
i can be interpreted

as the probability of another event: the first stopper is cho-
sen in round i, and at the beginning of the i-th round, all
of the triggers have been chosen. Thus

∑
i≥1 Gi · a4

i is the
probability that the round in which all of the triggers are
chosen is smaller than the first round where any stopper is
chosen. This is the probability that among s + 4 indepen-
dent identically distributed random variables (namely the
rounds of the 4 triggers and the s stoppers), the first 4 are
(strictly) smaller than the others. By symmetry, we get∑

i

Gi · a4
i ≤

1(
s+4
4

) .

(This is the same argument that applies to the “usual”
(fully) randomized insertion order.) This gives us

ps ≤ 1/n4 +
16(
s+4
4

) = O(1/s4).

5. COUNTING TETRAHEDRA
Now we need to bound ks, the number of tetrahedra with

s stoppers. Let Ks be the number of tetrahedra with at
most s stoppers. Clarkson and Shor [12, Section 3] gave
an upper bound on (≤ k)-sets that implies that that Ks

is at most O(n2s2) in the worst case, and O(ns3) in the
“realistic” case. The bound was proved in a different way
by Mulmuley [24]. In this section we give proofs along the
same lines as Mulmuley’s but with simpler arithmetic; this
is possible because we deal only with the special cases of Ks

that we need.
Consider the following thought experiment. From the set

P of n points, we select each point with probability 1/s
to form a random sample R. Let r = |R| be the random
variable for the size of R. Let TR be the random variable
for the number of tetrahedra in the Delaunay triangulation
of R.

Lemma 3 ([12, Theorem 3.1]). For every point set P ,
we have

Ks = O(s4E[TR]).



As a consequence of this lemma, we get the following bounds
on Ks.

In the “realistic” case, we assume that E[TR] = O(r) so
that by the linearity of expectation E[TR] = O(E[r]) =
O(n/s), and E[Ks] = O(ns3).

In the quadratic worst case, we have TR = O(|R|2), and
hence E[TR] = E[O(r2)] = O(E[r2]).

E[r2] = Var[r] + E2[r]

= n

(
1

s

) (
1− 1

s

)
+ (n/s)2 = O((n/s)2)

So, Ks ≤ O(s4(n/s)2) = O(n2s2).
For completeness, we indicate the easy proof of the lemma.

We assume without loss of generality that s ≥ 2. Let p̃j

denote the probability that a tetrahedron with j stoppers
appears in the Delaunay triangulation of R. For j ≤ s,

p̃j =

(
1

s

)4 (
1− 1

s

)j

≥
(

1

s

)4 (
1− 1

s

)s

= Θ

(
1

s4

)
and therefore p̃j = Θ(1/s4). We can express E[TR] in an-
other way:

E[TR] =

n∑
j=0

p̃jkj ≥ Θ

(
1

s4

) s∑
j=0

kj = Θ

(
1

s4

)
Ks

From this, the lemma follows.

6. RUNNING TIME

Theorem 4. With incremental construction using a BRIO,
the expected total number of tetrahedra that are created dur-
ing the construction of the Delaunay triangulation of n points
in three dimensions is O(n2) in the worst case and O(n) in
the realistic case. The expected total conflict size (and hence
the expected running time) is O(n2) in the worst case and
O(n log n) in the realistic case.

Proof. Recall that our expression for the expected total
number of tetrahedra is

E[C(n)] =

n∑
s=0

ksps

and that ps = O(1/s4), and note that p0 = 1. We choose a
constant c such that ps ≤ c/s4, for s ≥ 1. So

E[C(n)] ≤ K0 +

n∑
s=1

(Ks −Ks−1)
c

s4

= (1− c)K0 + c ·
n−1∑
s=1

Ks

(
1

s4
− 1

(s + 1)4

)
+

c Kn

n4

= O(K0) +

n−1∑
s=0

O

(
Ks

s5

)
+ O

(
Kn

n4

)
In the “realistic” case, Ks = O(ns3) so E[C(n)] = O(n). In
the worst case Ks = O(n2s2) and we find that E[C(n)] =
O(n2).

