
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
SBIM 2013, June 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2205-8/13/07 $15.00

Surface Patches for 3D Sketching

Fatemeh Abbasinejad∗

University of California at Davis
Pushkar Joshi

Motorola Mobility†
Cindy Grimm

Oregon State University
Nina Amenta Lance Simons

University of California at Davis

Figure 1: The 3D sketch on the left implies a surface consisting of eight patches, four of which are complex and highly non-planar. Our system
automatically divides these complex patches into smaller ones that are simpler and therefore easier to tessellate (middle). Displaying the
simplified patches (right) during interactive sketching can both improve visualization and provide new opportunities for natural interaction,
such as sketching on the resulting patches.

Abstract

3D sketching is an appealing approach for creating concept shapes
in the early stages of design. While curve networks alone can con-
vey shape, surfacing the network can dramatically help with visu-
alization and interaction. Unfortunately, surfacing a curve network
is an inherently ambiguous problem, and even if the correct surface
patches are identified, they can have an arbitrarily complex 3D ge-
ometry, making it challenging to produce a reasonable tessellation.
In this paper we address the problem of creating light-weight sur-
face tessellations on the fly. Our approach is to identify potential
patches in the curve network, and then break complicated patches
into simpler ones which can be tessellated using any simple algo-
rithm. Our surfacing approach relies on the observation that break-
ing a complicated patch into a set of nearly planar ones with small
total area seems to create a simple, natural-looking surfaces. We
demonstrate our approach on curve networks generated by two dif-
ferent 3D sketching systems.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Modeling packages;

Keywords: Curve-based modeling, Sketching 3D curves, Surface

∗e-mail:fabbasinejad@ucdavis.edu
†now at Google Inc.

patches

1 Introduction

Three-dimensional modeling remains very difficult, despite years
of research and development. Recently, tools for three-dimensional
curve drawing [Wesche and Seidel 2001; Bae et al. 2008; Schmidt
et al. 2009; Grimm and Joshi 2012] have introduced a new
paradigm that leverages the artist’s two-dimensional drawing skills
to allow them to sketch networks of space curves in three dimen-
sions. These interfaces seem to be particularly effective for ideation
of concept shapes in the early phases of design. Enhancing the
artist’s creativity and flow is essential to this process, meaning that
the drawing interface should be as un-cluttered as possible.

A natural goal is to automatically surface these three-dimensional
sketched curve networks to create models. Creating these surfaces
on the fly during the curve drawing process itself would help the
designer in several ways as they build up a sketch. Displaying the
shape and topology of the partially inferred surface would show
how the system interprets the drawing so far, providing guidance on
what needs to be filled in. By introducing occlusion and shading,
the surface visually clarifies the three-dimensional structure of the
curve network. And finally, providing surfaces on which to draw
enables an interface with which the artist can sketch initial curves

53

(a)

(b)

(c)

(d)

Figure 2: Four methods to create a surface approximation for a
single, complex patch boundary: (a) the lofting curve networks of
[Schaefer et al. 2004] (b) the recent design-driven quadrangulation
of [Bessmeltsev et al. 2012], which produces an approximation to a
ruled surface but not the one of minimal area (c) linearized Lapla-
cian smoothing [Abbasinejad et al. 2011], which approximates the
minimal (general) surface, and (d) our method, which approximates
the minimal ruled surface.

with unambiguous depth, similar to the temporary planes and sur-
faces already used by sketching programs [Bae et al. 2008; Schmidt
et al. 2009; Grimm and Joshi 2012]. Surfaces could even be used
to create physical prototypes through 3D printing.

Unfortunately, inferring surfaces from sketches, especially partial
ones, is difficult, since the shape implied by a network of uncon-
strained space-curves is often ambiguous, both topologically and
geometrically. For example, it is not clear which of the cycles in
a curve network are intended to bound surface patches. This prob-
lem was recently addressed by Abbasinejad et al. [2011]; we build
on their approach, using their system to identify cycles bounding
potential surface patches. Once a cycle has been identified there is
still the problem of constructing a patch surface that has that bound-
ary. Complicated patch boundaries in R3 can, unfortunately, have
many possible surface interpretations, with very different geome-
try (see Figure 2). Given only a closed cycle and knowing nothing
else about the designer’s intent, our focus in this paper is to quickly
produce as simple a surface as we can.

