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Abstract

Helly Theorems and Generalized Linear Programming

by

Annamaria Beatrice Amenta

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Raimund Seidel� Chair

This thesis establishes a connection between the Helly theorems� a collection of

results from combinatorial geometry� and the class of problems which we call Generalized

Linear Programming� or GLP� which can be solved by combinatorial linear programming

algorithms like the simplex method� We use these results to explore the class GLP and

show new applications to geometric optimization� and also to prove Helly theorems�

In general� a GLP is a set of constraints and a function to be minimized� which

obey certain combinatorial conditions� Linear programming is an example� A Helly the�

orem is also de�ned by its combinatorial structure� We observe that there is a Helly

theorem about any GLP� which is that the minimum is no greater than m if and only if

the minimum of every subproblem with d� � constraints is no greater than m�

We use this observation to prove Helly theorems� Then we give a paradigm which

usually allows us to construct a GLP corresponding to a given Helly theorem� Most of

our algorithmic results are based on this paradigm� We show that in there are GLPs in

which the constraints or objective function are not only non�linear but also non�convex or

disconnected�

We give numerous applications� concentrating on expected O�n� time algorithms�

Some examples are that the largest axis�aligned box in the the intersection of a family

of convex sets in �xed dimension� and the translation and scaling which minimizes the

Hausdor� distance between two convex polygons in the plane� can be found by GLP� An

example of a second family of results is a GLP to �nd the smallest factor by which a family



	

of boxes can be scaled around their centers so as to admit a hyperplane transversal� thus

�tting a hyperplane to the family of centers�
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Chapter �

Introduction

This thesis builds a connection between two old and distinct lines of research�

The story begins in ����� with

Helly�s Theorem Let K be a family of at least d� � convex sets in Ed� and assume K

is �nite or that every member of K is compact� If every d�� members of K have a point

in common� then there is a point common to all the members of K�

This is a fundamental result in convexity theory and combinatorial geometry� It gave

rise to a whole family of theorems with the same logical structure� for objects other than

convex sets� for properties other than intersection� or for special cases in which d � � is

replaced by some other number� We call these Helly theorems� An in�uential survey by

Danzer� Gr�unbaum� and Klee appeared in ���� �DGK���� and some more recent material

is collected in �E���� �GPW����

Meanwhile� computers were invented� and one of the �rst uses to which they were

put was

Problem� Linear Programming

Input A �nite family of closed linear halfspaces in d�dimensional Euclidean space� called

the constraints� and a linear objective function on Ed�

Output The minimum of the objective function over the intersection of the constraints�



	

The earliest algorithm for this problem was the simplex algorithm� introduced by Dantzig

in ���� �D���� The simplex algorithm is essentially combinatorial� in that it searches the

d element subfamilies of constraints for one which determines the minimum� Although it

is arguably still the most e�cient algorithm in practice� most variants have been shown

to require exponential time in the worst case �KK���� There is a well�developed theory of

linear programming� but problems in which the constraints or the objective function are

non�linear are less well understood� Much linear programming theory carries over to

Problem� Convex Programming

Input A �nite family of closed convex sets in d�dimensional Euclidean space� and a convex

objective function on Ed�

Output The minimum of the objective function over the intersection of the constraints�

An objective function is convex when f��a������b�� �f�a�������f�b�� forall a� b � Ed

and � � � � ��

More general classes of problems are called mathematical programming or nonlin�

ear programming� Combinatorial approaches analogous to the simplex method are often

applied to convex and other nonlinear problems �F���� These also perform well in practice�

Computational geometry is the branch of theoretical computer science which is

concerned with geometric problems� This new �eld borrowed from both these older lines of

research� Helly�s theorem is a basic combinatorial tool in computational geometry� Other

Helly theorems have also found algorithmic applications� At least a few people �EW����

�GPW��� had the idea that when there is a Helly theorem about some property on a class

of objects� there also should be a linear time algorithm to test a �nite family of objects

for the property� Examples of such algorithms were known� but no general result�

Linear programming� in computational geometry� was both used to solve geo�

metric problems �e�g� �AD�	�� and studied as a geometric problem itself� Computational

geometers concentrated on the �xed�dimensional case� in which the number of variables�

d� is assumed to be constant� and the goal is to optimize the running time with respect to

the number of constraints� n� Early deterministic algorithms were linear in n but double

exponential in d �D���� �M���� Later� simple randomized algorithms with a better depen�
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dence on d were developed �C���� �S���� �SW�	�� These algorithms are combinatorial in

the sense given above� and closely related to the simplex algorithm� This research into

the �xed dimensional case led to progress on the general problem� An exciting recent

development is that the randomized simplex algorithms in �K�	�� and the re�analysis of

�SW�	� in �MSW�	�� give algorithms subexponential � in both d and n� �

An important feature of the randomized algorithms �C���� �S���� �SW�	� is that

they can be applied to certain nonlinear problems as well� as all the authors observed�

In �SW�	�� Sharir and Welzl formalize this idea by giving a abstract framework� that is�

a list of combinatorial conditions on the family of constraints and the objective function�

under which these algorithms can be applied� This framework de�nes a class of problems�

which we call Generalized Linear Programming� or GLP� In �MSW�	� Matou�sek� Sharir

and Welzl list many problems which are GLP� almost all of which can be formulated as

special cases of convex programming� No provably non�convex examples of GLP were

known�

The work in this thesis springs from the observation that there is a Helly theorem

about the constraint set of every GLP problem �for example� Helly�s theorem is about the

constraint family of convex programming�� One consequence of this observation is that

we can prove a Helly theorem by showing that the set family in question is the constraint

family of a GLP� We use this idea to give a simple proof of a Helly theorem in which the

constraint set is not only not convex� but disconnected� This immediately shows that the

the class of GLP problems includes more than just convex programming�

The next natural question is� can we go in the other direction� Given a family

of constraints about which there is a Helly theorem� is it always possible to construct an

objective function which gives a GLP problem� The answer is no� we give an example

for which there is no such function� But we also give a paradigm which does yield an

appropriate objective function in almost every interesting case�

Applying this paradigm to the collections of Helly theorems gives new algorithms

for a variety of geometric optimization problems� Some of these problems arose in appli�

�By subexponential in x� we mean O�eo�x��� The exact bound is O�eO�
p
d ln n���

�We will survey the computational geometry algorithms in detail in Chapter ��
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cations in computer graphics� computer vision� and computer aided manufacturing�

The GLP algorithms handle the combinatorial aspects of these problems� Their

running times are measured by the number of calls to primitive operations� which are

required to solve subproblems of some �xed size d� When the time required for a prim�

itive operation is unrelated to n� the number of constraints� the GLP algorithms run in

expected time linear in n� This is applies to the �xed�dimensional versions of most of

the problems listed below� When we can show that the primitive operations require at

most subexponential time� the algorithm of �MSW�	� is subexponential in the general

dimensional case as well�

Here is a list of the problems we solve with GLP� with references to the relevant

sections�

Homothet Cover�sections ��� and ����

Find the smallest homothet of a convex object containing a family of sets in Ed�

the largest homothet of a convex object contained in the intersection of a family of

convex sets� or the smallest homothet of a convex object intersecting every member

of a family of convex sets�

Convex Hausdor Distance�section ����

Find the minimum Hausdor� distance between two convex polygons in the plane�

under translation and scaling�

Bounded Box�section ����

Find the largest axis�aligned box in the intersection of a family of convex sets�

Line Transversal of Translates�section �����

Find a line transversal of disjoint translates of a convex object in the plane�

Polytopal Hyperplane Fitting�section ���	�

Find the hyperplane which minimizes the maximum distance to a family of points

under any metric whose unit ball is a polytope �such as L� or L���

Weighted L� Hyperplane Fitting�section �����

Find the hyperplane which minimizes the maximum distance to a family of points
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in Ed under the weighted L� metric� in which every coe�cient of every point is

equipped with a weight� �

Subset Line Fitting�section �����

Find the line which minimizes the maximum distance to a family of points in Ed

under any subset metric� for which the unit ball is not full dimensional�

Line Transversal for Separated Spheres�section �����

Find a line transversal in Ed for a family of spheres such that the distance between

any two spheres is at least the sum of their radii�

Weighted L� Line Fitting�section ���	�

Find the line which minimizes the maximum distance to a family of points in Ed

under the weighted L� metric�

Via GLP� this thesis ties together the algorithmic study of mathematical pro�

gramming with the purely geometric results about Helly theorems� The o�spring of this

union is a variety of new algorithms� Helly theorems and proofs� which enrich both practice

and theory�

�Each point coordinate pi has a weight wi� The weighted L� distance from a hyperplane h to p is
minx�hmaxiwi�jxi � pij�� where x is a point in hyperplane h�
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Chapter �

Helly theorems

In this section we de�ne Helly theorems and introduce notation� and give some

background for our results�

��� De�nitions

Let C be a family of objects� P a predicate on subfamilies of C� and k a constant�
A Helly theorem for C is something of the form

For all H � C� P�H�� if and only if� P�B� holds for every B � H with jBj � k�

A shorthand statement of a Helly theorem is that C has Helly number k with respect to

P� Although we need not think of k as a constant� we will restrict our attention to the
case in which k is independent of jHj� We will use the following as a running example of
a Helly theorem�

Theorem ����� �Radius Theorem � A family of points in Ed is contained in a unit

ball if and only if every subfamily of d� � points are contained in a unit ball�

Here the family of objects is the set of points in Ed� the predicate is that a subfamily is

contained in a unit ball� and k  d��� We will see in a moment that the Radius Theorem

is a corollary of Helly�s theorem proper�



�

��� Helly systems

The term Helly�type theorem is often used to describe a larger class of theorems�

including ones in which the fact that every subfamily has some property P implies that

the whole family has some other property Q� We will not be concerned with this larger
class� In fact� we will only be concerned with those theorems in which C is a family of sets

and P is the property of having non�empty intersection� Fortunately many Helly theorems
can be restated in this form�

We need some notation� A set system is a pair �X�C�� where X is a set and C

is a family of subsets of X� For G � C� we write
T
G for fx � X j x � h� �h � Gg� We

say that a family G of sets satis�es the intersection predicate� or simply intersects� when
T
G � �� A set system �X�C� is a Helly system if there is some k such that C has Helly

number k with respect to the intersection predicate�

Sometimes we have to look closely to see that a particular Helly theorem is

representable by a Helly system� Let�s consider the Radius Theorem� Instead of a set

of points� we can state it as a theorem about the intersection of sets of unit balls� where

each set consists of all the unit balls containing a particular point� Formally� let X be the

points of Ed� and let Y be the set of possible positions for the center of a a unit ball in

Ed �which of course is another copy of Ed�� Let the predicate Q�x� y� mean that the ball
with center y � Y contains the point x � X� let cx � Y be the set of centers of unit balls

containing x� and let C  fcx j x � Xg� Then �Y�C� is a Helly system� since any family
H � X of points corresponds to a family CH � C� CH  fcx j x � Hg� such that there is
a unit ball containing H if and only if CH intersects�

This is a sort of dual transformation� We can apply it to theorems of the form

�X has Helly number k with respect to P�� whenX and P have the following special form�
There has to be a set Y � and a predicate Q on pairs in X � Y � such that P is de�ned in
terms of Q as follows� For A � X� P�A� if and only if 	 �y � Y � � �x � A�Q�x� y�� Then
the theorem �X has Helly number k with respect to P� corresponds to the Helly system
�Y�C�� where cx  fy � Y j Q�x� y�g� for x � X� and C  fcx j x � Xg�



�

��� More general Helly theorems

This duality transformation allows us to express certain Helly theorems in terms

of the intersection predicate in some space Y � In the case of the Radius Theorem� Y is

the space of unit balls in Ed� which we parameterize by identifying a unit ball with it�s

center� The sets C are convex under this parameterization �balls� in fact�� so it is clear

that the Radius Theorem is a special case of Helly�s Theorem� Note that if we had used

some other weird parameterization of Y � the sets C might not be convex� If� for some

Helly system �Y�C�� there is any way to parameterize Y as Ed so that the sets in C are

all convex� then �Y�C� is a special case of Helly�s Theorem proper�

But not all Helly theorems are special cases of Helly�s Theorem� Rather� Helly�s

Theorem is itself a special case� Recall that a cell� in topological contexts� is �intuitively�

something homeomorphic to a ball� with no holes or bubbles�

Helly�s Topological Theorem�DGK��� �page �	�� Let K be a �nite family of closed

sets in Rd such that the intersection of every k members of K is a cell� for k � d and is

nonempty for k  d� �� Then
T
K is a cell�

This theorem says that the constraint sets do not have to be convex� only that they should

intersect� topologically� as if they were� Many useful Helly theorems can be reduced to

special cases of this theorem� A di�erent generalization of Helly�s theorem is

Morris� Theorem �Mo���� Let Imd be a �nite family of sets in Rd� each of which is

the disjoint union of at most m closed convex sets� with the special property that Imd is

closed under intersection� Then
T
Imd � � if and only if

T
B � �� for any B � Imd with

jBj � m�d� ���

Here� the intersection may have multiple convex components� and the Helly property is

maintained so long as the number of components remains bounded by m�

One way to prove a Helly theorem is to reduce it to Helly�s Theorem proper� or

to one of its generalizations� by expressing it as a Helly system �Y�C� and showing that

�Y�C� is a special case of one of the general theorems� Most� but not all� of the Helly
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theorems we will use can be proved in this way� although they were usually �rst proved

by other techniques�

It is possible that there is some very general theorem which subsumes any Helly

theorem which can be stated in terms of the intersection predicate� Such a general theorem

would have to include both Morris� Theorem and Helly�s Topological Theorem as special

cases�

��� Helly system witness problems

One natural computational problem associated with a Helly system �X�C� is

Problem� Helly System Witness

Input A �nite family H � C�

Output An element x � TH� or the special symbol ! if
T
H  �

For Helly�s Theorem� �AH��� gave an algorithm for Helly System Witness which uses

O�nd��� calls to a primitive which returns a point in the intersection of d�� convex sets�

or reports that the intersection is empty� Notice that the problem is non�trivial� since it

is possible that none of the points returned by the primitive lie in
T
H� To �nd a point in

Figure 	�� A point in every � sets but none in all �

T
H they had to use other properties of convex sets� which is why the algorithm applies

only to Helly�s Theorem proper�

As we shall see later on� when we can introduce an objective function into the

problem� we get much more e�cient algorithms� For Helly�s Theorem proper� introducing
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a convex objective function gives us the convex programming problem�

��� Helly theorems and VC�dimension

�We often ask our friends� �Any new Helly numbers�� � � Buchman and

Valentine� beginning an article in American Mathematical Monthly�

My friends often ask me� �Isn�t the Helly number the same as the VC�dimension��

It is not� The VC �for Vapnik�Chervonenkis� dimension is another combinatorial property

of set systems exploited by many algorithms in computational geometry and computational

learning theory �HW����

For a set system �X�C�� we say a subset B � X is shattered by C if C can

select any subset of B� that is� fB 
 c j c � Cg  	B� The VC�dimension of �X�C� is

the cardinality of the largest B � X which is shattered by C� �If arbitrarily large sets of

points can be shattered� we say that the VC�dimension is in�nite�� For example� when

C is all disks in the plane X� the VC�dimension of �X�C� is �� because there are subsets

of three points for which any subset can be selected by a circle� but no such set of four

points�

The VC�dimension is a useful tool in developing randomized algorithms� In this

thesis� we show that Helly theorems are too� which tends to increase the intuition that the

two combinatorial properties might be related� But convex sets in Rd� the classic example

Figure 	�	 Convex sets have in�nite VC�dimension

of a set system with constant Helly number� are well known to have in�nite VC�dimension�

This is shown by taking an arbitrarily large set of points on the surface of a sphere� as in
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�gure 	�	� any subset of them can be selected by a single convex set� And conversely� the

following example has in�nite Helly number but constant VC�dimension�

Example ����� Pairs of intervals

Consider the set system �I� C�� where I is the unit interval and C is the set of all pairs

of connected subintervals� This set system has VC�dimension � �HW��� since any subset

of four points on the line is shattered� but any subset of �ve points is not� But the Helly

number for this set system is in�nite� since for any n� we can construct a family of pairs

of intervals for which every subfamily of size n � � intersects but the entire family does
not� as follows� Take any n� � distinct points in the interior of the unit interval I� These
divide I into n overlapping closed intervals Ij� Then let C  fcj j cj  I � Ij� � � j � ng�
The entire family does not intersect since any point in I is in at least one of the Ij� while

for any j� all the c � C except for cj intersect in the interior of Ij�

This shows that the Helly number and the VC�dimension are completely independent�

Figure 	�� Pairs of intervals have in�nite Helly number
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Chapter �

Generalized Linear Programming

In this chapter we introduce the idea of Generalized Linear Programming� We

review the abstract framework� due to Sharir and Welzl� which de�nes GLP� and then we

immediately embed this abstract framework in a more traditional mathematical program�

ming context�

��� GLP framework

All of the following de�nitions are due to Sharir and Welzl� although the term

GLP is mine� A generalized linear programming �or GLP� problem is a family H of

constraints and an objective function w from subfamilies of H to some simply ordered set

S �� The pair �H�w� must obey the following conditions

�� Monotonicity� For all F � G � H w�F � � w�G�

�� Locality� For all F � G � H such that w�F �  w�G� and for each h � H

w�F � h� � w�F � if and only if w�G� h� � w�G�

By F � h� we mean F � fhg� The set S must contain a special maximal element !� for
G � H� if w�G�  !� we say G is infeasible� otherwise we call G feasible� A basis for

�A simple �or linear� order is like a total order� except with � instead of �� Formally� a set S is simply

�or linearly� ordered by a relation � if� �� for every a� b � S� a �� b� either a � b or b � a� �� there is no
a � S such that a � a� and �� if a � b and b � c� then a � c�
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G � H is a minimal subfamily B � G such that w�B�  w�G�� Here minimal is to be

taken in the sense that for every h � B� w�B � h� � w�B�� Any minimal subfamily B is

a basis� if only for itself�

For instance� in linear programming� H is a �nite set of closed halfspaces in Ed�

and the function w�G� returns the coe�cients of the lexicographic minimum point in
T
G�

If this intersection is non�empty� this point is determined by a basis of size no greater

than d �we ensure that every subfamily has a minimum by surrounding the problem with

a suitably large bounding box B� which is itself the intersection of halfspaces� We do not

include halfspaces from B in the basis� so that if� for instance� w�G� is the minimum point

in B� then the empty set is a basis for G��� Notice that although more than d halfspaces

may have the minimum point on their boundary� a subfamily of at most d of them are

su�cient to determine the minimum� In the example below� the two solid lines are a basis�

Notice also that a subfamily G may have more than one basis�

Figure ��� Basis for LP

De	nition ����� The combinatorial dimension d of a GLP problem is the maximum size

of any basis for any feasible subfamily G�

De	nition ����� A GLP problem of combinatorial dimension d� where d is independent

of jHj  n� is called �xed dimensional�

There are some simple consequences of this framework which drive the GLP

algorithms� We say a basis B violates a constraint h when w�B�h� � w�B�� B is a basis

for H if and only if B does not violate any element of H� Also� if B � G � H is a basis
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for H� then B is a basis for G as well� Another property is that if B is a basis for G� and

B violates h� then h is a member of any basis for G� h�

A somewhat less obvious consequence of the framework is

Theorem ����� The maximum size of any basis for an infeasible problem of combinatorial

dimension k is k � ��

Proof� Let B be a basis for an infeasible problem� so that any proper subset of B is

feasible� Let A be the subset B�h such that w�A� � w�B�h�� for any h� � B� Notice that

A has to be feasible� since B is a basis� Let B� be a basis for A� Since w�A�h� � w�A�� the

Locality Condition implies that w�B� � h� � w�B��  w�A� � w�B � h�� for any h� � B�

The Monotonicity Condition then implies that �B� � h� �� �B � h��� for any h� � B� that

is� that �B� � h�  B� jB�j � k� so jBj � k � ��

We will use similar arguments later on� to prove the main theoretical results of the thesis�

��� Computational assumptions

It is not clear� of course� what computational operations are possible on an ab�

stract object like �H�w�� Sharir and Welzl assume two computational primitives� and

analyze their algorithm by counting the number of calls to the primitives� The running

time for a speci�c GLP problem then depends on how e�ciently the primitives can be

implemented�

De	nition ����� A violation test is a function violation�B� h�� which takes a basis B

and a constraint h and returns TRUE if B violates h� and FALSE otherwise�

De	nition ����� A basis computation is a function basis�B� h�� which takes a basis B

and a constraint h and returns a basis B� for B � h�

Sharir and Welzl note that only one primitive is required� since a violation test

can be implemented by a basis computation �B violates h if basis�B� h� � B�� but since
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the violation test can usually be implemented more e�ciently� it is useful to count them

separately�

These primitives are fundamentally di�erent from the computational assump�

tions usually made in mathematical programming� which involve evaluating functions and

taking derivatives� although they are analogous to the combinatorial primitive for the

Helly System Witness problem employed by �AH��� �

��� GLP specialized to mathematical programming

In the GLP framework the constraints are just abstract objects� and the objective

function applies to subfamilies of constraints� The traditional framework for mathematical

programming is a little more concrete� It has three parts an ambient space� or ground

set X �usually Ed or the integer lattice�� a set H of constraints� which are subsets of the

ground set� and an objective function w� from X to some simply ordered set S� We call

the elements of X points� The points in
T
H are called feasible� The goal is to minimize

w� over
T
H� To distinguish w�  X  S from w  	H  S� we will call w� a ground

set objective function and w a subfamily objective function� We represent a mathematical

programming problem as a triple �X�H�w���

To simplify our proofs later� we will make a few observations about the GLP

framework specialized to mathematical programming�

De	nition ����� Let �X�H�w�� be a mathematical programming problem� For G � H�

let w�G�  minfw��m� j m � TGg� and w�G�  ! when
T
G  �� Then w  	H  S is

the induced subfamily objective function of �X�H�w��� and the pair �H�w� is the induced

abstract problem�

For example� in linear programming� the value of w on a subfamily of constraints is the

minimum value that the linear objective function w� achieves on the feasible points�

There is a problem with this de�nition� however� since there may be no mini�

mum point even when
T
G � �� For example� say X is Ed and w� is a linear function�
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If the constraints in G are open sets� or if
T
G is unbounded below� the minimum does

not exist� One way to handle subfamilies whose intersection is unbounded is by somehow

�compactifying� the space� for instance by representing points at in�nity� Another com�

mon approach is to add constraints which bound the solution from below� for instance by

putting a bounding box around a linear program� In this case we replace every constraint

h by its intersection with the bounding box�

De	nition ����� When w�G� is de�ned for every G � H� we say w is well�de�ned�

Observation ����� The induced abstract problem �H�w� satis�es the Monotonicity Con�

dition of the GLP framework whenever w is well�de�ned�

This follows from the fact that adding a constraint only eliminates feasible points� so the

value of the minimum remaining feasible point can only go up� Certain functions w� also

produce a function w which meets the Locality Condition�

De	nition ����� If w is well�de�ned� and jfx � TG j w��x�  w�G�gj  �� for all

G � H� then we say �X�H�w�� satis�es the Unique Minimum Condition�

This de�nition says that every subfamily not only has a minimum� but that this minimum

is achieved by a unique point�

Observation ����� If �X�H�w�� meets the Unique Minimum Condition� then �H�w� sat�

is�es the Locality Condition of the GLP framework�

This is because if w�G�  w�F �� for G � F � is achieved only at a single point x� then

w�F � h� � w�F � only if x �� h� in which case w�G� h� � w�G�� There is one easy way

to satisfy the Unique Minimum Condition�

Observation ����� If w��x� � w��y� for any two distinct points x� y � X� then �X�H�w��

satis�es the Unique Minimum Condition�

In general� however� the GLP we get when we use an arbitrary function w� to ensure the

Unique Minimum Condition will not be �xed dimensional� For example� the most common
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function w� which ensures the Unique Minimum Condition on Ed is the lexicographic

objective function� under which x � y if x� � y�� or x�  y� and x� � y�� etc�
� In

the mathematical program in �gure ��	� X is a rectangle� and each constraint h � H is

the complement of some translate of a downwards�directed cone� For any �nite n� we can

Figure ��	 All constraints in the basis

construct an instance of this problem with n constraints� all of which are in the basis� when

w is induced by the lexicographic objective function� Although it isn�t worth coming back

to this example� we note that the machinery developed in later chapters would allow us

to construct an objective function w such that every �H�w� has combinatorial dimension

at most two�

In most applications of mathematical programming� we are interested in �nding

not only an optimal value of S� but also in producing some point x � X which achieves

this optimal value� In these cases we will use an extended version of the induced objective

function w� The output of this extended function w  	H  S �X is a pair ��� x�� where

� is the minimal feasible value of w�� and x is a feasible point with w��x�  ��

��� Necessity of the GLP framework

The Monotonicity Condition and seems essential to our intuitive notions of what

an LP�like problem ought to be� while the Locality Condition might appear to be an

artifact of the algorithms� On the other hand� there are problems which meet the Mono�

tonicity Condition� and have �xed combinatorial dimension� which do not seem at all

LP�like� For example�

�We will study lexicographic objective functions in Chapter 	�
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Problem� Point Set Diameter

Input A family of n points in Ed�

Output The pair of points whose distance is maximum�

We might represent this problem as a pair �H�w�� where H is the set of points and w�G�

Figure ��� Adding h increases diameter of G but not F

is the maximum distance between any two points in G� This problem is monotone� and

no basis has size greater than 	� but it fails to meet the Locality Condition� as illustrated

in �gure ����

Certainly the diameter of H is less than any constant m if the diameter of any

pair is less than m� but it is hard to see how to express this Helly theorem as a Helly

system� Similarly there is no obvious mathematical program �X�H�w�� which induces

�H�w��
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Chapter �

Proving Helly Theorems with GLP

In this chapter we begin to connect Helly theorems and GLP� We observe that

there is a Helly theorem about the constraint family of every GLP problem� This implies

that we can prove Helly theorems using GLP� We use this idea to give a new� simple proof

of an interesting Helly theorem�

First we de�ne what we mean when we say there is a Helly theorem about the

constraint family�

De	nition ��
�� A Helly problem is a pair �H�w�� where H is a family of constraints

and w  	H  S is a function to a simply ordered set S such that there exists a constant

m � S� with the property that w�H� � m if and only if w�B� � m for every B � H with

jBj � k � ��

This de�nes a broad class of problems� since we only require one such constant m� If

�H�w� is a GLP� the following easy theorem states that every m � S is such a constant�

The Locality Condition is not needed� so in the following� just let H be a set of constraints

and w an objective function on subsets of H� such that �H�w� meets the Monotonicity

Condition and the maximum size of any feasible basis is k�

Theorem ��
�� For all m � S� H has the property w�H� � m if and only if every B � H

with jBj � k � � has the property w�B� � m�
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Proof� Let w�H� � m� By the Monotonicity Condition� every B � H must have

w�B� � w�H� � m� Going in the other direction� H must contain some basis B with

w�B�  w�H�� with jBj � k��� So if every subfamily B with jBj � k�� has w�B� � m�

then w�H�  w�B� � m�

So every GLP problem is a Helly problem� Replacing m with the special symbol !� we

get

Corollary ��
�� If H fails to intersect� then H contains a subfamily of size at most k��

which also fails to intersect�

The Helly number in Theorem ����� is k��� while the combinatorial dimension is k� This

is because every subfamily of size at most k may be feasible although H is infeasible�

Given a guarantee that H is feasible� we get a slightly better result�

Corollary ��
�� If H is feasible� H has the property w�H� � m if and only if every

B � H with jBj � k has the property w�B� � m

In later chapters� we will go in the other direction� that is� we will use Helly

theorems to construct GLP problems� But �rst� we will apply this observation to give a

new� short proof of an interesting Helly theorem�

��� A short proof of Morris� theorem

The basic scheme for using GLP to prove a Helly theorem is this given a set

system which we suspect has a Helly theorem� we introduce an objective function� and

then show that the resulting problem meets the Monotonicity and Locality Conditions

and is �xed dimensional� We use this technique to give a simple proof of Morris�s theorem

�which we mentioned in chapter 	��

A family I of sets is intersectional if� for every H � I�
T
H � I� Let Cd be the

set of all compact convex sets in Ed� de�ned so as to include the empty set� Let Zd
k be
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the family of all unions of k or fewer disjoint compact convex sets

Zd
k  f

�

i�����k

Ci j Ci � Cd and Ci disjoint� �� � i � kg

The whole family Zd
k is not intersectional� But consider some subfamily I

d
k � Zk

d which is

intersectional� This may �just happen� to be true� for instance for the family subsets if

�gure ���� Any intersection contains fewer than three connected components� although a

single component in one intersection may be split in another� Or� Idk may be inherently

Figure ��� Just happens to be intersectional

intersectional� for example the family of subsets in �gure ��	� in which each subset is a

pair of balls of diameter �� separated by a distance of at least �� kind of like dumbbells�

Morris �Mo��� proved the following

Morris� Theorem Any intersectional family Idk � Zd
k has Helly number k�d� ���

Gr�unbaum and Motzkin originally made this conjecture� �GM���� and proved the case

k  	� The case k  � was proved by Larman �L���� Morris settled the conjecture in

his thesis� His proof� however� is quite long �the thesis is �� pages�� In addition� Eckho�

notes �E���

���Morris� proof of the lemma is extremely involved� and the validity of

some of his arguments is� at best� doubtful� So an independent proof would be
desirable�



		

Figure ��	 Inherently intersectional family

The GLP machinery leads to a much simpler proof�

In this proof we make use of the fact� which we shall prove in Section ��	� that

the following is a GLP problem of combinatorial dimension d�

Problem� Lexicographic Convex Programming

Input A �nite family H of convex subsets of Ed� and a lexicographic function v� on Ed�

such that v��x�  hv���x�� � � � � v�k�x�i� and and each v�i is a convex function on Ed�

Output The minimum of v� over
T
H�

It is generally taken for granted by people familiar with GLP and its relations� although

I cannot �nd a reference� that this problem is GLP�

We consider any �nite family H � Ikd of constraints� As the objective function

w� we use the function induced by the lexicographic objective function w� on the ground

set Ed� For a subfamily H of constraints� w�H�  minfx j x � THg� Since minima are
identi�ed with points� we will speak of w�H� as a point and ignore the �ne distinction

between the point x itself and the value w��x��

Theorem ����� �H�w� is a GLP problem of combinatorial dimension k�d� ��� ��

Proof� �H�w� satis�es the Monotonicity Condition� by Observation ������ And is satis�es

the Locality Condition by Observation ����	 since every point is assigned a di�erent value

by w��
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Recall that the combinatorial dimension is the largest cardinality of any feasible

basis B� We will count the constraints in B by carefully removing selected constraints

one by one� while building up a subfamily S of �sacred� constraints which may not be

removed in later steps�

We will maintain two invariants� The �rst is that w�B � h� � w�B� for all

h � B � S� Notice that if B is a basis� this is true for any S � B� and if S � T � the

invariant holds for T whenever it holds for S� Now consider the point m � Ed which

is the minimum w�B�� The second invariant is that for all h � B � S� the minimum

mh  w�B� h� lies in a convex component of
T
�B� h� di�erent from the one containing

m�

First we choose the subfamily S so that the invariants are true initially� Since B

is feasible� the minimum m�  w�B� lies in some convex component of
T
B� Each h � B

is the disjoint union of convex sets� the point m� is contained in exactly one of them� Call

this Ch� and let C  fCh j h � Bg� The pair �C�w� is an instance of Lexicographic Convex
Programming� above� a GLP problem of combinatorial dimension d� with w�C�  m�� So

C must contain a basis BC with jBCj � d� We set S  fh � B j Ch � BCg�
How does this ensure the invariants� Since B is a basis� the �rst invariant holds

for any subset S� The second invariant holds because all the constraints which contributed

a convex component to BC are in S� and for any h � B � S� mh � m�  w�BC�� That

is� since m� is the lowest point in
T
BC � and mh is lower than m�� then mh cannot be in

T
BC� and hence must be in a di�erent convex component of

T
�B � h��

Now we turn our attention to selecting a constraint to remove from B� We use

the fact that all the mh  w�B � h� are distinct� for all h � B � S� This is true because

the point mh �� h� so that for any other h� � B� mh �� T�B � h�� since h � �B � h��� This

fact implies that there is some hmax � B � S such that w�B � hmax� � w�B � h� for all

other h � B � S�

So consider removing hmax from B� Since w�B � h� � w�B � hmax�� for any

other h � B � S� certainly w�B � h � hmax� � w�B � hmax�� So the �rst invariant is

maintained for B�hmax and S� To re�establish the second invariant� we have to add more
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elements to S� We do this in the same way as before� by �nding the at most d constraints

which determine the minimum of the convex component containing mhmax � We add these

constraints to S� and set B  B � hmax�

We iterate this process� selecting constraints to remove from B and adding con�

straints to S� until B�S is empty� We now show that each removed constraint h accounts
for at least one convex component Ch in the �nal feasible region TS� We associate h with
the point mh  w�B � h�� the new minimum point in