We can use a similar argument to bound the total conflict
size and hence the point location time.

E[X(n)] =

n∑
s=1

ks
c

s4
· s = O(K0) +

n−1∑
s=1

O

(
Ks

s4

)
+ O

(
Kn

n3

)

This gives E[X(n)] = O(n log n) in the “realistic” case and
E[X(n)] = O(n2) in the worst case.

7. EXPERIMENTS
We have tried using biased randomized insertion orders

with three different 3D Delaunay triangulation codes, Clark-
son’s hull, the CGAL Delaunay hierarchy function and Shewchuk’s
pyramid. These programs differ in their point location schemes
and memory management strategies. Nonetheless, with all
the programs, using the BRIO produced a near-linear per-
formance profile, allowing us to handle much larger inputs
than we could with a completely randomized insertion order.

While we of course had hoped that the effect of increased
locality in R3 on the performance would be beneficial, it is
not easy to predict. A fundamental problem with trying to
optimize memory access by increasing the locality of inser-
tions in R3 is that a point might well share Delaunay edges
with other points that are quite far away. In particular, for
sets of input points which lie on or close to surfaces (im-
portant to applications such as surface reconstruction and
mesh generation) every point usually has at least one edge
to some vertex on a different “opposite” part of the surface.
Our experiments use this kind of input data.

Moreover, since the Delaunay triangulation is represented
by a pointer structure, there is no guarantee that adjacent
tetrahedra in the triangulation are stored together in virtual
memory; this is implementation dependent. All three of
the programs do their own memory management for the
tetrahedra, to avoid making too many calls to the memory
allocation procedure of the operating system. Records for
tetrahedra are stored in a list in virtual memory. In the
basic randomized incremental construction implemented by
hull, tetrahedra are never deleted, but in pyramid and CGAL

they are. Records are freed as tetrahedra are destroyed and
reused as new tetrahedra are created, so that a tetrahedron
might end up being stored with others created much earlier,
further reducing locality.5

In all of our experiments we used a large (4 GB) virtual
memory, which on our systems required some reconfigura-
tion. This is important for duplicating our results; the pro-
grams fail if they run out of virtual memory. The idea of
using a BRIO is to avoid having to explicitly manipulate
disk access and letting the (hopefully very efficient) virtual
memory system do the work.

7.1 Data sets
We used two data sets in the experiments. Both of them

are on or near a 2D surface in R3, since that case is impor-
tant in practice and the Delaunay triangulation is non-local,
as described above.

To make the B1 data set (525,296 points), we extracted a
molecular electron density iso-surface using marching cubes
and then made it larger by applying one level of butterfly
subdivision. This gives a nicely distributed point set which
lies on a smooth surface.

The happy buddha data set (2,643,633 points) is taken
from the Stanford 3D scanning repository 6. We use the
raw scanner data as an example of typical input to a surface
reconstruction computation. The data is noisy and unevenly

5We thank Jonathan Shewchuk for pointing out this issue.
6Stanford 3D scanning repository,
http://www-graphics.stanford.edu/data/3Dscanrep



distributed near the surface of the object.
We concentrated in these experiments with using different

insertion orders and different programs rather than many
data sets; it would be interesting to try similar experiments
with other data, especially data from different kinds of dis-
tributions.

7.2 Randomized incremental construction
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Figure 1: The running time of hull on B1 data us-
ing a completely randomized insertion order and a
BRIO (512 MB RAM).

To test exactly the situation considered in our analysis,
we used a BRIO with the standard randomized incremental
construction as implemented in hull. This program uses a
theoretically optimal point location data structure, the his-
tory DAG, so that the expected point location time is pro-
portional to the total conflict size. Also, since no tetrahedra
are ever deleted, the layout of tetrahedra in virtual memory
should correspond well to the order in which they are cre-
ated. The history DAG takes a lot of memory, however, so
hull thrashes relatively early.

