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Abstract

We give a simple combinatorial algorithm that computes a piecewise-linear approx-
imation of a smooth surface from a finite set of sample points. The algorithm uses
Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the
algorithm correct by showing that for densely sampled surfaces, where density depends
on “local feature size”, the output is topologically valid and convergent (both pointwise
and in surface normals) to the original surface. We describe an implementation of the
algorithm and show example outputs.

1 Introduction

The problem of reconstructing a surface from scattered sample points arises in many ap-
plications such as computer graphics, medical imaging, and cartography. In this paper we
consider the specific reconstruction problem in which the input is a set of sample points S
drawn from a smooth two-dimensional manifold ¥ embedded in three dimensions, and the
desired output is a triangular mesh with vertex set equal to S that faithfully represents F'.
We give a “provably correct” combinatorial algorithm for this problem. That is, we give a
condition on the input sample points, such that if the condition is met the algorithm gives
guaranteed results: a triangular mesh of the same topology as the surface F, with position
and surface normals within a small error tolerance. The algorithm relies on the well-known
constructions of the Delaunay triangulation and the Voronoi diagram.

This paper is an extension of previous work by Amenta, Bern, and Eppstein [1] on
reconstructing curves in two dimensions. Qur previous work defined a planar graph on the
sample points called the “crust”. The crust is the set of edges in the Delaunay triangulation
of the sample points that can be enclosed by circles empty not only of sample points, but
also of Voronoi vertices. The crust comes with a guarantee: if the curve is “well-sampled”,
then the crust contains exactly the edges between sample points adjacent on the curve. Qur
notion of well-sampled, which involves the medial axis of the curve, is sensitive to the local
geometry. Hence our algorithm, unlike other algorithms for this problem, allows highly
nonuniform sampling, dense in detailed areas yet sparse in featureless areas. Any provably
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correct algorithm must impose some sampling density requirement, similar to the Nyquist
limit in spectral analysis.

The extension to three dimensions in this paper requires both new algorithmic ideas and
new proof techniques. Most notably the algorithm uses only a subset of the Voronoi ver-
tices to remove Delaunay triangles. The algorithm picks only two Voronoi vertices—called
poles—per sample point: the farthest vertices of the point’s cell on each side of the surface.
With this modification, the straightforward generalization of our two-dimensional algorithm
now works. Delaunay triangles with circumspheres empty of poles give a piecewise-linear
surface pointwise convergent to F. The poles, however, also enable further filtering on
the basis of triangle normals. Adding this filtering gives a piecewise-linear surface that
converges to F both pointwise and in surface normals (and hence in area). We believe
that poles may be applicable to other algorithms as well, perhaps whenever one wishes to
estimate a surface normal or tangent plane.

This paper is organized as follows. Section 2 describes previous work on surface recon-
struction. Section 3 gives our algorithm. Section 4 states our theoretical guarantees, and
Section 5 sketches their proofs. Section 6 shows some example outputs.

2 Previous Work

Previous work on the reconstruction problem falls into two camps: computer graphics and
computational geometry. The algorithms in use in computer graphics typically compute
an approximating surface, that is, a surface passing close by, rather than exactly through,
the original sample points. The algorithms devised by computational geometers typically
restrict attention to surfaces on the original sample points, usually a carefully chosen subset
of the Delaunay triangulation. Only recently have computational geometers started pub-
lishing algorithms with provable properties, and until this current paper these algorithms
with guarantees applied only to reconstructing curves in two dimensions.

The first and most widely known reconstruction algorithm in the computer graphics
community is the work of Hoppe et al. [19, 20, 21]. This algorithm estimates a tangent
plane at each sample using the k nearest neighbors, and uses the distance to the plane of
the closest sample point as a signed distance function. The zero set of this function is then
contoured by a continuous piecewise-linear surface using the marching cubes algorithm.
A later algorithm by Curless and Levoy [12] is designed for data samples collected by
a laser range scanner. This algorithm sums anisotropically weighted contributions from
the samples to compute a signed distance function, which is then discretized on voxels
to eliminate the marching cubes step. These two computer graphics algorithms are quite
successful in practice, but have no provable guarantees. Indeed there exist arbitrarily dense
sets of samples, for example ones with almost collinear nearest neighbor sets, for which the
algorithm of Hoppe et al. would fail.

The most famous computational geometry construction for associating a polyhedral
shape with an unorganized set of points is the a-shape of Edelsbrunner et al. [14, 15]. Like
our reconstructed surface, the a-shape is a subcomplex of the Delaunay triangulation. A
Delaunay simplex (edge, face, etc.) belongs to the a-shape of S if its circumsphere has
radius at most a. The major drawback of using a-shapes for surface reconstruction is that
the optimal value of o depends on the sampling density, which often varies over different



parts of the surface. For uniformly sampled surfaces, however, a-shapes are workable.
Bernardini et al. [7] follow a-shape-based reconstruction with a clean-up phase to resolve
sharp dihedral angles. Edelsbrunner and Raindrop Geomagic [13] are continuing to develop
a-shape-based reconstruction along with proprietary extensions.

An early algorithm due to Boissonnat [9] is related to ours. He proposed a “sculpting”
heuristic for selecting a subset of Delaunay tetrahedra to represent the interior of an object.
The heuristic is motivated by the observation that “typical” Delaunay tetrahedra have
circumspheres approximating maximal empty balls centered at points of the medial axis;
our algorithm relies on this same observation. Boissonnat’s algorithm, however, overlooks
the fact that even dense sample sets can give Delaunay tetrahedra with circumspheres that
are arbitrarily far from the medial axis; indeed it is this second observation which motivates
our definition of poles. Goldak, Yu, Knight and Dong [18] made a similar oversight, asserting
incorrectly that the Voronoi diagram vertices asymptotically approach the medial axis as
the sampling density goes to infinity.

Finally, for the two-dimensional problem there are a few recent algorithms with prov-
able guarantees. Figueiredo and Miranda Gomes [17] prove that the Euclidean minimum
spanning tree can be used to reconstruct uniformly sampled curves in the plane. Bernar-
dini and Bajaj [6] prove that a-shapes also reconstruct uniformly sampled curves in the
plane. Attali [3] gives yet another provably correct reconstruction algorithm for uniformly
sampled curves in the plane, using a subgraph of the Delaunay triangulation in which each
edge is included or excluded according to the angle between the circumcircles on either side.
Our previous paper showed that both the crust and the (-skeleton [22] (another empty-
region planar graph) correctly reconstruct curves even with nonuniform sampling. Our
two-dimensional results [1] are in this way strictly stronger than those of the other authors.