T
�B � h�� This point mh is the

minimum point in some convex component Ch of T�B�h�� We add the constraints deter�

mining mh to S� so mh will always be the minimum point in whatever convex component

it lies in� So Ch cannot ever become part of some larger component with a lower minimum
point m�� Each new component created will in fact have a lower minimum point m�� so Ch
will remain distinct from all later components� Since no earlier component Ch� can every
merge with a later component Ch� � every removed constraint h will account for a distinct
component in

T
S�

Since Idk is an intersectional family� no subfamily of constraints can have more

than k convex components in its intersection� Since B was feasible� we started with at least

one convex component� so no more than k� � constraints were removed� Each constraint
removed added at most d constraints to S� and we started with at most d constraints in

S� So the total size of jBj � �k � �� � jSj � k�d� ��� ��

Theorem ����� implies Morris� Theorem as a corollary of Theorem ������ Later�

we will see other examples of Helly theorems which arise as byproducts of the construction

of GLP problems�

This is an example of a GLP problem in which the feasible region is disconnected�

We immediately get the interesting

Corollary ����� The feasible region of a GLP problem need not be connected�
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Chapter �

Constructing GLP problems using

Helly theorems

We observed in the last chapter that there is a Helly theorem associated with

every value m of the objective function of a GLP problem� If the problem is a mathemat�

ical programming problem �X�H�w��� then Theorem ����� says that the set Xm  fx �
X j w��x� � mg� and the constraints restricted to that set� Hm  fhTXm j h � Hg� form
a Helly system �Xm�Hm�� Now we want to go in the other direction given a Helly system

�X ��H ��� we want to use it somehow to construct a GLP problem� By analogy� we should

try making the assumption that �X ��H ��  �Xm�Hm� for some GLP �X�H�w
���

In this chapter we formally de�ne a paradigm for the construction of such a

GLP based on a Helly theorem� and give some results about when the paradigm can be

applied� In later chapters we will apply the paradigm to various Helly theorems to produce

algorithms for some interesting geometric optimization problems�

��� Constructing a GLP objective function

At the heart of this paradigm is the construction of a subfamily objective function

w� which usually� although not always� gives a GLP problem� The basic idea is to extend
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the Helly system to one which has a natural objective function�

We introduce a set S with a simple order � to be the range of the objective

function� Now we de�ne the extension of a Helly system �X�H� to a parameterized Helly

system �X � S�H�� �X � S�H� is a set system� that is� the constraints h � H are subsets

of X � S� For a particular constraint h� we write h�  fx � X j 	 � � � s�t� �x� �� � hg�
for the projection into X of the part of h with S�coordinate no greater than �� Also� for

a subfamily of constraints G � H � we write G� as shorthand for fh� j h � Gg�

De	nition ����� An indexed family of subsets fh� j � � Sg� such that h� � h�� for all

�� � � S with � � �� is a nested family�

De	nition ����� A set system �X � S�H� is a parameterized Helly system with Helly

number k� when

�� fh� j � � Sg is a nested family� for all h � H� and

�� �X�H�� is a Helly system� with Helly number k� ���

Figure ��� shows an example of a parameterized Helly system� The whole stack represents

Figure ��� A parameterized Helly system

X � S� and each of the �uted things is a set h � H� Notice that because all the h are

monotone with respect to S� the cross�section at � �represented by one of the planes� is

equivalent to the projected Helly system �X�H���

We say that G � H intersects at � if
T
G� � �� Notice that in a parameterized

Helly system� if G does not intersect at some value ��� then G also fails to intersect at all

�� � ��� and if G intersects at ��� then G also intersects at all �� � ���
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De	nition ����� The natural ground set objective function w� of a parameterized Helly

system is the projection into S� that is� w��x� ��  �� where �x� �� � X � S�

The induced natural objective function w on subfamilies of constraints is then the least

value of S at which the subfamily intersects� so that w�G�  ��  inff� j TG� � �g�
and w�G�  ! if G does not intersect at any � � S �recall that ! is a symbolic maximal

element of S��

It is almost always useful to think of S as time �� so that a subfamily G� is a

�snapshot� of the situation at time �� Usually we can think of some initial time � at

which G� does not intersect� and then envision the h� growing larger with time� so that

��  w�G� is the �rst �moment� at which G� intersects�

As an example� let us consider how the Helly system �X�C� for the Radius

Theorem can be extended to a parameterized Helly system� Recall that the ground set

X is the set of centers of unit balls in Ed� and let S  R� be the set of radii� De�ne

�X � S�C� so that each p� � C� is the set of centers at which a ball of radius at most �

contains a particular point p � C� The nested family p is the set of all balls containing p�

The ground set X � S is the set of all balls in Ed� and C is the family of nested families

for all points�

The natural objective function for this parameterized Helly system� w�G�� returns

the smallest radius at which there is a ball containing all the points corresponding to

constraints p � G� So for any �nite family H � C� �X � S�H�w�� is the following

mathematical programming problem

Problem� Smallest Enclosing Ball

Input A �nite family H of points in Ed�

Output The smallest ball enclosing H�

Smallest Enclosing Ball is actually the classic GLP problem�

�although it need not be isomorphic to� well� whatever time is isomorphic to�
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��� The main theorem

Theorem ����� �Main Theorem� If �X � S�C� is a parameterized Helly system with

Helly number k� then �H�w� is a GLP problem of combinatorial dimension k for any �nite

