
GPU-assisted Surface Reconstruction on
Locally-uniform Samples

Yong Joo Kil and Nina Amenta

University of California, Davis.
kil@cs.ucdavis.edu
amenta@cs.ucdavis.edu

Summary. In point-based graphics, surfaces are represented by point clouds with-
out explicit connectivity. If the distribution of the points can be carefully controlled,
surface reconstruction becomes a much easier problem. We present a simple, com-
pletely local surface reconstruction algorithm for input point distributions that are
locally uniform. The locality of the computation lets us handle large point sets using
parallel and out-of-core methods. The algorithm can be implemented robustly with
floating-point arithmetic. We demonstrate the simplicity, efficiency, and numerical
stability of our algorithm with an out-of-core and parallel implementation using
graphics hardware.

1 Introduction

The idea of point-based graphics is that a point sample can be the primary
representation of a surface, simplifying computation and saving space by do-
ing without explicit connectivity information. In some situations, for instance
a geometric modeling system or the simulation of a moving front, the distri-
bution of the sample points is entirely under the control of the application,
which upsamples, downsamples and smooths the distribution as necessary.
What kind of a distribution should a point-based application seek to main-
tain? One criterion, among others, is that the distribution should make later
geometry processing operations, such as surface reconstruction, easier. A sur-
face reconstruction algorithm which will be applied to a carefully maintained
distribution can be simpler, faster, and easier to implement and to parallelize,
and it should scale better.

In this paper we explore how simple and local a surface reconstruction
algorithm can be when applied to well-distributed points. Specifically, we con-
sider distributions which are locally uniform, and we give a very easy surface
reconstruction algorithm which works well in practice on such distributions.
We emphasize that this scenario is very different from the problem of surface
reconstruction from acquired data. Rather than designing the algorithm for

2 Yong Joo Kil and Nina Amenta

robustness to noise and sampling irregularity, we can design for simplicity,
speed, and locality of computation.

Outline of algorithm. We construct a octree for the sample points and
download it to the GPU. In parallel, we find the k-nearest neighbors of each
sample point. Then at each sample point we construct an umbrella of possible
surface triangles. Edges that are consistent between adjacent umbrellas are de-
fined to be consensus edges. On arbitrary distributions it is possible that the
consensus edges will form a very sparse graph, possibly not even connected.
But on distributions that are locally uniform, we observe that the consensus
edges define a polygonalization of the surface, in which all faces have a small
number of edges. We triangulate any non-triangular faces in this graph, us-
ing a deterministic rule, completing the triangulation. Our implementation
can triangulate a sample consisting of 6 million points on a surface in R

3 in
about 35 seconds (not including the CPU octree computation). It is written
in CUDA, and uses native GPU floating point arithmetic.

Related work. Surface reconstruction is a huge field and we focus here on
only the work most related to ours. The idea of reconciling local umbrellas at
each sample point is the central concept in the algorithm of Gopi et al. [1], in
which the umbrellas are computed on an advancing front. While the high-level
idea of Gopi’s algorithm is similar to ours, it is essentially sequential. A recent
GPU-assisted algorithm based on Gopi’s method is due to appear [2]. This
algorithm apparently computes local umbrellas in parallel on the GPU, with
both the earlier step of finding nearest-neighbors and a post-processing rec-
onciliation of the umbrellas done sequentially. Also in this same vein, Adamy
et al. [3] select umbrellas at each point (using a criterion similar to ours) and
reconcile them using simple topological processing followed by a global linear
programming step. Our algorithm differs from all of this previous work in that
we reconcile the umbrellas locally and in parallel; we do not have to resort to
a sequential global process.

Computing and maintaining an umbrella (or ”star”) at every vertex is
also central to Shewchuk’s “star splaying” algorithm [4] for maintaining a
Delaunay triangulations under perturbations.

Dey et al. [5] and Funke et al. [6] considered surface reconstruction given a
locally uniform distribution, and give an almost linear time algorithm. While
candidate triangles are found independently at each sample, a final reconcili-
ation stage requires a sequential sweep through the surface. Finally, Dumitriu
et al. [7] give a sequential surface reconstruction algorithm which takes a very
dense, possibly poorly sampled point cloud as input, and constructs a triangu-
lation of a sparse locally uniform subsample. Their algorithm is interesting in
that the only geometric computation required is the construction of a neigh-
borhood graph on the original dense sample. Like us, they find a graph of
“good” edges, within which the minimal cycles form a polygonization of the
surface; they report cycles of length at most five in practice. In an unpublished
manuscript [8], they give a (large) constant upper bound on the size of the
cycles produced by their algorithm, which unfortunately cannot be applied

GPU-assisted Surface Reconstruction on Locally-uniform Samples 3

to ours. In contrast, our algorithm requires only the sparse locally uniform
input, not the dense input point set as well.