3 Description of the Algorithm

We start by describing the algorithm of Amenta et al. [1] for the problem of reconstructing
curves in IR2. Let F be a smooth (twice differentiable) curve embedded in IR2, and S be
a set of sample points from F. Let V denote the vertices of the Voronoi diagram of S.
The crust of S contains exactly the edges of the Delaunay triangulation of S U V with
both endpoints from S. Saying this another way, the crust contains exactly those Delaunay
edges around which it is possible to draw a circle empty of Voronoi vertices. In our earlier
paper, we proved that if S is a sufficiently dense sample, this simple algorithm constructs
a polygonal approximation of F' (Theorem 1 in Section 4 below).

The straightforward generalization of this algorithm fails for the task of reconstructing
a smooth two-dimensional manifold embedded in three dimensions. The problem is that
vertices of the Voronoi diagram may fall very close to the surface, thereby punching holes in
the crust. For example, the Voronoi center of a sliver can lie arbitrarily close to the surface
F. A sliver is a tetrahedron with bad aspect ratio yet a reasonably small circumradius to
shortest edge ratio, such as the tetrahedron formed by four nearly equally spaced vertices
around the equator of a sphere.

The fix is to consider only the poles. The poles of a sample point s are the two farthest
vertices of its Voronoi cell, one on each side of the surface. Since the algorithm does not
know the surface, only the sample points, it chooses the poles by first choosing the farthest



1. Compute the Voronoi diagram of the sample points S.
2. For each sample point s:

(a) If s does not lie on the convex hull of 3, let p* be the vertex of Vor(s) farthest from s.

(b) If s does lie on the convex hull of S, let p* be a point at “infinite distance” outside the
convex hull with the direction of sp™ equal to the average of the outward normals of hull
faces meeting at s.

(¢) Among all vertices p of Vor(s) such that /p*sp measures more than 7/2, choose the
farthest from s to be p—.

3. Let P denote all poles pT and p—, except those pt’s at infinite distance. Compute the Delaunay
triangulation of S U P.

4. (Voronoi Filtering) Keep only those triangles in which all three vertices are sample points.

5. (Filtering by Normal) Remove each triangle T for which the normal to T' and the vector to
the p™ pole at a vertex of T form too large an angle (greater than 6 for the largest-angle
vertex of T, greater than 30/2 for the other vertices of T').

6. (Trimming) Orient triangles and poles (inside and outside) consistently, and extract a
piecewise-linear manifold without boundary.

Figure 1. The surface reconstruction algorithm.

Voronoi vertex regardless of direction (or a fictional pole at “infinity” in the case of an
unbounded Voronoi cell), and then choosing the farthest in the opposite half-space. See
step 2 in Figure 1. Lemma 5 in Section 5 shows that this method is indeed correct for
well-sampled surfaces. Denoting the poles by P, we define the crust of S to be the triangles
of the Delaunay triangulation of S U P, all of whose vertices are members of S.

Steps 1-4 compute the crust (sometimes called the raw crust to distinguish it from the
more finished versions). The crust has a relatively weak theoretical guarantee: it is pointwise
convergent to F' as the sampling density increases. Steps 5 and 6 are “postprocessing”
steps that produce an output with a stronger guarantee: convergence both pointwise and
in surface normals, and topological equivalence.

Step 5 removes triangles based on the directions of their surface normals. Let T be a
triangle of the crust and let s be its vertex of maximum angle. Step 5 removes T if the
angle between the normal to T" and the vector from any one of T”s vertices to its first-
chosen pole is too large. The definition of “too large” depends on which vertex of T is
under consideration: for the vertex with largest angle, too large means greater than an
input parameter 6, and for the other two vertices it means greater than 36/2. Angles are
unsigned angles in the range [0,7/2]. As stated in Theorem 5, the choice of 6 is connected
with the sampling density. If the user of our algorithm does not have an estimate of the
sampling density (the parameter r in Definition 3 below), then the user can slowly decrease
0, backing off when holes start to appear in the surface, similar to choosing a surface from
the spectrum of a-shapes [15].

Step 6 ensures that the reconstructed surface has the topology of the original surface;
before this final step, the computed surface will resemble the original surface geometrically,



but may have some extra triangles enclosing small bubbles and pockets. The problem once
again is slivers: all four faces of a flat sliver may make it past steps 4 and 5.

Step 6 first orients all triangles. Start with any sample point s on the convex hull of
S. Call the direction to p™ at s the outside and the direction to p~ the inside. Pick any
triangle T" incident to s, and define the outside side of T' to be the one visible from points
on the sp™ ray. Orient the poles of the other vertices of T to agree with this assignment.
Orient each triangle sharing a vertex with T so that they agree on the orientations of their
shared poles, and continue by breadth-first search until all poles and triangles have been
oriented. Our Theorem b5, below, guarantees that this orientation is consistent.

In a triangulated piecewise-linear two-dimensional manifold, two triangles meet at each
edge, with outside sides together and inside sides together. Define a sharp edge to be an
edge which has a dihedral angle greater than 37/2 between a successive pair of incident
triangles in the cyclic order around the edge. In other words, a sharp edge has all its
triangles within a small wedge. We consider an edge bounding only one triangle to have a
dihedral of 27, so such an edge is necessarily sharp.

Step 6 trims off pockets by greedily removing triangles with sharp edges. Now the re-
maining triangles form a “quilted” surface, in which each edge bounds at least two triangles,
with consistent orientations. Finally, Step 6 extracts the outside of this quilted surface by
a breadth-first search on triangles.

4 Theoretical Guarantees

What sets our algorithm apart from previous algorithms are its theoretical guarantees. We
begin with the required sampling density, which is defined with respect to the medial axis.

Definition 1. The medial axis of a manifold F embedded in R is the closure of the set
of points in R% with more than one nearest neighbor on F.

Figure 2 gives an example of the medial axis in R?; in R?, the medial axis is generally a
two-dimensional surface. Note that we allow the surface F' to have more than one connected
component.