A curve cycle that is nearly planar and has a convex boundary is
easy to tesselate (that is, create a surface mesh for), and there are
many techniques for doing so. We focus here on the highly non-
planar, non-convex, and geometrically complicated patch bound-
aries that are difficult to tessellate directly with any current tech-

Figure 3: A twisted ribbon segmented using different values of the
parameter α, which balances the cost of adding a new chord with
the improvement in the flatness of the resulting sub-cycles; as α
increases, the number of chords selected decreases. From top to
bottom, α = 0, α = 0.2 and α = 0.4.

nique (see Section 2).

Our contribution is that we provide a light-weight approximation
of an appropriate surface patch which can be computed quickly and
used during interactive sketching. This output is not necessarily
a final, high-quality surface, although it could certainly serve as
an input or a hint for a higher-quality surface generation method.
Using curve networks produced using two different sketching sys-
tems, ILoveSketch [Bae et al. 2008] and JustDrawIt [Grimm and
Joshi 2012], we demonstrate that we produce simple, intuitively
reasonable surfaces, even given quite complex boundary cycles.

Rather than numerically optimize a mesh, which might be pro-
hibitively slow, our approach is to divide the complex patches into
simpler ones, each of which can be easily tessellated. Of course,
there are many ways to do this. We show that optimizing for a
small number of nearly planar sub-patches, with small total area,
produces a reasonable surface approximation even for very com-
plicated patches. This method approximates computing a minimal
ruled surface. Our method has one main parameter that can be
tuned.

2 Related Work

Many systems that provide sketching interfaces for designing sur-
faces in R3 have been developed, including [Zeleznik et al. 1996;
Igarashi et al. 1999; Nealen et al. 2007; Rivers et al. 2010; Schmidt
et al. 2006; SketchUp 2012]. In these systems the user explicitly
creates and interacts with surfaces using sketching and other con-
trols. We are interested in supporting systems, eg. [Wesche and
Seidel 2001; Bae et al. 2008; Schmidt et al. 2009; Grimm and
Joshi 2012], that allow the user to sketch curves in three dimen-
sions, without explicitly creating surfaces. These interactive sys-
tems produce networks of space curves, rather than surface or solid
models.

These systems raise the question of how to tessellate a non-planar
patch boundary. Advancing front propagation methods construct
the patch surface by inward propagation of rays or flow lines from

54

(a)

(c)

(b)

Figure 4: Simplifying complex surface patches: The input curve network of the “roadster” model from the collection of ILoveSketch [Bae
et al. 2008] models is shown in (a), and the steps of our algorithm on two of the complex patches in (b) and (c). Directly tessellating surface
patches bounded by complex cycles results in surfaces that are clearly inconsistent with the designer’s intentions (b and c, left). The first step
in the decomposition of the complex cycles is to select a set of candidate chords (second column, b and c). From this set we find an optimal
subset of chords with respect to a heuristically chosen function, producing nearly-planar parts (third column). These are easily tessellated
(fourth column).

the boundary. The design-driven quadrangulation of [Bessmeltsev
et al. 2012] is a state-of-the-art method, inspired by the same prob-
lem we address. It uses flow lines between matched pairs of patch
boundary segments. The combinatorial problem of finding an ap-
propriate matching is difficult for complex and especially irregu-
lar cycle boundaries, but in situations where the designer’s inten-
tion is clearly represented by paired boundary curves, the resulting
surfaces are excellent. Another successful approach is the lofting
curves method [Schaefer et al. 2004]. It uses subdivision to con-
struct smooth surfaces by tessellating n-sided patches. In Figure 2,
we show the results of both [Bessmeltsev et al. 2012] and [Schae-
fer et al. 2004], as well as the simple linearized Laplacian smooth-
ing included with [Abbasinejad et al. 2011], on a difficult example
patch from one of the ILoveSketch [Bae et al. 2008] models. Given
the patch boundary, all the previous methods produce unnecessarily
complex and unsatisfactory surfaces.