A very recent GPU surface reconstruction algorithm by Zhou et al. [9] im-
plements the Poisson surface reconstruction algorithm of Kazhdan et al. [10].
The paper emphasizes that a major contribution is the introduction of an
octree which is not only searched on the GPU, like ours, but also constructed
in parallel on the GPU. They report an excellent running time of 0.2 seconds
for an input of about 500K points. Poisson reconstruction requires normal
information and is a global algorithm; the output size is limited by the resolu-
tion of the grid achievable on the GPU. Local algorithms like ours can handle
larger inputs by breaking them up into smaller parts.
Locally uniform point samples. We define locally uniformity for a point
distribution on a surface using a parameter α.

Definition 1. Let P be a sample of points from a surface in R
3. For a sample

point v ∈ P , let δv be the minimum distance from v to any other sample. Let
εv be the maximum distance from v to any surface point in the Voronoi cell
of v. We say that P is locally uniform with parameter α if, for all v ∈ P ,
εv ≤ αδv.

This measure of the distribution of a point set is similar to the well-known
circumradius to shortest edge criterion for a triangulation. Computing εv is
not possible if we are not given the surface itself. But it is easy to estimate εv

once we have an output triangulation; we use such estimates to illustrate the
range of α within which our algorithm is successful in our experiments.

Local uniformity of a point sample does not guarantee that it is dense
enough to allow for a correct reconstruction of the surface. Besides being lo-
cally uniform, our algorithm also requires the input point distribution to be
everywhere sufficiently dense; as noted by Amenta et al. [11], the minimum
required density varies over the surface linearly with distance to the medial
axis. Any distribution which everywhere exceeds this minimum density and
is locally uniform is an appropriate input to our surface reconstruction algo-
rithm.
Producing and maintaining locally uniform samples. It is indeed pos-
sible to produce locally uniform point samples on surfaces, and to maintain
them as the surface changes. A perfect triangular grid of points in the plane
achieves the best possible α = 1/

√
3 ≈ 0.577 everywhere, but we cannot

expect to do so well on an arbitrary surface. A simple greedy sampling strat-
egy [12], however, does achieve α ≤ 1 on an arbitrary surface: choose a small
enough δ, and then while there is some point of the surface farther than δ from
any sample, place a new sample at any such point. This procedure can also
be adapted to handle varying sampling density. The distribution is improved
if the new point is chosen uniformly at random (the Poisson disk sampling
method; see Dunbar et al. [13]). Another strategy is to insert the point furthest
from any previously-placed sample (eg. Boissonnat and Oudot [14]).

4 Yong Joo Kil and Nina Amenta

The greedy algorithm creates locally uniform point sets. Among heuristics
which can be used to maintain local uniformity after a perturbation (e.g. dur-
ing a modeling operation or simulation step), Lloyd’s algorithm works well in
practice. It moves every sample to the center of mass of its Voronoi cell, iter-
atively, until convergence. Surazhsky et al. [15] uses local parameterizations
and Llyod’s relaxation to produce locally uniform sampling on arbitrary genus
surfaces. Recent work on optimal Delaunay triangulations [16] uses a similar
idea to produce even nicer-looking distributions on the plane. On implicit sur-
faces, a classic paper by Witkin and Heckber [17] uses repulsion and attraction
forces to produce and maintain locally uniform point distributions; the distri-
bution in Figure 9 was produced using our implementation of their algorithm.
More recently, Meyer et al. [18] gave an improved force-based algorithm along
similar lines.

2 Geometric intuition and groundwork

Let’s begin by considering the uniform unit triangular grid in a plane em-
bedded in R3, the vertices of which form a distribution P with the minimum
α = 0.577. An empty circumsphere of a triangle has the vertices of the trian-
gle on its boundary and has no other point of P in its interior. The minimal
empty circumspheres of the triangles of the grid have radius α, while any
other triangle with vertices on the grid has no empty circumsphere of non-
infinite radius. This motivates our umbrella selection criterion: we will choose
an umbrella in which each of the triangles has a small empty circumsphere.