Definition 2. The local feature size LFS(p) at a point p on F is the Euclidean distance
from p to (the nearest point of) the medial axis.

Definition 3. Set S C F is an r-sample of F' if no point p on F is farther than r- LFS(p)
from a point of S.

Notice that the notion of r-sample does not assume any global—or even local—uniformity.
Further notice that to prove an algorithm correct, we must place some condition on the set
of sample points S, or else the original surface could be any surface passing through S. Our
paper on curve reconstruction [1] proved the following theoretical guarantee.

Theorem 1 (Amenta et al. [1]). If S is an r-sample of a curve in R? for r < .40, then
the crust includes all the edges between pairs of sample points adjacent along F. If S is an
r-sample for r < .25, then the crust includes exactly those edges.



Figure 2. The medial axis of a smooth curve.

To state our results for the three-dimensional problem, we must define a generalization
of adjacency. Consider the Voronoi diagram of the sample points S. This Voronoi dia-
gram induces a cell decomposition on surface F' called the restricted Voronoi diagram: the
boundaries of the cells on F' are simply the intersections of F' with the three-dimensional
Voronoi cell boundaries. We call a triangle with vertices from S a good triangle if it is
dual to a vertex of the restricted Voronoi diagram; good triangles are necessarily Delaunay
triangles. Our first three-dimensional result shows that good triangles deserve their name.
To our knowledge, our proof of this result is the first proof that the three-dimensional De-
launay triangulation of a sufficiently dense set of samples contains a piecewise-linear surface
homeomorphic to F'.

Theorem 2. IfS isanr-sample of F for r < .1, then the good triangles form a polyhedron
homeomorphic to F'.

Our next two theorems state the theoretical guarantees for the three-dimensional (raw)
crust.

Theorem 3. IfS is an r-sample for r < .1, then the crust includes all the good triangles.

Theorem 4. IfS is an r-sample for r < .06, then the crust lies within a fattened surface
formed by placing a ball of radius 57 LFS(q) around each point q € F.

Step 5 adds another guarantee: convergence in surface normals. The raw crust some-
times includes small skinny triangles with surface normals that deviate significantly from
the surface normals. For example, the insides of the sausages shown on the left in Fig-
ure 13 have a sort of “washboard” texture. Convergence in surface normal ensures that the
area of the trimmed #-crust converges to that of the surface, and we use it in the proof of
Theorem 6.

Theorem 5. Assume S is an r-sample and set 8 = 4r. Let T be a triangle of the 8-crust
and t a point on T'. The angle between the normal to T and the normal to F at the point
p € F closest to t measures O(4/r) radians.



Finally, the trimming or “manifold extraction” step, Step 6, adds the guarantee of
topological equivalence.

Theorem 6. Assume S is an r-sample and set 8 = 4r. For sufficiently small r, the
trimmed 6-crust is homeomorphic to F.

5 Proofs

In this section we give the proofs of the theoretical guarantees. We begin with some defi-
nitions. At each point p € F, there are two tangent medial balls centered at points of the
medial axis. The vectors from p to the centers of its medial balls are normal to F', and F
does not intersect the interiors of the medial balls. Since LFS(p) is at most the radius of
the smaller medial ball, F' is also confined between the two tangent balls of radius LFS(p).
We call these the big tangent balls at p (this is somewhat misleading since in general the
medial balls at p are bigger); we will use the big tangent balls to bound the curvature of F'
in terms of LFS(p). We call a maximal empty ball centered at a Voronoi vertex a Vorono:
ball, and the Voronoi ball centered at a pole a polar ball.

Our first lemma is rather basic: a Lipschitz condition for the LFS(p) function. We use
d(p, q) to denote the Euclidean distance from p to gq. Angles are measured in radians.

Lemma 1. For any two points p and q on F, |LFS(p) — LFS(q)| < d(p, q).

Proof: LFS(p) > LFS(q)— d(p,q), since the ball of radius LFS(q) around ¢ contains the
ball of radius LFS(q) — d(p, q) around p and contains no point of the medial axis. Similarly,
LFS(q) = LFS(p) — d(p,q)- ®

Our second lemma, is a sort of Lipschitz condition for the direction of surface normals,
which can be regarded as a function from F' to the two-dimensional sphere.

Lemma 2. For any two points p and q on F with d(p,q) < pmin{LFS(p), LFS(q)}, for
any p < 1/3, the angle between the normals to F at p and q is at most p/(1 — 3p).

Proof: Let us parameterize the line segment pg by length. Let p(¢) denote the point
on pq with parameter value ¢t and let f(¢) denote the nearest point to p(t) on the surface
F. In other words, f(t) is the point at which an expanding sphere centered at p(t) first
touches F'. Point f(t) is unique, because otherwise p(t) would be a point of the medial axis,
contradicting d(p, q) < pLFS(p).

Let n(t) denote the unit normal to F at f(¢), and |n'()| the magnitude of the derivative
with respect to t, that is, the rate at which the normal turns as ¢t grows. The change in
normal between p and ¢ is at most [, [n'(t)|dt, which is at most d(p, ¢) max; |n'(t)|.

The surface F' passes between the big tangent balls of radius LES(f(t)) at f(t), so
the greater of the two principal curvatures at f(¢) is no more than the curvature of these
tangent balls. The rate at which the normal changes with f(¢) is at most the greater
principal curvature, and hence |n'(t)| is at most the rate at which the normal turns (as a
function of ¢) on one of these tangent balls. Referring to Figure 3, we see that

dt > (LFS(f(t)) — d(f(t),p(t))) - sin6.



Figure 3. Bounding |n'(t)| in terms of the radius LFS(f(t)) and d(f(¢), p(t)).

Now sin @ approaches € as 8 goes to zero, so

[n'(6)] = lim6/dt < 1/(LFS(f(¢)) — d(f(t),p(1)))-

We have that
d(f(t),p(t)) < d(p(t),p) < pLFS(p)

and
d(f(t),p) < d(f(t),p(t)) +d(p(t),p) < 2pLFS(p),

so by Lemma 1, LFS(f(t)) > (1 — 2p)LFS(p). Altogether we obtain max; |n'(t)| < 1/((1 —
3p)LFS(p)), which yields the lemma. =

We next show that the cells of the Voronoi diagram of S are long and skinny. We let
Vor(s) denote the closure of the Voronoi cell of s, that is, all points at least as close to s
as to any other sample point. We ignore the degenerate case that Vor(s) is unbounded on
both sides of F'.