We ran hull on a Linux machine with an Intel Pentium
III (864 MHz) and 512 MB RAM, using the smaller B1 data.

In Figure 1, the running time for hull using the com-
pletely random insertion order and the BRIO are shown; the
random insertion order led to thrashing before the triangu-
lation could be completed. Though the slope for the biased
randomized insertion order becomes steeper around 120K
points—just where there was a serious thrashing for ran-
dom order—the BRIO maintains a roughly constant slope
and shows a near-linear running time.

7.3 CGAL hierarchy
The Delaunay hierarchy function in the CGAL library also

implements an optimal algorithm, due to Devillers [14], based
on a data structure for point location which requires much
less memory than the history DAG. Deviller’s analysis de-
pends on the randomized insertion order to bound the ex-
pected point location time, but does not explicitly relate
the running time to the total conflict size. We hope to show
that this data structure is optimal when using a BRIO in
the journal version of the paper.

To exaggerate the memory behavior of the program, we
ran it on a very small PC: a Sun UltraSPARC 360 MHz CPU
with just 128M of physical memory. With so little memory,
the CGAL Delaunay hierarchy program begins to thrash at
about 250K points when using a completely randomized in-
sertion order. Using a BRIO (Figure 2) we compute the

Delaunay triangulation of the happy buddha data set con-
taining more than 2.5 million points.

0

5000

10000

15000

20000

25000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Ti
m

e 
(s

ec
on

ds
)

Number of Points

Figure 2: Running time of the CGAL Delaunay hier-
archy on the happy buddha scan data using a BRIO
(128 MB RAM). Using a randomized insertion order
with this small memory, the program would thrash
at about 250K points.

7.4 Pyramid
Shewchuk’s pyramid is designed to be very memory ef-

ficient. It uses a theoretically non-optimal point location
scheme but needs no additional storage beyond the Delau-
nay triangulation itself. As described above, the deletion of
tetrahedra and the re-use of their virtual memory compli-
cates the layout in virtual memory. Our analysis shows that
when using a BRIO the total number of tetrahedra created
is asymptotically optimal, but other than that the relation-
ship to the theory is tenuous in the case of this program.
The fact, however, that we can compute huge 3D Delau-
nay triangulations, very quickly, using very little physical
memory, is exciting.

0

5000

10000

15000

20000

25000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Ti
m

e 
(s

ec
on

ds
)

Number of Points

Figure 3: The running time of pyramid on the
happy buddha data using BRIO and pyramid’s orig-
inal point location scheme (128 MB RAM).

We again use the small PC and the happy buddha data.
We were able to complete the Delaunay triangulation of the
happy buddha using the BRIO, which was not possible with
the completely randomized insertion order. But we found
that as the size of the data structure grew, pyramid’s point
location strategy slowed down significantly (Figure 3). We
had never seen this effect before because we had never been
able to compute such a large triangulation.
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Figure 4: The running time of pyramid with the sim-
plified point location strategy, on the happy buddha
data set using a BRIO and a completely randomzied
insertion order for comparison (128 MB RAM).
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Figure 5: The running time of pyramid on 1,2 and 4
happy buddha data sets (128 MB RAM).

The point location strategy used in pyramid is known as
jump-and-walk. At the insertion of the ith point p, it se-
lects O(i1/4) already-inserted points at random, and finds
the closest of these to p. It then selects either this point, or
the last point inserted, whichever is closer to p, and begins
“walking” in the Delaunay triangulation on a straight line
from there to find the place at which to insert p. With the
BRIO, the last point inserted was almost always the clos-
est to p, and the expensive search for a closer point was
generally wasted.

Eliminating the O(i1/4) search and always starting from
the last point inserted gave us an essentially linear running
time (Figure 4). To see how far we could push the results,
we duplicated and translated the buddha data, making in-
puts that were the union of two and of four buddhas. We
found that we could complete the Delaunay triangulation
of four buddhas, over 10 million points (Figure 5). This
represents an increase by a factor of 20 in the size of the
Delaunay triangulations computable on this machine with
this program.