In more realistic situations, the surface is curved and the distribution is
not so nice. We are however always guaranteed that every sample point in
P has at least one umbrella consisting of triangles with small circumspheres.
The restricted Delaunay triangulation [19] is the set of triangles with empty
circumspheres centered at points on the surface; these centers are the points
at which the edges of the 3D Voronoi diagram of P pierce the surface.

Observation 1 A triangle t of restricted Delaunay triangulation has circum-
spheres of radius at most εv, for any vertex v of t.

Since there is an umbrella of triangles at each vertex, each of which has a small
circumsphere, we are always able to select such an umbrella. Not all triangles
with small circumspheres will be restricted Delaunay triangles, however, even
on distributions that are everywhere dense and locally uniform. The difficulty
has to do with slivers: very flat tetrahedra, the vertices of which are nearly
co-circular. It is possible (although not necessary) for all of the triangular
faces of a sliver tetrahedron in the 3D Delaunay tetrahedarlization of P to
have small circumspheres. Also, even when P is locally uniform, five, six or
more points can be nearly co-circular and define many triangles with small
circumspheres; the number of points that can be nearly co-circular increases
with α. If v and several of its neighbors are nearly co-circular, they might

GPU-assisted Surface Reconstruction on Locally-uniform Samples 5

choose umbrellas that are inconsistent with each other. On the other hand,
any subset of these triangles chosen for the umbrella at v will include the two
edges connecting v to its neighbors u,w along the “circle”. Similarly, these
edges will also appear in any subsets of the triangles chosen for the umbrellas
at u and w. This intuition leads us to the definition of consensus edges.

Definition 2. We define the Delaunay edge uv to be a consensus edge if it
appears in every umbrella which contains the two vertices u, v. Note that this
includes the umbrellas of points other than u and v.

We conclude with some observations about the triangles with small circum-
spheres (of radius at most αδv). These observations will be useful in selecting
the triangles, and they also clarify the connection between α and the quality
of the output triangles.

Since every triangle in P is enclosed in a circumsphere of radius at most
εv ≤ αδv, we know that each triangle has a circumcircle of radius at most εv.
Since every edge must have length at least δv, the smallest possible circum-
circle (and hence the smallest possible circumsphere), is the one surrounding
an eqilateral triangle with side length δv.

Observation 2 The smallest triangle circumcircle has radius 1/
√

3δv ≈
0.577δv.

Consider the figure below.

The triangle with the largest possible angle has to look like the bold triangle;
the radius of the circumcircle is as large as possible, that is, εv. To get as
large an angle as possible at v, we spread the two adjacent edges as far apart
as possible, until they are as short as possible, that is, δv. The two marked
angles are the same, and must be arcsin((δv/2)/εv) = arcsin(1/2α). So the
opposite angle in each of the right triangles is arccos(1/2α), and the large
angle at the bottom is 2 arccos(1/2α). Also, notice that to make as small an
angle as possible, we also need to use as large a circumcircle as possible, and
the smallest angle will be opposite the smallest edge of the triangle. So any
angle of a triangle with circumradius εv, opposite an edge of length δv, has
the smallest possible angle. Hence:

6 Yong Joo Kil and Nina Amenta

Observation 3 The largest angle of any triangle is 2 arccos((1/2α) and the
smallest angle of any triangle is arcsin(1/2α). For instance, with α = .9, we
have largest angle of 112.5 and a smallest of 33.75 degrees.

3 Algorithm

We now describe the parallel GPU part of our algorithm. Each step in the
following description is run in parallel over each vertex v ∈ P .

Algorithm 1 Parallel surface reconstruction for each v ∈ P

1: Retrieve the k nearest neighbors Nv of v.
2: Compute Delaunay faces Fv connected to v using Nv

3: Compute umbrella Uv by choosing a subset from Fv.
4: Determine if out-going edges of Uv are consensus edges Cv by searching through

all umbrellas in Nv.
5: Find cycles for every edge in Cv and output polygons.

Fig. 1. A visualization of the steps of our algorithm. We draw the simplicies by
scaling them towards their respective vertices. Starting from the left, we compute
Delaunay and nearly-Delaunay triangles (light green), umbrellas (dark green), con-
sensus edges (dark blue), and cycles (orange). We then render the resulting triangles.

Let us discuss these steps in detail. The first step retrieves the k nearest
neighbors using a search structure; we use an octree which is pre-computed
on the CPU. The second step computes Delaunay faces connected to v by
considering samples in Nv, which is sufficient as long as the k nearest neighbors
contain all points within 2εv distance from v. The choice of k depends on the
uniformity of the point-set.