Lemma 3. Let s be a sample point from an r-sample S.
(a) On either side of F' at s, some point of Vor(s) has distance at least LFS(s) from s.

(b) The intersection of Vor(s) and F is contained in a ball of radius 1~ LFS(s) about s.

Proof: On either side of F' at s, the center ¢ of the big tangent ball of radius LFS(s)
lies within Vor(s), and hence (a) holds. For part (b), let p € Vor(s) N F. Since s is
the closest sample point to p, d(p,s) < rLFS(p) < r(LFS(s) + d(p,s)) by Lemma 1. So
d(p,s) < 1= LFS(s). n

The next lemma makes precise the idea that these long skinny Voronoi cells are perpen-
dicular to the surface.

Lemma 4. Let s be a sample point from an r-sample S. Let v be any point in Vor(s)
such that d(v,s) > vLFS(s) for v > 0. The angle at s between the vector to v and the

normal to the surface (oriented in the same direction) is at most arcsin ﬁ + arcsin 1.
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Figure 4. The vector from s to a distant Voronoi vertex such as a pole must be nearly normal to
the surface.

Proof: Let B, be the Voronoi ball centered on v. Let By, be the medial ball touching
s on the same side of the surface F', and let m be its center. Let ¢ be the angle between
the segments sv and sm, that is, the angle referred to in the lemma. Let B, be the ball of
radius LFS(s), tangent to F at s, but lying on the opposite side of F' from B,,; let p be
the center of B,,. The surface F' passes between B, and B, at s, and does not intersect the
interior of either of them, as shown in Figure 4.

Since p and v lie on opposite sides of F, line segment pv must intersect F' at least once.
Let g be the intersection point closest to p. No sample point can lie in either B, or B,, so the
nearest sample point to ¢ must be s. Since B), has radius LFS(s), d(q,s) > sin(a)LFS(s),
where « is the angle /spg. We are interested in angle /vsm, which is ¢ = a + 8. Since B,
has radius at least vLFS(s), d(q,s) > vsin(8)LFS(s), where (3 is the angle /svq. Since S
is an r-sample, d(q, s) must be less than £ LFS(s). Combining the inequalities, we obtain

a < arcsin ;- and (3 < arcsin ﬁ, which together give the bound on ¢. ®

Together Lemmas 3(a) and 4 show that the vector from a sample point to its first
pole p™ is a good approximation to the surface normal. This observation may have wider
applicability than to our own surface reconstruction algorithm; for example, the Voronoi
diagram and the poles could be used to obtain provably reliable estimates of tangent planes
in the algorithm of Hoppe et al.

Our next lemma shows that we do indeed correctly select the second pole p~. Recall
that p~ is defined to be the farthest Voronoi vertex from s on the opposite side of the
surface from p™.

Lemma 5. Let s be a sample point from an r-sample S with r < 1/3. The second pole p~
of s is the farthest Voronoi vertex v of s such that the vector sv has negative dot product
with spt.

Proof: By Lemma 3(a), d(s,p ) > LFS(s), so by Lemma 4 the angle between sp™ and
sp~ is at least m — 4 arcsin(r/(1 — 7)), so sp~ - sp™ < 0. Lemma 4 also shows that for any
Voronoi vertex v on the same side of F as p™, with d(s,v) > LFS(s), the angle between



sv and sp™ is at most 4 arcsin 1= < 7/4. Hence any v farther from s than p~ must have
sv-spT >0.

Our next lemma bounds the angle between the normal to a good triangle and the surface
normals at its vertices.

Lemma 6. Let T be a good triangle and s a vertex of T with angle at least w/3, and
choose r < 1/7. (a) The angle between the normal to T and the normal to F at s is at
most arcsin(v/3r/(1 — r)). (b) The angle between the normal to T and the normal to F at
any other vertex of T' is at most 2r/(1 — 7r) + arcsin(v/3r/(1 — 7)).

Proof: For part (a), let C be the circumcircle of T' and let p¢ be its radius. Consider the
balls of radius LFS(s) tangent to F' at s on either side of F. These balls intersect the plane
of T in “twin” disks of common radius pp, tangent at point s, as shown in Figure 5. Our
first aim is to bound pp in terms of pc.

Since the balls of radius LFS(s) are empty of sample points, the twin disks cannot
contain vertices of 7. In order to maximize pp relative to pc, we assume that the twin
disks pass through the vertices of T and that the angle at s measures exactly 7/3. Now
it is not hard to show that pp is maximized exactly when T is equilateral: if we move s
away from the midpoint of the arc covered by the twin disks, keeping the twin disks passing
through the vertices of T', the radius pp decreases, until s reaches one of the other vertices
of T'and pp = pc. Since the worst-case configuration is equilateral T', we can conclude that
pB < V3pc.

We can bound these radii in terms of LFS(s). Let u denote the restricted Voronoi
diagram vertex dual to 7. Since u lies on the line through the center of C' normal to
the plane of C, pc < d(u,s). By Lemma 3(b), d(u,s) < = LFS(s), so altogether pp <
V3rLFS(s)/(1 —7).

Now to find the angle between the normal to 7' and the normal to F' at s, we consider
one of the big tangent balls B at s. Let m denote the center of B and v denote the center of
the disk of radius pp that is the intersection of B with the plane of T', as shown in Figure 5.
The segment sm is normal to F' at s and the segment muv is normal to 7', so the angle we
would like to bound is /smwv. The triangle smuv is right, with hypotenuse of length LFS(s)
and leg opposite Zsmv of length pp < /3rLFS(s)/(1 —r). Hence /smv measures at most
arcsin(v/3r/(1 — 7).

For part (b), let s’ be one of the other vertices of T'. Since T is a good triangle, s and s’
are neighbors in the restricted Voronoi diagram. Let p be a point on the boundary of both
restricted Voronoi diagram cells. Then

d(p,s) < rLFS(p) < %T min{LFS(s), LFS(s')}.

So d(s,s') < £ min{LFS(s), LFS(s')}. By Lemma 2, the angle between the normals to F
at s and s’ is at most 2r/(1 — 7r) forr < 1/7. n

We need one more lemma for the proof of Theorem 2. This lemma is a topological result
concerning the medial axis that may be independently useful.