Our approach is similar to that of Rose et al. [2007], who used de-
velopable surfaces. They use optimization to select a developable
surface that includes many triangles of the convex hull of the in-
put cycle. We use the somewhat broader class of ruled surfaces (a
bilinear surface, for example, is ruled but not developable), within
which we optimize for minimal area. Minimizing area over the
class of ruled surfaces gives a different result than minimizing area
over all surfaces (eg. via Laplacian smoothing). A minimal-area
triangulation is the solution to the discrete version of this problem,
and it can be computed by dynamic programming, as shown by
Barequet and Sharir [1995], but this O(n3) time algorithm is not
usable in interactive situations. Instead, we build a much rougher
heuristic approximation to the minimal-area ruled surface by com-
puting a decomposition of a complex cycle boundary into a small
number of nearly-planar patches. Although in practice we examine
many fewer sub-problems than would be required for a complete
triangulation, we can no longer guarantee that the number of sub-
problems is polynomial, so we do not get a polynomial bound on
the running time. Of course, the fact that our algorithm is poten-

tially exponential does not imply that an efficient polynomial-time
approximation to the minimal-area ruled surface does not exist.

There are a variety of other non-optimization approaches as well.
The linearized Laplacian method used in [Abbasinejad et al. 2011]
projects the cycle to the plane, meshes the interior, and then relaxes
the vertex positions in R3. Jun [2005] projects the cycle to the
plane, and uses any crossings to decompose the cycle into simple
pieces. Brunton et al. [2009] use an energy minimization to unfold
the cycle into a simple closed curve in the plane.

Filling a hole in a mesh, which might have a complex boundary,
is a similar problem. There the mesh provides additional informa-
tion, including normals. Scattered data interpolation approaches
[Tekumalla and Cohen 2004; Brazil et al. 2010; Branch et al. 2006;
Podolak and Rusinkiewicz 2005] require normals or existing sur-
faces. The volumetric approaches [Brazil et al. 2010; Podolak and
Rusinkiewicz 2005] can fill complex holes, but assume that the de-
sired result is a watertight mesh, which is not always true in our
case.

3 Algorithm

Our goal is to decompose a complex cycle into a small number of
nearly-planar sub-cycles, which are easy to tessellate with one of
the simple algorithms. Since the cycle is presented as a polygonal
approximation, we could always decompose it into perfectly planar
parts, approximating a ruled surface, by triangulating all of its ver-
tices. But this would result in an excessive number of long, thin
triangles; instead we search for a small number of nearly-planar
sub-cycles (each of which could be triangulated in many ways, all
producing the nearly the same area). There are an exponential num-
ber of ways to triangulate a piecewise-linear cycle, and even more
ways to divide a cycle into sub-cycles. We make a heuristic choice
among the possible decompositions based on the principle that the
resulting surface should have small total area.

55

chords={ } chords={b,c,d}

chords={d}

[a,c]

chords={ }

[a,c,d]

chords={ } chords={ }

[a]

chords={d}

[a,b]

chords={ }

[a,b,d]

*computed beforechords={ }

[a,d]

chords={b,c}

[a,c,d]
*computed before

[a,b,d]
*computed before

*computed before

[b]

chords={a,d}

[a,b]
*computed
before

[b,d]

chords={a}

[a,b,d]
*computed before

*computed before

chords={ }

chords={a,b,c,d}

[...]

a cb
d

Figure 5: Illustration of a hypothetical example: For each input sub-cycle K (green box), we sub-divide into a left and right sub-problem by
selecting one of its chords ci (in red). A chord is passed into a sub-problem if and only if both of its endpoints lie in the sub-cycle; otherwise
we say the chord is a crossing chord and is not included in either subproblem. For example, the diagonal chord c (upper right, sub-dividing
on b) is not included in either sub-problem. Many sub-cycles show up as part of other sub-cycles; these are computed only once and the score
stored. Note that the recursive algorithm does a depth first search traversal on the sub-problems.

We decompose complex cycles by introducing chords, that is, line
segments connecting two vertices on the cycle. There are two main
steps to choosing the chords. First, we use heuristics to select a
small set of candidate chords, cutting the problem down to a reason-
able size. Second, we use an exhaustive search, with memoization,
to select a subset of the candidate chords which gives a decomposi-
tion minimizing our heuristic function (see below). The algorithm
is illustrated in Figure 4. We now describe these two steps in detail.