GPU-assisted Surface Reconstruction on Locally-uniform Samples 7

We defer discussion of the second parallel step, which produces a set of tri-
angles at each vertex v, until Section 4. From this set, we extract an umbrella
of triangles, each with small circumball radius in the third step, using the fol-
lowing algorithm. An outgoing edge of v is an edge connected to v. Triangles
in Fv are adjacent if they share an outgoing edge. Outgoing edges of an um-
brella Uv are manifold edges, meaning that edge is connected to exactly two
triangles. To form an umbrella from Fv and to ensure that the resulting um-
brella if formed by triangles with small circumball radii, we look for triangles
with large circumball radii that can be removed. A triangle is a flake if one of
its outgoing edges does not meet another triangle at a large dihedral angle. A
flake is never a restricted Delaunay triangle and can always be removed im-
mediately. Second, a triangle is a pocket triangle if it is not a flake and if the
dihedral angle between it and any of its adjacent triangles are small; adjacent
triangles with manifold edges are also pockets. Figure 2 shows an example of
flakes and pockets and Algorithm 2 describes the umbrella filtering.

v

UvFv

Fig. 2. The left figure is a Fv with flake triangles highlighted in yellow and pocket
triangles highlighted in blue. The right figure is a resulting umbrella Uv. Note that
removable of a pocket triangle can change pocket triangles into flake triangles.

Algorithm 2 UMBRELLA(v, Fv)
Uv ← Fv

while Uv is not an umbrella do
Remove all flakes in Uv.
Remove the pocket triangle with the largest circumball radius in Uv.

return Uv.

We may remove a restricted Delaunay triangle which is a pocket triangle,
but if so the remaining umbrella will consist only of triangles with even smaller
minimal circumspheres.

The fourth step determines if the outgoing edges of Uv are consensus edges.
For a vertex v, let us define Lv as the link of Uv, which contains all edges in Uv

not touching v. Let Ov be outgoing edges of Uv. In order for an edge vw ∈ Ov

to be consensus, we check two conditions. First, we check if wv ∈ Ow. Second,
we check for all x ∈ Nv such that if vertices {v, w} ∈ Ux, then vw ∈ Lx. If
either of these conditions fail, then vw is not a consensus edge.

8 Yong Joo Kil and Nina Amenta

We can easily extend the consensus definition to handle boundaries. A
point on a boundary cannot have an umbrella, so the UMBRELLA algorithm
will produce the empty set (see Figure 3). In order to produce triangles that
partially cover a boundary sample, we simply ignore consensus tests that
involve empty Uw or Ux. This works quite well when the boundary is nicely
sampled, as in Figure 3.

Fig. 3. A closeup of the boundary of the hand model. Our algorithm handles
boundaries gracefully.

Finally, in the last step, we extract the polygonal faces by detecting cycles
in the graph of the consensus edges. This is complicated by the fact that we
do not have vertex normals or a consistent orientation. Following a consensus
edge from v to w, we orient w consistently with v as follows. We consider the
triangle tw that is on the same side as tv of the plane that is perpendicular to
tv and passing through vw (tw may or may not be tv). If tw has a consensus
edge wz opposite of vw, we choose wz as the next consensus edge in the cycle.
If tw does not have a consensus edge, we traverse the adjacent triangles in the
umbrella until we do find a consensus edge; if we get back to vw before finding
another consensus edge we quit and do not output a cycle. For a consensus
edge touching a boundary sample b, we do something similar to define a face:
we start a path from the edge containing b and terminate the search once the
path reaches another boundary sample (which might be b).

Once a cycle is found, we can return the cycle as a polygon or triangulate
it if necessary. To make sure all vertices compute the same triangulations, we
deterministically break each cycle into a triangle fan with the center located
at the vertex with the smallest memory address. By not relying on any orien-
tation information, we can extract non-orientable surfaces, such as a Mobius
strip as shown in Figure 4.

GPU-assisted Surface Reconstruction on Locally-uniform Samples 9

Fig. 4. Our algorithm works on non-orientable surfaces. Here, the input point
samples are shown at the top right.

4 Nearly-Delaunay computation with floating-point
arithmetic

In this section, we discuss the computation of the set of Delaunay and nearly-
Delaunay triangles from which the umbrellas are selected. This computation
is done with the GPU’s floating-point arithmetic, which is generally single-
precision and does not conform to the IEEE floating-point standard. Our
approach is to be tolerant of numerical error.