Lemma 7. If a ball B intersects surface F in more than one connected component, then
B contains a point of the medial axis of F'.

10



Figure 5. Bounding the angle between the normal to the triangle and the normal to the surface at s.

Proof: Assume B N F has more than one connected component. Let ¢ be the center of
B and p the nearest point on F to ¢. If p is not unique, then ¢ is a point of the medial
axis and we are done. Let g be the nearest point to ¢ in a connected component of B N F
that does not contain p. Imagine a point ¢ moving from ¢ towards ¢ along segment cq.
Throughout this journey, ¢’ is closer to ¢ than to any point outside B, so the closest point
on F to ¢’ must be some point of BN F. At the beginning of the journey, the closest point
to ¢’ is p and at the end it is g, so at some critical ¢’ the closest point must change connected
components. Such a ¢’ is a point of the medial axis.

We now give the proof of Theorem 2: the good triangles form a polyhedron homeomor-
phic to F. The proof relies on the lemmas above along with a result of Edelsbrunner and
Shah [16].

Proof of Theorem 2: The theorem of Edelsbrunner and Shah tells us that it suffices to
show that S has the following closed-ball property: the closure of each k-dimensional face,
1 < k < 3, of the Voronoi diagram of S intersects F' in either the empty set or in a closed
(k — 1)-dimensional topological ball.

Let s be a sample point and Vor(s) its Voronoi cell. Let the direction of the normal to F
at s be vertical. Lemma 3(b) shows that Vor(s) N F is small, fitting inside a ball B around
s of radius 1= LFS(s). Now Lemma 7 shows that F'N B has a single connected component,
and Lemma 2 with v = r/1 — r shows that F' N B is nearly horizontal, more precisely, the
normal to F'N B is nowhere farther than /(1 — 4r) < 1/6 radians from vertical, assuming
r < .1. These statements in turn imply that F N B is a topological disk; it cannot have
a handle since it is everywhere nearly horizontal, and it cannot have a hole because its
boundary is confined to the “low latitudes” of B.

First consider an edge e of Vor(s), that is, the case k = 1. If e has nonempty inter-
section with F, then e is normal to the good triangle 7" dual to its intersection point. By
Lemma 6(b), e must be within 2r/(1 — 7r) + arcsin(v/3r/(1 — r)) radians from the normal
to F' at s. For r < .1, this expression is less than .9, so e is within .9 radians from vertical,
and consequently can intersect F' only once within B.

Next consider a face f of Vor(s), that is, the case k = 2. Face f is contained in a
plane h, the perpendicular bisector of s and another sample point s’, where ss’ is an edge
of a good triangle. Plane h must contain a vector parallel to the normal of T', so again
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Lemma 6(b) establishes that the angle between h and the surface normal at s, and hence
between f and the surface normal at s, is at most .9 radians when r < .1.

Consider a single connected component C' of f N F, a nearly horizontal curve drawn
across the face f. Let H be the set of points p in B \ C such that the line segment from p
to its closest point on C forms an angle smaller than .2 radians with horizontal. (Set H is
a union of wedges with vertices on the curve C.) We assert that all points of (F N B)\ C
lie in H. We prove this assertion by showing that F' N B cannot cross the boundary of H.
Assume (F N B) \ C does contain a point p on the boundary of H. Let g be the closest
point of C to p. The vertical plane P through p and ¢ intersects F N B in a curve. By the
Mean Value Theorem there must be a point along this curve at which the tangent forms
an angle greater than .2 radians with horizontal; the normal to F' at this point must be at
least .2 radians from vertical, a contradiction.

We further assert that all points of f N B lie outside of H. Face f lies in a plane within
.9 radians of vertical, and within a strip on this plane bounded by lines within .9 radians
of vertical. All shortest segments from points of f to C lie within this strip, and hence are
within .9 radians of vertical. Since f lies outside H and F' inside H within B, C must be
the only connected component of f N F, so f N F is a topological 1-ball.

Finally consider Vor(s) itself, the case k¥ = 3. Consider any connected component C
of the intersection of F' N B and the Voronoi cell. As in case of k = 2, let H contain each
point that can be connected to its closest point of C' by a line segment forming an angle
smaller than .2 radians with horizontal. The same argument as above shows that F' N B
cannot cross the boundary of H. Since each point along a face of Vor(s) intersecting F' can
be connected to its closest point of C' by a segment within .9 radians of vertical, the same
is true of an interior point of Vor(s). Since F' N B is confined to one piece of B\ C' and
Vor(S) to another, we can conclude that C' is the only connected component of F'N Vor(S).

Aiming for a contradiction, assume that C is a topological disk with holes. Consider
any vertical plane P that meets two components of the boundary of C' at angles at least
w/2 — 1/6. (To find such a plane, we could project the two boundary components onto
a horizontal plane, and then sweep around a normal to one closed curve in order to find
a line meeting each closed curve perpendicularly.) As shown in Figure 6, within plane P
the boundary of Vor(s) meets F' at an angle larger than 1.07, extends some distance on
the other side of F', and then recrosses F' again at 1.07 from vertical. (Why 1.077 The
face of Vor(s) is within .9 of vertical as above, and .17 > 1/6 is added for P’s deviation
from perpendicularity with the face.) Since the tangent to F' N P is everywhere within 1/6
radians of horizontal, if F' recrossed Vor(s) within P, then PN Vor(s) would be nonconvex,
a contradiction.

Finally C cannot have a handle because it is a piece of the topological disk F'N B. Hence
C must itself be a topological disk and we are done. =

Next we give a proof of Theorem 3: the raw crust contains all the good triangles. The
intuition behind this proof is that restricted Voronoi cells are small and poles are far away,
so that the ball centered at a vertex w of the restricted Voronoi diagram, passing through
the three sample points whose cells meet at u, must be empty of poles.

Proof of Theorem 3: Let T be a triangle dual to a vertex u of the restricted Voronoi
diagram. Consider the ball B, centered on u with boundary passing through the vertices
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Vor(s)

Figure 6. A vertical cross-section of F' N Vor(s) shows the impossibility of a disk with a hole.

of T. Since T is a Delaunay triangle, B, contains no point of S in its interior. Since S is
an r-sample of F' for r < 1, the radius of By, is less than rLFS(u). By the definition of
LFS, even the larger ball B], of radius LFS(u) centered on u cannot contain a point of the
medial axis.