3.1 Selecting candidate chords

Straight segments on the boundary of the input cycle can always
be assigned to flat sub-cycles, but segments with significant curva-
ture may need to be broken up. Our heuristic selects chords that
connect sharp corners or sample points from regions of significant
curvature, where the chords are roughly perpendicular to the patch
boundaries.

We begin the process of selecting candidate chords by choosing po-
tential chord endpoints. We estimate curvature in the polygonal ap-
proximation of the cycle by computing the angle between adjacent
segments. Any angle greater than 20◦is considered a sharp corner
and is always included as a potential segment endpoint. In smoother
regions which still have significant overall curvature, sample points
are identified by walking along the edges of the cycle. Local max-
ima of curvature are selected if possible, and otherwise samples
are placed so that the total curvature between any two samples is
bounded.

Next, for each potential endpoint e, we search for two types of po-
tential partner points p:

• closest other point on the cycle, in three-dimensional Euclid-
ian distance

• and nearest sharp corner

such that the chord connecting them will be nearly perpendicular to
the cycle at e. By “nearly perpendicular”, we mean that we require
the angle between the chord and the normal plane to the curve at e
to be at most a threshold value m. If the partner point p is a sharp

corner we use m =40◦, while if p is closest in Euclidean distance,
we only allow m =30◦. These threshold values are fixed for all of
our examples.

For the closest value in Euclidean distance, if there is already an-
other potential endpoint which meets the criteria we use it, and if
not we create a new endpoint for the new candidate chord. If there
are no corner points meeting the criteria, we do not create the new
candidate chord. If a corner point and the closest point are close
together, we use the corner point and ignore the closest point. This
ensures at least one candidate chord per endpoint.

3.2 Patch decomposition

From the set of candidate chords, we then want to pick a subset that
decomposes the cycle into a small number of reasonably flat sub-
cycles, each with small area. We do this by optimizing a heuristic
cost function over subsets of chords. The cost function is intended
to be fast to evaluate.

We describe this step of the algorithm in a top-down fashion. The
initial problem is the input cycle K and its set of chords chords[].
We consider all possible methods of dividing the problem into two
sub-problems, left and right, with a single chord ci, and of these
possibilities, we choose the optimal one according to a cost function
defined below.

The division cost S(K, ci) of K by ci is the cost of its two sub-
problems, computed recursively, plus a cost associated with ci.

S(K, ci) = Sub(Kleft) + Sub(Kright) + α Cost(ci) (1)

The scalar parameter α is the only one associated with this part of
the algorithm and the only one we have adjusted for different inputs.
When α is zero, a maximal set of chords is selected; the larger α
is, the fewer sub-cycles we have in the final decomposition. This
effect is illustrated in Figure 3. We used α = 0.1 for all of the
models except the Figure 4, where α = 0.6. The choice of α has
no effect on the running time, since it does not limit the number of
subproblems considered by the algorithm.

56

Figure 6: An example of how our method might be used in a sketching system: (a) from left to right, the artist adds more strokes to the sketch
(b) complex patches are decomposed using our method (c) the artist can choose a rendered view of the surfaces, in which the partial shape
implied by the sketch is comprehensible.

To compute Sub(K), we compare the costs of the divisions induced
by trying each of the possible chords ci, and also the cost S(K, ∅)
of not cutting the problem with any chords at all, and choose the
lowest-cost option:

Sub(K) = min({S(K, ci) |∀ci}+ S(K, ∅)) (2)

For a sub-problem with no chords the cost is given by S(K, ∅).

When dividing K by ci, another chord cj is considered to be part
of a sub-problem if and only if both of its endpoints lie in the same
sub-cycle; otherwise we say cj crosses ci, and cj is not included in
either subproblem.

It remains to define the cost functions S and Cost. S(K, ∅) is in-
tended to estimate of the flatness of cycle K. We use the volume of
the rectangular box implied by the Principle Components of the set
of vertices of the polygonal representation of K (the product of the
three eigenvalues of the covariance matrix). While this is clearly
not a perfect measure of flatness, it is easy and fast to compute, and
it gives good results on the examples we have.

Assigning a cost for each chord is necessary to keep down the num-
ber of sub-cycles in the output, and to bias the results towards a
set of cycles with small area. We associate a cost with each chord
which is linear in its length. This cost is inspired by our goal of
approximating a minimal-area ruled surface. A ruled surface is the
limit of a triangulation of the cycle boundary as the density of sam-
pling increases, and its area is linear in the lengths of the chords.
Choosing shorter chords to dissect the cycle is intended to encour-
ages the implied chords filling in the almost-planar patches to be
shorter as well, for example in Figure 2.