The umbrella selection algorithm requires at each vertex v a set of trian-
gles, each labeled with an estimate of the radius of its smallest empty cir-
cumsphere. In the interests of maximizing the number of consensus edges, we
would like this set to be as small as possible. In this section we consider the
geometric computation we use to find that set. We first select a list of possible
candidate triangles, and then we check each candidate. We can eliminate a
candidate if we determine that it is definitely not Delaunay, or if we deter-
mine confidently that its smallest empty circumsphere is much larger than the
distance from v to its nearest neighbor.

We begin with the candidate set of all well-shaped triangles Tv in Nv con-
nected to v. To estimate the radius of the smallest circumsphere for a triangle
touching t ∈ Tv we consider the Voronoi edge dual to t. We parameterize the
dual edge as e(λ) = c+λn, where c is the circumcircle center of t, n is the unit
normal perpendicular to the plane of t and λ ∈ R. Let Bλ be the circumsphere
centered at e(λ), touching the vertices of t. For each point q ∈ {Nv\t}, we
find the interval Λq that contains values of λ for which Bλ is empty of q. This
idea is elaborated in Algorithm 3.

The fundamental operation in the algorithm is computing the interval Λq,
which is equivalent to finding the center of the sphere touching the three
vertices of triangle t and the fourth point q. This circumcenter operation is
notoriously numerically unstable: if the four points are nearly co-circular, then
round-off error in fixed-precision floating-point computation can lead to wildly
incorrect results. We use our assumption that the input P is locally uniform

10 Yong Joo Kil and Nina Amenta

Algorithm 3 DELAUNAY FACES(v, Nv)
Fv ← {}
Let Tv be the set of all possible triangles from Nv, touching v, and without very
large or very small angles.
for all t ∈ Tv do

Λt ← (−∞, +∞)
for all q ∈ {Nv\t} do

Compute the valid interval Λq

Λt ← Λt ∩ Λq

if Λt is not empty then
Find the smallest |λ| in Λt to determine the smallest circumball radius rt.
Add {t, rt} in Fv.

return Fv.

in several ways to deal with the problems caused by numerical instability. Our
goal is to avoid eliminating restricted Delaunay triangles, while filtering out
triangles that cannot possibly be restricted Delaunay triangles, thus producing
better umbrellas and more consensus edges.

First, we eliminate all triangles that have any angle that is too large or
too small, which is justified by Observation 3. In our experiments, we simply
ignore triangles with angles smaller than one degree.

Second, we observe that because triangle t is well-shaped, the computation
of its normal n and the center of its circumcircle c are, while not exact, at
least numerically stable. Instability in these computations occur when the
three triangle vertices are nearly co-linear, and these situations have been
eliminated. So we compute c and n once for each triangle and use them in
the computation of each Λq. In computing n and c, we improve the stability
by taking v as the origin, and then in the computation of Λq we use c as the
origin. Also, we ensure that the vertices of a triangle are always used in the
same (memory address) order when computing n and c, so that n and c will
be identical when t is processed at each of its vertices.

To solve for the endpoint in the interval Λq, we solve for λ such that
|e(λ) − p| = |e(λ) − q|, where p is a vertex of t. If c is at the origin, then

λ =
(p − q)T (p + q)

2(p − q)T n
(1)

This computation will not be stable if q and the vertices of t are nearly co-
circular or nearly co-planar. We do some special processing to identify these
cases. We take a conservative approach and set Λq to (−∞,∞) if the four
points are nearly co-circular, passing the triangle (as far as q is concerned) as
nearly-Delaunay. At the same time, we eliminate triangles with large minimal
empty circumspheres.

First, let us consider an idea for avoiding unnecessary evaluations of λ.
Recall that Observation 2 tells us that the radius of the circumcircle of each

GPU-assisted Surface Reconstruction on Locally-uniform Samples 11

well-shaped triangle is no smaller than
√

3δv, while Observation 1 tells us
that any restricted Delaunay triangle has a smallest circumsphere of radius
at most εv = αδv. We consider two balls, Ba and Bb, passing through the
vertices of t with the center of Ba above and the center of Bb below the plane
of t (see Figure 5), each of radius

√
3α multiplied by the circumcircle radius

of t. Any sample qout outside Ba ∪ Bb cannot improve our lower bound on
the size of the smallest empty circumsphere, so immediately conclude that t
is acceptable with respect to qout and continue on to the next q. Any sample
qin inside Ba ∩ Bb forces the minimum empty circumsphere to have radius
radius larger than ε, so we immediately reject t for Fv.