Now assume that B, contains a pole v of a sample point s. We will show that under
this assumption, first, that B, must contain a point of the medial axis, and second, that
the polar ball B, must be contained in B),, thereby giving a contradiction. In particular,
B, must contain the center m of the medial ball B,,, at s that is on the same side of F' as v.
Notice that m necessarily lies in Vor(s) and ball B, has radius at least LFS(s), while the
radius of B, is at least that of By, (by Lemma 3). By Lemma 4, /msv measures at most
2arcsin 1—, which is less than .23 for »r < .1. A calculation shows that B, must contain
the medial axis point m.

Since v lies in B,,, the radius of B, is no greater than the distance from v to the nearest
vertex of T, which is at most 2rLFS(u) since S is an r-sample. Since d(u,v) < rLFS(u),
ball B, lies entirely within B, since 3rLFS(u) < LFS(u). ®

We now move on to the proof of Theorem 4. Let s be a sample point and v a pole of
s. We shall define a forbidden region inside polar ball B,, which cannot be penetrated by
large crust triangles.

Let B, be the big tangent ball at s, on the same side of F' as v, and let B;, be the big
tangent ball on the other side, with F' passing between them. Let B be the ball concentric
with B, with radius (1 — a)LFS(s), as shown in Figure 7(a); a is a constant that will be
chosen later. Notice that Lemma 3(a) shows that the radius of B, is at least that of B.

Definition 4. The reflection of a point t through B, is the point t' along ray vt such
that line segment tt' is divided into equal halves by the boundary of B,. The spindle of
s is {t € B, | segment tt' intersects B}, that is, all points in B, whose reflection lies in or
beyond B.

The spindle is shaded in Figure 7(a). Our plan is to confine large crust triangles between
the union of spindles on each side of F' as shown in Figure 7(b). (Small crust triangles lie
within the fattened surface simply due to their size.) We start by proving two lemmas
about spindles: they are indeed forbidden regions, and they have relatively “flat” bottoms,
meaning that their width does not shrink with shrinking r.

Lemma 8. No crust triangle T whose Delaunay ball By has radius greater than 5r LFS(s)
can penetrate the spindle of s.
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Figure 7. (a) The Delaunay ball Br of a triangle intersecting the spindle must contain a big patch
of surface F'. (b) Spindles of sample points fuse so that all triangles must lie close to F.

Proof: Assume t is a point inside B, on a crust triangle 7' with Delaunay ball By. We
first assert that Bp contains the reflection point #. Let H be the plane containing the
intersection of the boundaries of B, and Bp. Since the vertices of T' lie on By outside B,,
T must be contained in the closed halfspace bounded by H not containing v. It suffices to
prove the lemma for the case in which ¢ lies right on H, as the reflection of any ¢ in the
interior of the halfspace lies between H and a reflection of a point on H.

We may also assume that ball Br passes through v, since if we replace B with the ball
that touches v and has the same intersection with H, the part of By outside B, shrinks
(making things harder for our lemma).

Now consider any plane containing line vt. Balls B, and Br intersect this plane in
circles and plane H intersects in a line containing the mutual chord of these circles. See
Figure 8(a).

Assume w.l.o.g. that the cross-section of B, is the unit circle with center v = (0,1). Let
t = (0,y¢). Denote the center and radius of Br’s cross-section by (x,y) and p. Since ¢ lies
along the mutual chord, it has equal “power distance” to (0,1) and (z,y):

(IT—y)’—1 =2+ (@y—w)’—p°

2

Substituting (1 — y)? for p?> — z2, we obtain

¥ — 2y = (y—y)’ — (1—y)>

which simplifies to y = (1 —2y;)/(2 — 2y;¢). Thus the centers of all possible By circles lie on
the same horizontal line, as shown in Figure 8(b).

Any Br passes through the reflection of (0,1) across the horizontal line, the point
(0,(1 —2y¢)/(1 —y;) — 1). For any value of y; < 1, (1 —2y)/(1 —y;) — 1 < —yy, so Br
contains ' = (0, —y;).
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By

Figure 8. (a) Br must contain reflection point ¢'. (b) The family of possible Br circles.

Thus if the original point ¢ lies within the spindle of s, then Br must intersect B, the
ball concentric with B,,. Aiming for a contradiction, assume that ¢t does indeed lie within
the spindle of s. Then By penetrates each of B, and B,, “deeply”, at least rLFS(s) into
each of these balls. Consider the disk D,, bounded by the circle that is the intersection of
the boundaries of By and B,,,. Using the facts that the radius of By is at least 57 LFS(s),
the radius of B, at least LFS(s) > 15rLFS(s), and the fact that Br cuts at least rLFS(s)
into B,,, we can calculate that D, has radius at least 2.57 LFS(s). There is an analogous
disk D,, bounded the intersection of the boundaries of B, and B,,, with radius at least
2.5rLFS(s).

We now assert that there exists a point ¢ € F N (B U By,), with d(c,s) < v2LFS(s),
such that the ball of radius 2.5rLFS(s) around ¢ contains no sample points. Surface F'
is confined between B, and B}, and hence must cross By U B, “deeply”, meaning that
some point of F' inside By U B, must be at least distance 2.5 LFS(s) from the boundary
of By U B,. Moreover, there is a deep point no farther than v/2LFS(s) from s, since By
intersects both shrunken ball B and the spindle of s. (If we take s to be the north pole of
B,,, then the worst case would be a very large Br with deep point nearest the equator of
B,..)

Now since d(c, s) < v/2LFS(s), LES(c) < (1++/2)LFS(s). We have obtained a contra-
diction to F being r-sampled. =

The next lemma shows that spindles have flat bottoms. In this lemma we assume that
B and B, have equal radius. It is not hard to confirm that this assumption is worst case:
a larger B, just gives a larger, flatter spindle.

Lemma 9. Assume that B and B, are unit balls, and that the distance between them is
at most § < .06. Let t be a point outside B and outside the spindle induced by B in B,.
Let p be the closest point on B to t. If |Lomp|, the measure of Zomp in radians, is less than
.20, then d(t,p) < 6 + |/omp]|.