We normalize Cost(ci) by the total length len(K) of the sub-cycle
being decomposed.

Cost(ci) = len(ci)/len(K) (3)

The algorithm as described so far is inefficient, even for an expo-
nential search, since many of the top-down problems will lead to
identical sub-problems. This is illustrated by the example in Fig-
ure 5. Inspired by the dynamic programming algorithm for opti-
mal polygon triangulation [Barequet and Sharir 1995], we improve
efficiency by memoization: storing the score S(K) for each sub-
problem in a hash table, so that no score is ever computed twice.
The hash key is the sorted list of the unique identifiers of all of the
chords on the boundary of cycle K. Thus, the total number of pos-
sible sub-cycles determines the running time. Unfortunately this is
still potentially exponential in n, the number of candidate chords.
To see this, note that the boundary of an output sub-cycle might in-
clude an arbitrary number of chords, where each pair of chords is
separated by arcs of the original cycle. Any subset of chords could
be dropped from the boundary to create a new sub-cycle, leading
to an exponential problem size. However, n tends to be small since
we choose a small number of candidate chords, and the structures of
the problems are usually well-behaved (most regions are bounded
by a small number of chords). Thus, nearly all of the patches can
be subdivided in under a second (see Table 1).

4 Results

Our patch decomposition scheme produces intuitively reasonable
results on complicated free-form patches, greatly improving the
perception of the sketched model. In addition to the results pre-
sented here, we refer the user to the short accompanying video.

57

Figure 7: Creating a teacup from two largely planar silhouette curves and three cross-sections. Note that the handle surface is flat because
there is no cross-section defined for it yet.

Algorithm 1 Sub(K): Finding the cost of sub-cycle K

INPUT: set of chords C[]
OUTPUT: cost of sub-cycle Sub(K) and best cutting chord
cbest (if any)
K ← input set of chords C[] creates a sub-cycle
do a look up in the hash table to see if you have computed the
cost of K already
if (in the hash table) then

extract information from the hash
cbest ← best cutting chord if any
sub← cost of sub-cycle K
return [sub, cbest]

else
sub ← compute the cost of the sub-problem by not cutting
with any chord
chords[]← extract all chords within this sub-cycle K
if (chords[].empty()) then

insert computed cost sub into the hash table
return [sub, ∅]

end if
for all (ci ∈ chords[]) do

[Kleft,Kright]← divide K by ci
S(K, ci) = Sub(Kleft) + Sub(Kright) + α Cost(ci)

[Sbest, cbest]← maintain min(S(K, ci), sub)
end for
insert Sbest and cbest as the computed cost of Sub(K) into the
hash table
return [Sbest, cbest]

end if

We use the output of two different 3D sketching systems, ILoveS-
ketch [Bae et al. 2008] and JustDrawIt [Grimm and Joshi 2012],
as test data. ILoveSketch is oriented towards conceptual prod-
uct design and allows the artist to produce symmetrical sketches
with mostly smooth curves. Nonetheless, artists frequently pro-
duce sketches which contain highly non-planar and complex cy-
cles. There is a large published database of complete curve net-
works produced by ILoveSketch. JustDrawIt allows more free-form
sketching, and produces less regular curves. For some of the Just-
DrawIt examples the curves were provided in the order that they
were drawn by the user, allowing us to illustrate the results of our
method on partial 3D sketches.

In all of our examples, we began by running the patch-finding algo-
rithm of Abbasinejad et al. [2011] to select cycles bounding poten-
tial surface patches from the curve network. In some cases we used

the interaction provided by their system to improve their automatic
choices of which cycles to surface. For example, in the dolphin
model, we requested the fourth and final patch.

Figure 1 shows our results at an intermediate phase of drawing the
dolphin model with JustDrawIt. With only the four main curves
(top and side silhouettes, and the tail cross-section), we can produce
a surface which clarifies the essential shape of the model. In the
JustDrawIt paper, several more curves (and surface normals along
those curves), were needed to successfully construct a surface using
the approach in [Brazil et al. 2010].