Ba

Bb

t

Fig. 5. This figures shows the regions considered in our robust floating-point com-
putation. The triangle t and its points are shown in black, the two balls Ba and Bb

are shown in dotted lines, and the shells are shown in blue. The right figure is a
closeup of the area near the triangle. Points in the orange region are considered to
be co-circular with the vertices of t. Points in the blue region are considered to be
co-spherical with either Ba or Bb. Points in the red region are considered to have
circumball radius larger than ε. Points in the gray region are numerically safe to use
Equation 1.

Now we consider the unstable case. Notice that in Equation 1, if the vector
(p − q) is very small or is almost perpendicular to n, then the denominator
will be close to zero. The dot product between these two vectors may produce
a catastrophic cancelation that results in a large relative error. To avoid doing
the computation in the unstable case, we consider the shells Sa and Sb of Ba

and Bb, respectively. A shell of a ball B is formed by the points between the
two balls sharing the same center as B with radii r(1−μ) and r(1+μ), where r
is the radius of B and 0 < μ 	 1. If q ∈ Sa∩Sb, then we assume q is co-circular
with the vertices of t and we treat Λq as unbounded. If q ∈ (Sa∪Sb)−(Sa∩Sb),
we handle it as described above for Ba and Bb. Only if q
∈ (Sa ∪ Sb) and
q ∈ (Ba ∪ Bb) − (Ba ∩ Bb) do we compute λ using the formula above, and
in that case the computation is stable. To make sure the resulting Λt has an
valid interval when its interval is very small, we also scale each interval Λq

by (1 + μ). In our experiments, we set μ as low as 10−5 without noticing any
problems with the 32-bit floating point arithmetic on our graphics hardware.

12 Yong Joo Kil and Nina Amenta

Figure 6 shows an example of a difficult input, containing many truly co-
circular quadruples of points, with Λq computed using a naive floating-point
implementation and also with our more careful conservative strategy. Notice
that we retain triangles which are possibly not Delaunay. The later umbrella
computation and the choice of consensus edges tolerate this behavior.

Fig. 6. The computed Delaunay faces for each vertex are highlighted in green and
the darker green triangles are the resulting umbrellas. The left figure shows triangles
computed using without using the careful numerical approach described in Section 4,
and the right figure shows the triangles using the approach.

5 Parallel and out-of-core implementation

We wrote our parallel algorithm using NVIDIA’s CUDA GPU Computing en-
vironment [20], using OpenGL for rendering. Each of the steps in Algorithm 1
runs in parallel as a CUDA kernel. In order to communicate between kernel
stages, we create workspace buffers to hold intermediate data, such as the
pointers to the k neighbors of each vertex in P . If these workspace buffers
collectively take up too much memory, we partition P into smaller groups,
which are then computed serially. The groups are bounded by chains of in-
put samples, which are included in both groups. To make sure the samples in
these boundary groups produce consistent triangles, the neighboring samples
on either side should also be included in both groups. In our experiments so
far, however, we treat the group boundaries as described in Section 3, and we
have not noticed holes in the resulting outputs.

For the Delaunay computation of Fv, each vertex v iterates over all possible
candidate triangles formed by v and two other samples in Nv. To speed this
up, we create a thread for each of v’s neighbors. We allow these threads to
communicate by caching vertex positions into the on-chip memory (shared
memory) that is shared amongst v’s neighbors.

Reducing the number of nearest-neighbors k of course speeds up the com-
putation of the nearly-Delaunay triangles. But small values of k can lead to

GPU-assisted Surface Reconstruction on Locally-uniform Samples 13

trouble when we have varying sampling density, as in Figure 7. In this situ-
ation it might happen that some of v’s neighbors find triangles including v
which are not found by the computation at v itself. To remedy this, we share
near-Delaunay faces between neighbors after they are computed. We do this
by searching through each v’s k+-nearest neighbors. In our experiments, we
chose k+ = 2k. This allows us to reduce the size of k

Fig. 7. The left figure shows the Delaunay faces each v finds by considering just
its k nearest neighbors. Notice that with the quickly varying sampling density, some
triangles at v are missed. The right figure shows the results after each v searches for
faces connected to v from its k+ neighbors.

6 Results

We used an NVIDIA GeForce 8800 GTX GPU with 768MB connected via
PCI Express 16x to an Intel Core2 Quad 2.4GHz CPU. Our applications are
built on top of Windows XP and the CUDA Toolkit 1.1.