Proof: Assume v has coordinates (0,1). The worst case for the lemma occurs when
6 assumes its maximum value, as larger § means a higher and narrower spindle, thereby
maximizing d(t, p) relative to § + |Zomp|. So assume m has coordinates (0, —1.06).
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Figure 9. The spindle curves gradually, so ¢ must be close to B.

Draw the .20-radian ray with origin m and the .32-radian ray with origin v as shown in
Figure 9. The rays intersect at a point  with coordinates about (.259,.218). By computing
the distances to the boundaries of B, and B along ray vz, we can confirm that x lies inside
the spindle. Thus the boundary of the spindle lies below x on the .20-radian ray with origin
m. Assume t and p are at the extremal positions allowed by the lemma, so that ¢ is on the
boundary of the spindle and |Zomp| = .20. The distance from z to m is less than 1.252, so
d(t,p) — 0 < .192 < |/omp|. Since d(t,p) increases ever more rapidly as |/omp| increases,
this inequality also applies to points ¢ and p such that |Zomp| < .20 as well. =

We are now in a position to finish the proof of the theorem: all crust triangles lie within
the fattened surface formed by placing a ball of radius 57 LFS(q) around each point g € F.

Proof of Theorem 4: Let By be the Delaunay ball of the crust triangle containing
point t. Let s be the sample point nearest ¢t. If Br has radius less than 5rLFS(s), then
there is nothing to prove, since s itself could be the ¢ of the theorem.

So assume Br has radius at least 5rLFS(s). Let B,, B,,, and B be the polar ball of s,
the tangent ball of radius LFS(s) on the opposite side of F', and the concentric ball with
radius reduced by rLFS(s) as in Figure 10. Let o and o' be the points of lune B,, N B,
closest to the centers of B, and B,, respectively. Surface F' could pass through the point
o', and if it did, s would necessarily be the closest sample point to o', since B, and B, are
both empty. Hence by Lemma 3(b), d(s,0’) < rLFS(s)/(1 —r). Since B, has radius at
least that of B,,, d(s,0) < d(s,0).

Let p and p' be the closest points to t on B and B,,, respectively, and let g be the point of
F on line pt closest to t. Hence d(t,q) < d(p,t). By an argument analogous to that used for
o, d(s,p') <rLFS(s)/(1—r), and so by the triangle inequality, d(o,p') < 2rLFS(s)/(1—r).
So Zomp' < 2arcsin(r/(1—r)), which for r < .06, is less than .20 radians. The set-up satisfies
the hypotheses of Lemma 9, only with radii scaled by (1 — r)LFS(s).

By Lemma 8, ¢t must lie between the spindle and B,,. Applying Lemma 9,

d(t,p) < rLFS(s)+ |Lomp|(1 —r)LFS(s).
We now use the fact that |Zomp| < 2arcsin(r/(1 — 7)) < 3r, to obtain
d(t,p) <rLFS(s)+ 3r(1 —r)LFS(s) <4rLFS(s).
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Figure 10. Crust point ¢ must be near surface point q.

Finally, d(s,q) < rLFS(s)/(1 —r), so by Lemma 1, LFS(q) > (1 —2r)LFS(s)/(1 —r), and
hence 5rLFS(q) > d(t,p) > d(t,q). n

Let T be a triangle of the #-crust with 8 = 4r, ¢ be a point on 7', and p be the closest
point to t on F. Theorem 5 states that the angle between the normal to 7" and the normal
to F' at p measures O(4/r) radians.

Proof of Theorem 5: First, we establish the easier claim that at each sample point s,
the normals to incident #-crust triangles do not deviate by more than O(r) radians from the
normal to F'. This statement follows from the fact that Step 5 of the algorithm removes each
triangle around s whose normal forms an angle larger than 67 with the vector to the pole. By
Lemma 4, the pole vector deviates from the normal to F' by at most ¢ = 2arcsin(r/(1—7)),
so that ¢ < 1.3r for r < .06.

Now let ¢ be any point on a -crust triangle T', and let p be the closest point on F to t.
By Theorem 4, d(t,p) < 5rLFS(p). Let s denote the closest vertex of T' to ¢, C' the radius of
T’s circumcircle, and p the radius of T’s Delaunay ball By. If C' < /rLFS(s) then d(s,p)
is O(4/r), and Theorem 5 follows from Lemma 2 and the bound on .

So assume C and hence p is at least /rTLFS(s). Let ¢ denote the angle between the
normal to F at s and the vector from s to the center v of By. Lemma 4 with v = /r
implies that ¢ < 24/7/(1 —r) radians. Next let § denote the angle between the normal to T’
at s and the vector from s to v, as shown in Figure 11. Angle § < ¢+, where v, as above,
is the angle between the normal to the surface at s and the normal to T'. Since ¥ = O(r),
we can conclude that § < 24/r for small enough r.

Now C = psind, so p = C/sind > LFS(s)/2. Thus the assumption that C is large
(at least /rLFS(s)) shows that p must be very large (at least LFS(s)/2). We can now
return to Lemma 4 with v = 1/2. This time we obtain an upper bound of O(r) on ¢ and
d, and a lower bound of Q(LFS(s)/+/r) on p. (Sadly, we cannot repeat this trick to inflate
p indefinitely, since 1 remains O(r).)

Notice that since § is O(r), the plane containing 7' cuts a small spherical cap on Br,
one subtending solid angle of only O(r). This means that 7' itself is small with respect
to Br; the point ¢ € T can be at most O(rp) from a vertex s, bounding (by Lemma 1)
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Figure 11. Repeated use of Lemma 4 shows that if triangle T is large By must be enormous.

LFS(t) < O(rp) + LFS(s), which is O(y/rp). And since ¢ is within 5rLFS(p) of p, LFS(p)
is O(y/rp) as well.

Now assume that the normal to F' at p deviates from the normal to T by Q(1/7), and con-
sider the big tangent balls of radius LFS(p) at p. The point p is close — within O(rLFS(p))
— to the surface of Br, while the radius of Br is much larger — p = O(LFS(p)/+/r) — than
the radius of the big tangent balls at p. For some small enough value of r, the big tangent
balls intersect By in circular patches of radius Q(/r) LES(p). As in the proof of Lemma 8,
F' is confined between these two balls, so there must be a similar-size patch of F' inside
Br, and hence empty of sample points, which gives a contradiction to S being an r-sample.
This contradiction establishes Theorem 5. =

Finally, Theorem 6 states that for sufficiently small r, the trimmed 6-crust is homeo-
morphic to F.