We illustrate the two steps of the algorithm in Figure 4 using two of
the more difficult patches from the ILoveSketch “roadster” model,
and in Figure 2 compare our decomposition method on one of those
patches to three direct tessellation algorithms: the lofting curve
networks of Schaefer et al. [Schaefer et al. 2004], the linearized
Laplacian minimization used in the Abbasinejad et al. [Abbasine-
jad et al. 2011] system, and the recent design-driven quadrangula-
tion method of Bessmeltsev et al. [Bessmeltsev et al. 2012]. In this
case, our approach clearly does the best at reflecting the user’s in-
tention of outlining the bumper of a car. Both the lofting curves
and the linearized Laplacian methods found an approximation to
a minimal surface, which is not an appropriate solution here. The
design-driven quadrangulation produced a nearly-flat solution with
a larger surface area than the one selected by our method.

In Figure 6 we use the horse sketch from the JustDrawIt paper to il-
lustrate how our method works on partial sketches. This sequence is
intended to give a sense of how the light-weight surfaces produced
by our decomposition algorithm would work within a sketching in-
terface, giving the user a clear sense of what the implied model is
at any stage of the process. When the user sketches in large parts
of the model with a single curve (eg. the shoulder and leg patch,
and then the back of the horse including a leg and the tail), complex
non-planar cycles are created. These large patches are not correctly
tessellated by any of the direct methods. At each of the four dif-
ferent stages of the sketch shown, the only input from the user is
the network of 3D curves (Figure 6, top). Patches are automati-
cally found independently at each stage, and then all of the patches
are then decomposed using our algorithm; some of them, such as
the head patches, require no additional chords. The final output
patches, all nearly planar, are tessellated using the linearized Lapla-
cian method. Note that, although the desired final geometry of the
horse may be a closed, inflated surface, many of the intermediate
stages are not.

The teacup in Figure 7 is also a partially-completed sketch drawn
using JustDrawIt. This partial sketch illustrates how several planar
curves can be combined to produce highly non-linear patches. The

58

Chords Number of Time

Patch on Model Candidates Chosen sub-problems (secs)

Dolphin(bottom right) 17 10 467 0.19
Dolphin(bottom left) 23 10 1343 0.5
Dolphin(top left) 17 12 930 0.83
Dolphin(top right) 28 12 1484 0.47
Roadster(front) 32 7 1108 0.14
Roadster(side) 16 5 251 0.02
Horse(shoulder) 18 9 699 0.14
Horse(middle) 8 4 74 0.003
Horse(back) 30 15 12319 6.5
Teacup(front left) 10 6 158 0.01
Teacup(front right) 8 6 119 0.01
Teacup(back right) 13 7 440 0.07
Teacup(back left) 15 6 679 0.12
Teacup(handle) 8 5 83 0.005

Table 1: Timings and statistics for the patch decompositions shown
in this paper. α = 0.1 except for the roadster front, where α = 0.6.

topology of the body of the cup is accurately captured (although
presumably the user would want smooth geometry for the final
shape). Note that the handle of the cup, which does not yet have
a sufficient number of cross-section curves to define it as a tube,
nevertheless results in a plausible surface.

Running times, number of candidate chords, and final number of
chords appear in Table 1. The running times are adequate for inter-
active sketching applications, where each patch has to be decom-
posed exactly once at the end of a curve edit cycle, not at every
frame. The longest running time was for the complex patch at the
back of the horse, which involved a large set of candidate chords
with a complicated structure. All examples were run on a 2.4GHz
Intel Quad Core processor.

5 Conclusions and Limitations

Our algorithm is heuristic, and provides no guarantees on running
time or avoidance of self-intersections. There may be other heuris-
tics that would work within the framework of this algorithm to
produce better patches or chords, but in practice these two sim-
ple heuristics (near-planar surfaces and chord-length minimization)
appear to work well.

The chords and patches we currently produce use only the patch
boundary positions as input; as such, they tend to be faceted and
are not smooth across the boundaries. Including surface normal in-
formation across boundaries and using a minimization approach to
produce curved chords would give more visually-pleasing surfaces,
at increased computational cost.

Acknowledgements

We are deeply grateful to our colleagues Scott Schaefer, Alla
Sheffer and Caoyu Wang for providing their code. We grate-
fully acknowledge the support of NSF grants IIS-0964357 and IIS-
1117663, and a gift from Adobe Research.