Using this small machine is useful for studying memory
performance, but it makes Delaunay triangulation look slower
than it really is. On the machine we used for the experiments
with hull, we can compute the Delaunay triangulation of 10
million points in about half an hour (Figure 6).

Of course, with this point location strategy there are no
theoretical bounds on the expected running time besides
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Figure 6: The running time of pyramid on a more
typical workstation (864 MHz, 512 MB RAM). We
computed the Delaunay triangulation of 10 million
points (four translates of the happy buddha scan
data) in about half an hour, using a BRIO with the
simplified point location scheme.

the pessimistic worst case of O(i), for a total running time
of O(n2). However, for reasonable point sets, and for good
insertion orders within each round, it seems reasonable to
expect a good performance. For uniformly distributed point
sets, a simple algorithm with linear expected running time
has been proposed by Dyer [17]. It is conceivable that our
approach might lead to an alternate algorithm for uniformly
distributed point sets which degrades gracefully as the uni-
form distribution assumption is violated.

7.5 Pure locality
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Figure 7: Total number of tetrahedra in the history
DAG, for hull using the B1 data set. The bottom
curve is the number of tetrahedra in the actual De-
launay triangulation.

The locality of the BRIO certainly seems to improve the
memory performance. To see if the randomness in the BRIO
provides any practical benefit, we compared the three pro-
grams using a BRIO and an order which visits each oct-tree
cell in turn and inserts all of its points in random order.
We found that both orders worked well, but which is better
varied.

Figures 7, 8 show an example using hull. The BRIO cre-
ates a slightly smaller history DAG. Before physical memory
is exceeded, the BRIO does better, but once it begins paging
the better locality of the oct-tree order dominates.
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Running the larger data set with CGAL, we found that the
BRIO gave a slightly better running time (Figure 9); here
again possibly the point location data structure is better
with the BRIO.
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Figure 9: Using a BRIO gives a slightly better run-
ning time for the happy budda data using CGAL (128
MB RAM).

Using pyramid, on the other hand, we found that the
purely local order was better(Figure 10).

It is hard to draw conclusions from these examples, other
than to note that factors like the specific memory hierarchy,
layout in virtual memory, number of tetrahedra created and
destroyed, balance in the point location data structure, etc.,
interact in complicated ways.

8. COMPUTING A BRIO
Using a BRIO to improve the performance of Delaunay

triangulation programs would not be sensible if computing
the BRIO itself was time consuming compared with the time
required to shuffle points for the randomized incremental
construction. Fortunately, BRIOs can be computed very
efficiently. 7

We tried both kd-trees and oct-trees for decomposing the
input point sets into blocks for creating BRIOs. The kd-
tree construction is appealing since it has logarithmic depth,

7We thank Yong Kil (UC Davis) for his contribution to this
section, including his implementation of the oct-tree BRIO
computation and his ideas for optimizing it.
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Figure 10: The purely local oct-tree order runs
faster than the BRIO for the happy budda data with
pyramid, and the simplified point location scheme
(128 MB RAM).

and we can guarantee that every block has roughly the same
number of points. However, neither of these properties are
actually required, and constructing a kd-tree requires sorting
while constructing an oct-tree does not. Interestingly, the
standard UNIX sort we used thrashed on our smallest (128
MB) machine. Since the performance of the two kinds of
BRIOs were essentially the same, we prefer the oct-tree.

For all the BRIOs, we used an upper limit of 2000 points
per block. Our experience has been that block size should
be a few thousand, but the exact number does not seem to
make much difference.

After computing the oct-tree, the points are randomly
shuffled within each block. In round i, we visit each block
in turn. Within each block, we visit each uninserted point
and insert it with the appropriate probability for the round.
The overhead for visiting each point in each round is small
compared to the time required to compute the oct-tree.