Proof of Theorem 6: We first prove that the (untrimmed) 6-crust still contains all the
good triangles. Since Theorem 3 shows that the raw crust contains all the good triangles,
we only need to show that each good triangle passes the filtering-by-normal step. Let T
be a good triangle and s its vertex of maximum angle. By Lemma 6(a), the angle between
the normal to T and the normal to F at s measures at most arcsin(y/3r/(1 — r)) radians.
By Lemma 4, the angle between the pole vector at s and the normal to F' at s measures
at most 2arcsin(r/(1 — r)). Combining these two bounds, the angle between the normal
to T and either pole vector at s must be less than 4r = 6. Similarly, Lemmas 6(b) and 4
combine to show that the angle between the normal to T" and the pole angle at any other
vertex of T is at most 2arcsin(r/(1—r)) +2r/(1—7r) +arcsin(v/3r /(1 —r)) radians, which,
for small enough r, is less than 6r = 36/2.

We must now show that the trimming operation (Step 6) produces a set of triangles
with the same topology as the good triangles. Let s be a sample point, and assume the
normal to F at s is vertical. Step 5 ensures that for » < .06, all triangles around s remaining
after Step 5 have normals within .5 radians of vertical. By Lemma 4, the vector from s to
one of its poles is within .2 radians of vertical. Since .5+ .2 < 7/2, the vertex-to-triangle
breadth-first-search in Step 6 orients triangles consistently: the orientations do not depend
on the actual search order, and at each vertex they agree with an orientation of F.
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Figure 12. A reconstructed minimal surface along with the poles of sample points. The crust contains
exactly the original triangles. (Sample points courtesy of Hugues Hoppe)

After all triangles with sharp edges have been removed, all walks along the remaining set
of triangles, that do not pierce a triangle, must run along either only inside or only outside
sides of triangles. Good triangles cannot have sharp edges, since the dihedral between
adjacent good triangles is less than 7/2, and hence are never removed.

Consider the mapping that takes each point of space to its closest point on F. We claim
that the restriction of this mapping to the trimmed #-crust is a homeomorphism. Since the
good triangles survived up until the final breadth-first-search, the trimmed 6-crust contains
a set of triangles homeomorphic to F' and at least one point of the trimmed 6-crust is
mapped to each point of F. By Theorem 5 each triangle is nearly parallel to F', so the map
is one-to-one on each triangle. And because the triangles are consistently oriented, points
on two different triangles cannot map to the same point on F. n

6 Implementation and Examples

Manolis Kamvysselis, an undergraduate from MIT, implemented steps 1-4 of the crust
algorithm during a summer at Xerox PARC. We used Clarkson’s Hull program [11] for
Delaunay triangulation, and Geomwview [23] to visualize and print the results. We used
vertices from pre-existing polyhedral models as inputs, in order to compare our results with
“ground truth”. A companion paper [2] reports on our experimental findings.

The only tricky part of the implementation was the handling of degeneracies and near
degeneracies. Our test examples, many of which started from approximately gridded sample
points, included numerous quadruples of points supporting slivers. Kamvysselis incorpo-
rated an explicit tolerance parameter ¢; the circumcenter of quadruples within e of cocircu-
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Figure 13. The raw crust contains some extra triangles linking the sausages; this defect is corrected
by step 5. (Sample points courtesy of Paul Heckbert)

larity was computed by simply computing the circumcenter of a subset of three. This “hack”
did not affect the overall algorithm, as these centers were never poles. Running time was
only a little more than the time for two three-dimensional Delaunay triangulations. Notice
that the Delaunay triangulation in step 3 involves at most three times the original number
of vertices.

Figure 14. (a) The pig sample set contains 3511 points. (b) A close-up of the front feet shows an
effect of undersampling. (Sample points courtesy of Tim Baker)

Figure 12 shows an especially advantageous example for our algorithm, a well-spaced
point set on a smooth surface. Even though our algorithm is not designed for surfaces with
boundary, it achieves perfect reconstruction on this example. Of course, the trimming step
should not be used in reconstructing a surface with boundary.

Figure 13 shows an effect of undersampling. (We say we have undersampled if the
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sample set is not an r-sample for a sufficiently small r.) In this example, the raw crust
contains all the good triangles, along with some extra triangles. The extra triangles turn
separated sausages into link sausages, and as mentioned above roughen the inside surfaces of
the sausages. Both of these defects are corrected by step 5, filtering by normals. Figure 14
shows another effect of undersampling: missing triangles around the chest and hooves. Some
sample points are not “opposed” by samples on the other side of these roughly cylindrical
surfaces; hence Voronoi cells extend too far and poles filter out some good triangles. An
r-sample for a sufficiently small » would be very dense near the hooves, which include some
rather sharp corners.

7 Conclusions and Future Work

In this paper we have given an algorithm for reconstructing an interpolating surface from
sample points in three dimensions. The algorithm is simple enough to analyze, easy enough
to implement, and practical enough for actual use.

Our previous paper [1] gave two provably good algorithms for reconstructing curves in
two dimensions, one using Voronoi filtering as in this paper, and the other using the -
skeleton. It is interesting to ask whether the §-skeleton can be generalized to the problem
of surface reconstruction. (We know that the most straightforward generalization of the
B-skeleton does not work.)

Another interesting question concerns the generalization of Voronoi filtering to higher
dimensions. Manifold learning is the problem of reconstructing a smooth k-dimensional
manifold embedded in IRY. This problem arises in modeling unknown dynamical systems
from experimental observations [10]. Even if Voronoi filtering can be generalized to this
problem, its running time for the important case in which k£ < d would not be competitive
with algorithms that compute triangulations only in k-dimensional subspaces [10], rather
than in R%.

Along with the two theoretical open questions outlined above, there are several quite
practical directions for further research on our algorithms. What is the empirical maximum
value of r for which our algorithm gives reliable results? We believe that the value of r < .06
in Theorem 4 is much smaller than necessary. Is the crust useful in simplification and
compression of polyhedra? Can the crust be extended to inputs with creases and corners,
such as machine parts? Can the crust be modified for the problem of reconstruction from
cross-sections, in which the input is more structured than scattered points?
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