To see how running time varies as function of the input size, we produced
inputs of varying size using subdivision. The timing results are shown in Fig-
ure 8. To focus on our algorithm, we do not include rendering time nor the
time required to compute the octree on the CPU, which takes less than a
minute for 6 million points. In most cases, rendering adds an additional 20%
to the overall time. The first three stages of Algorithm 1 take the majority of
time: getting the neighbors takes about 20%, making nearly-Delaunay trian-
gles takes 40%, and selecting umbrellas takes 20%. We optimized our code for
the Delaunay computation by caching vertex positions into the shared mem-
ory space, which reduced the timing by a factor of four. We have not applied
similar optimizations to the other stages yet, which we expect would yield
similar speedups.

A method to generate our sampling requirement is shown in Figure 9. We
begin with a uniform random distribution, and use our implementation of
the Witkin-Heckbert technique [17] to improve the distribution. Any vertex

14 Yong Joo Kil and Nina Amenta

0

10

20

30

40

50

60
hand k=5
hand k=9
neptune uniform k=5
nepture uniform k=9
neptune adaptive k=5
neptuen adpative k=9

1 2 3 4 5 6 7
Se

co
n

d
s

Number of points, in millions

Fig. 8. Timing results (GPU only) for varying input sizes and for different choices
of k. As expected, we see that that reconstruction time scales linearly with the input
size.

that does not have an umbrella or has less than three consensus edges is
considered to have failed the reconstruction. The percent of vertices for which
the reconstruction fails appears in the figure. The α value is estimated at each
v by finding δv, the distance to the closest other sample, and then estimating
εv by the largest circumcircle radius in v’s umbrella. Histograms of these
estimated alpha values can be seen in Figures 12-11.

We considered the overall reconstruction successful if a very large percent-
age of the vertices produce at least three consensus edges. The number of
nearest neighbors required to get a successful reconstruction varies with α.
The uniformly sampled Neptune only requires k = 9, while the non-uniformly
sampled Neptune model requires k = 15. For the very uniform hand model,
k = 7 produces perfect reconstruction. We also tried our algorithm on a very
non-uniform sampling with the dragon model shown in Figure 11. The dragon
model works on 95% of the vertices with k = 15.

7 Future work

This work is one example of a geometry processing problem which is easier
when applied to locally uniform data. We emphasize that our algorithm is not
meant to reconstruct noisy data from laser scanners, but instead meant to rep-
resent surfaces purely from point clouds that can be carefully controlled. If
some vertices do not meet the sampling condition, one can explicitly maintain
their umbrellas. However, we hope that research in this direction will inspire
more work on producing and especially maintaining nice sampling distribu-
tions, and showing that these distributions have useful properties.

We are currently working on a proof that an exact version of this algorithm
would always produce cycles with small constant maximum length on inputs
that are locally uniform and sufficiently dense. On the practical side, we plan

GPU-assisted Surface Reconstruction on Locally-uniform Samples 15

to incorporate this surface reconstruction algorithm into an application that
maintains a locally uniform distribution on a moving surface.

Our algorithm fails to be completely parallel since we begin by computing
an octree on the CPU. While this is not the bottleneck, developing a good
octree implementation on the GPU is an important issue, recently addressed
in the algorithm of Zhou et al. [9]. We plan on incorporating similar data
structure in order to make our algorithm run completely in the GPU.

8 Acknowledgments

We would like to thank Shubho Sengupta and Brian Budge for their sug-
gestions with CUDA. The Oliver hand and Nepture models are provided in
courtesy of INRIA in the AIM@SHAPE Shape Repository. The Asian Dragon
Model is provided in courtesy of XYZ RGB Inc. This work was supported by
NSF grants CCF–0331736 and CCF–0635250.

References

1. M. Gopi and S. Krishnan. A fast and efficient projection based approach for
surface reconstruction. International Journal of High Performance Computer
Graphics, 2002.

2. Carlos Buchart, Diego Borro, and Aiert Amundarain. Gpu local triangulation:
an interpolating surface reconstruction algorithm. Computer Graphics Forum,
27(3), 2008.

3. Udo Adamy, Joachim Giesen, and Matthias John. Surface reconstruction using
umbrella filters. Comput. Geom. Theory Appl., 21(1):63–86, 2002.

4. Richard Shewchuk. Star splaying: an algorithm for repairing delaunay trian-
gulations and convex hulls. In SCG ’05: Proceedings of the twenty-first annual
symposium on Computational geometry, pages 237–246, New York, NY, USA,
2005. ACM Press.