The entire computation is extremely fast. We can com-
pute the BRIO on 10 million points in about 2 minutes,
including the computation of the oct-tree (on a 1.7 GHz
Pentium IV with 512 MB RAM).

9. DISCUSSION
There are a number of questions raised by this research. It

would be interesting to find a point location strategy which
is theoretically optimal but constant time in practice given
some BRIO, or even constant time in theory given some
(easily computable) BRIO.

The biasing scheme outlined in this paper is simply the
first one that we thought of. There are many others pos-
sible ways of defining blocks, or a BRIO might be based
on some fixed ordering of the points that respects locality,
such as a space-filling curve [3, 5, 27, 28]. Schemes that
take into account the layout of the data structure in virtual
memory instead of in three-dimensional space, and adaptive
schemes which use the results of early insertions to order
later insertions might be particularly effective or theoreti-
cally interesting.

Although we give the proofs in terms of the Delaunay tri-
angulation construction, the analysis applies to other simi-
lar randomized incremental constructions, in particular the
optimal construction of the trapezoidation of a set of non-
intersecting segments in the plane [12, 22, 23], and the sim-



ilar construction for intersecting segments. A drawback of
the analysis in this paper, as opposed to backwards analysis,
is that it depends on every object having the same number
of triggers. For the trapezoidation algorithm, this forces us
to again follow the older analysis [22] and count the number
of attachments (the vertical faces of trapezoids) rather than
the trapezoids themselves. The analysis in this paper must
be modified to account for the fact that objects have differ-
ent numbers of triggers. As long as the number of triggers
is bounded by some constant, we can simply analyze the
objects separately for each possible number of triggers.

We believe that this analysis can also be applied to the re-
lated randomized incremental algorithms which use tracing,
such as Seidel’s practical O(n lg∗ n) algorithm for trapezoi-
dation of a simple polygon [29]. BRIOs might also work
with the LP-type (also known as GLP, “generalized linear
programs”) randomized incremental algorithms, which opti-
mize an objective function over a set of input regions. This
might not be very interesting, however, since LP-type algo-
rithms do not build large data structures.

On the other hand, the performance of LP-type algo-
rithms can be enhanced in other ways by heuristic insertion
orders [32]. Similarly Barber’s qhull program for arbitrary-
dimensional convex hull uses a heuristic insertion order de-
signed to insert points on the convex hull early [4]. Par-
ticular biased randomized insertion orders, or some other
partially-random scheme, might allow these heuristics to be
applied while still maintaining optimality.

Devillers and Guigue [15] considered a different kind of
partially randomized insertion order, for handling construc-
tions for which the data is provided sequentially rather than
all at once. Arriving data can be stored and reshuffled (ran-
domly) in a buffer of limited size before it has to be inserted
into the data structure. They showed that the expected run-
ning time degrades as a smaller shuffling buffer is used and
the randomness is more limited. For an analysis similar to
ours to work, it seems important to have at least a random
sample of all of the points available at the beginning of the
construction. The following example illustrates this point.

Consider a set P of points in R3 distributed uniformly
at random on two squares, R1 and R2, of equal size, lying
on two parallel planes opposite to each other. Golin and
Na [19, 20] showed that not only the whole set, but also
any large enough random subset has a linear-size Delaunay
triangulation, so this is an example of the “realistic” case. In
the completed Delaunay triangulation each point belongs to
a constant number of edges, on average. Some edges connect
it to its neighbors on the same square and some connect it
to “opposite” points on the other. Now assume that the
points are provided sequentially, with all the points on R1

given first, and then the points on R2, in order of distance
from the left edge. Each new point on R2 forms tetrahedra
with its “opposite” points, and also with points on the right
side of R1 whose “opposite” points on R2 have not yet been
added; as soon as any points are added on R2, there are
edges going from R2 to all the points on R1. The points on
the right side of R1 are always connected to the right-most
points on R2. Since these right-most points are constantly
being replaced, the total number of tetrahedra created ends
up being Θ(n3/2).
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