References

ABBASINEJAD, F., JOSHI, P., AND AMENTA, N. 2011. Surface
patches from unorganized space curves. Comput. Graph. Forum
30, 5, 1379–1387.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. Iloves-
ketch: as-natural-as-possible sketching system for creating 3d

curve models. In Proceedings of the 21st annual ACM Sympo-
sium on User Interface Software and Technology, ACM, New
York, NY, USA, UIST ’08, 151–160.

BAREQUET, G., AND SHARIR, M. 1995. Filling gaps in the bound-
ary of a polyhedron. Computer Aided Geometric Design 12, 2,
207–229.

BESSMELTSEV, M., WANG, C., SHEFFER, A., AND SINGH, K.
2012. Design-driven quadrangulation of closed 3d curves. ACM
Trans. Graph. 31, 6 (Nov.), 178:1–178:11.

BRANCH, J., PRIETO, F., AND BOULANGER, P. 2006. Automatic
hole-filling of triangular meshes using local radial basis function.
In 3D Data Processing, Visualization, and Transmission, Third
International Symposium on, IEEE, 727–734.

BRAZIL, E., MACEDO, I., SOUSA, M., DE FIGUEIREDO, L., AND
VELHO, L. 2010. Sketching variational hermite-rbf implicits. In
Eurographics Workshop on Sketch-Based Interfaces and Model-
ing, The Eurographics Association, 1–8.

BRUNTON, A., WUHRER, S., SHU, C., BOSE, P., AND DE-
MAINE, E. 2009. Filling holes in triangular meshes by curve
unfolding. In Proceedings. International Conference on Shape
Modeling and Applications (SMI 2009),.

GRIMM, C., AND JOSHI, P. 2012. Just drawit: a 3d sketching sys-
tem. In Proceedings of the International Symposium on Sketch-
Based Interfaces and Modeling, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, SBIM ’12, 121–130.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3d freeform design. In Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 409–
416.

JUN, Y. 2005. A piecewise hole filling algorithm in reverse engi-
neering. Computer-Aided Design 37, 2, 263–270.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. Fibermesh: designing freeform surfaces with 3d curves.
In ACM Transactions on Graphics (TOG), vol. 26, ACM, 41.

PODOLAK, J., AND RUSINKIEWICZ, S. 2005. Atomic volumes
for mesh completion. In Proceedings eurographics symposium
on geometry processing, Citeseer, 33–41.

RIVERS, A., DURAND, F., AND IGARASHI, T. 2010. 3D modeling
with silhouettes. ACM Transactions on Graphics 29, 4.

ROSE, K., SHEFFER, A., WITHER, J., CANI, M.-P., AND THIB-
ERT, B. 2007. Developable surfaces from arbitrary sketched
boundaries. In Proceedings of the Eurographics Symposium Ge-
ometry Processing, 163172.

SCHAEFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting
curve networks using subdivision surfaces. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, ACM, New York, NY, USA, SGP ’04, 103–114.

SCHMIDT, R., WYVILL, B., SOUSA, M., AND JORGE, J. 2006.
Shapeshop: Sketch-based solid modeling with blobtrees. In
ACM SIGGRAPH 2006 Courses, ACM, 14.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3D scaffolds. In Proceedings of
ACM SIGGRAPH Asia 2009, ACM, New York, NY, USA, SIG-
GRAPH Asia ’09, 149:1–149:10.

SKETCHUP, 2012. Trimble SketchUp. http://www.
sketchup.com/.

59

http://www.sketchup.com/
http://www.sketchup.com/

TEKUMALLA, L., AND COHEN, E. 2004. A hole-filling algorithm
for triangular meshes. Tech. Rep. UUCS-04-019, University of
Utah.

WESCHE, G., AND SEIDEL, H.-P. 2001. Freedrawer: a free-form
sketching system on the responsive workbench. In Proceedings
of the ACM Symposium on Virtual reality software and technol-
ogy, ACM, New York, NY, USA, VRST ’01, 167–174.

ZELEZNIK, R., HERNDON, K., AND HUGHES, J. 1996. Sketch:
an interface for sketching 3d scenes. In Proceedings of SIG-
GRAPH, ACM, 163–170.

60