5. T. Dey, S. Funke, and E. Ramos. Surface reconstruction in almost linear time
under locally uniform sampling, 2001.

6. S. Funke and E. Ramos. Smooth-surface reconstruction in near-linear time. In
Proc. 15th Annu. ACM-SIAM Sympos Discrete Algorithms, 2002.

7. Daniel Dumitriu, Stefan Funke, Martin Kutz, and Nikola Milosavljevic. How
much geometry it takes to reconstruct a 2-manifold in r3. In Workshop on
Algorithm Engineering and Experiments, 2008.

8. D. Dumitriu, S. Funke, M. Kutz, and N. Milosavljevic. On the locality of
reconstructing a 2-manifold in r3, unpublished manuscript. http://www.mpi-
inf.mpg.de/ funke, 2008.

9. Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Highly parallel surface
reconstruction. Technical report, April 2008.

10. Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface re-
construction. In SGP ’06: Proceedings of the fourth Eurographics symposium
on Geometry processing, pages 61–70, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

16 Yong Joo Kil and Nina Amenta

11. Nina Amenta and Marshall Bern. Surface reconstruction by voronoi filtering.
Discrete and Computational Geometry, 22:481–504, 1999.

12. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38(2–3):293–306, 1985.

13. Daniel Dunbar and Greg Humphreys. A spatial data structure for fast poisson-
disk sample generation. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
pages 503–508, New York, NY, USA, 2006. ACM Press.

14. Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing
of surfaces. Graph. Models, 67(5):405–451, 2005.

15. Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. Isotropic remeshing of
surfaces: a local parameterization approach. In Proceedings of 12th International
Meshing Roundtable, 2003.

16. Long Chen. Mesh smoothing schemes based on optimal delaunay triangulations.
In In Proceedings of 13th International Meshing Roundtable, pages 109–120,
2004.

17. Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control
implicit surfaces. Computer Graphics, 28(Annual Conference Series):269–277,
1994.

18. M. Meyer, P. Georgel, and R.T. Whitaker. Robust particle systems for curvature
dependent sampling of implicit surfaces. In In Proceedings of the International
Conference on Shape Modeling and Applications (SMI), pages 124–133, June
2005.

19. Herbert Edelsbrunner and Nimish R. Shah. Triangulating topological spaces.
In SCG ’94: Proceedings of the tenth annual symposium on Computational ge-
ometry, pages 285–292, New York, NY, USA, 1994. ACM.

20. NVIDIA Corporation. NVIDIA CUDA compute unified device architecture
programming guide. http://developer.nvidia.com/cuda, January 2007.

GPU-assisted Surface Reconstruction on Locally-uniform Samples 17

Fig. 9. The left figure shows the initial uniform-random distribution on a sinusoidal
surface. Using k = 9 the reconstruction works on 92% of the vertices. The middle
figure shows the distribution after one iteration of the Witkin and Heckber particle
smoothing algorithm with 96% correct reconstruction. The right figure shows the
perfect reconstruction after the particles converge to a stable configuration, which
takes about ten iterations.

0.5 5

Fig. 10. We consider the Oliver hand model. We see from the left figure that the
hand has very uniform sampling. The two hands in the middle show the reconstruc-
tion using using k = 3 with 10% correct (left) and k = 7 with 100% correct (right).
Notice from the most right figure that the regions between the fingers with high
curvature are reconstructed properly.

0.5 5

Fig. 11. To consider a very non-uniform sampling, we decimated the dragon model
from 3.6 million points to 100k points. With k = 16 the reconstruction works on
95% of the vertices. Notice from the right figure that the scales are reconstructed
reasonably well. The spike at the top of this figure is sampled too sparsely to have
a meaningful reconstruction.

18 Yong Joo Kil and Nina Amenta

a) c)

d)

e)

f)

0.5 5 0.5 5

b)
Fig. 12. These figures show the uniform and non-uniform Neptune models. His-
togram of their estimated alpha values are also shown. (a) The uniformly sampled
Neptune model. (b) A close up of the uniform model with consensus edges. Using
k = 9, the reconstruction fails on 13 of the 1.6 million vertices. (c) The non-uniform
Neptune model. (d) A close up of the base. Notice that regions near extremely
varying sampling density are not reconstructed properly. (e) Reconstruction of the
non-uniform model using k = 9 with 97% correct (f) and k = 15 with 98% correct.