H � C� whenever �X � S�H�w�� meets the Unique Minimum Condition�

Proof� Since w is induced by the natural ground set objective function w� on the space

X�S� by Observation ������ �H�w� obeys the Monotonicity Condition� Observation ����	

tells us that �H�w� satis�es the Locality Condition whenever �X � S�H�w�� satis�es the

Unique Minimum Condition� �

To prove that �H�w� has combinatorial dimension k� we have to show that the

size of any basis is at most k� Consider any G � H and a basis B for G� The de�nition of

a basis says that for any h � B� w�B � h� � w�B�� Let �max  maxfw�B � h� j h � Bg�
Since H is �nite� so is B� and this maximum is guaranteed to exist�

The basis B does not intersect at �max� but for any h � B� w�B � h� � �max�

which means that B�h intersects at �max� Since �X�H�max� is a Helly system with Helly

number k� B must contain some subfamily A with jAj � k� such that A does not intersect

at �max� Every h � B must be in A� since otherwise it would be the case that A � �B�h�

for some h� This cannot be� because A does not intersect at �max while every �B � h�

does� Therefore B  A and jBj � k�

��� Parameterizing by intersection

In the Smallest Enclosing Ball example� we constructed a parameterized Helly

system in a natural way using the radius as the parameter� This idea is very useful and

can be applied to many transversal and covering problems� In fact� it su�ces for all of

our applications� But is it possible to parameterize any Helly system� In this section� we

�Recall that the Unique MinimumCondition �De
nition ������ says that w is well�de
ned on any G � H

and that the minimum value of w� is achieved by a unique point in
T
G�
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give an existential argument which shows that it is� although we cannot guarantee that

we produce a problem which obeys the Locality Condition�

We use the idea from a construction by Ho�man �H���� He assumes the existence

of one nested family of constraints and uses it to build an objective function� In this way

he relates the Helly number k to something he calls the binding constraint number� in our

terms� he shows that the combinatorial dimension is k� �� We use another fairly common
idea from convexity theory to show that this construction can be applied to any Helly

system�

De	nition ����� The closure of a set system �X�C� is a set system �X�C �� where C �  

fg  TG j � G � Cg�

The following lemma will come in handy in other contexts�

Lemma ����� �Intersection Lemma� The closure �X�C �� of a Helly system �X�C� of

Helly number k also has Helly number k�

Proof� We will prove this Helly theorem by proving the contrapositive� so we need to

show that if a subfamily G� � C � fails to intersect� then it contains a subfamily B� with

jB�j � k which also fails to intersect� Notice that
T
G� � C �� Let

FG�  fh � C j h � h�� h� � G�g

Notice that
T
FG�  

T
G�� so if

T
G�  �� then there is some B � FG� with jBj � k such

that
T
B  �� Each h � B must contain at least one g � G�� We construct a corresponding

set B� � G� by choosing a single such g for each h� Then B� cannot intersect� and jB�j � k�

So �X�C �� also has Helly number k�

We use this lemma to show

Lemma ����� Every Helly system can be extended to one which includes a nested family�

Proof� Let �X�C� be a Helly system� We begin by using the intersection lemma to

extend �X�C� to �X�C ���
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The maximum principal from set theory �e�g� �Mu���� page ��� says that any set

with a partial order on its elements has a maximal simply ordered subset� So the set C ��

partially ordered by inclusion� contains some� not necessarily unique� maximal sequence

P � We extend �X�C� to �X�C � S�� where S is the family �� P �X�

This lemma is non�constructive� since we do not say how to �nd a maximal sequence P �

Now we show that we can use S to parameterize the original Helly system �X�C��

Theorem ����� Let �X�C� be a Helly system with Helly number k� with S � C such

that S is a nested family and ��X � S� �X�C� can be extended to a parameterized Helly

system �X � S�C� with natural objective function w� If� for a �nite subfamily H � C�

�X � S�H�w�� meets the Unique Minimum Condition� then �H�w� is a GLP problem of

combinatorial dimension k � ��

Proof� The range of our objective function will be the nested family S itself� So � � S

is a subset of X� rather than� for instance� a real number�

We extend every element h � C of our original family of constraints to a nested

family h� For � � S� we let h�  h 
 �� Again we write C  fh j h � Cg� and
C�  fh� j h � Cg�

Assuming that �X � S�H�w�� meets the Unique Minimum Condition� the Main

Theorem tells us that �H�w� is a GLP problem of combinatorial dimension no greater

than k� It remains therefore to be shown that the combinatorial dimension is in fact no

greater than k � �� that is� that any feasible basis B � H has jBj � k � ��
We use another version of the argument in the proof of the Main Theorem� Let

��  w�B�� There is some element hmax � B� such that �max  w�B � hmax� � w�B� h�

for all h � B� Remember that �max � C�

Now let B  fh � C j h � Bg� B�max fails to intersect� which means that

A  B � �max fails to intersect� Since B is a basis� B � h� �max does intersect� for every

h � B� and we know that B intersects because B�� intersects�

So all of A�s proper subsets do intersect� while A does not� Since A � C and
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�X�C� is a Helly system with Helly number k� jAj � k� This means jBj  jBj � k � ��

The tricky part here is using the maximal simply ordered sequence S itself as the parameter

of the nested family� We have to do it this way because S may have any order type� it

may not be isomorphic to some convenient simply ordered set like the real line�

Notice that the Main Theorem used the fact that the Helly number of each

�X�G�� was k to show that the combinatorial dimension was bounded by k� Here� although

the combinatorial dimension is k � �� the Helly number of each �X�G�� can still be as

great as k�

Lemma ��	�	 and Theorem ��	�� together imply

Theorem ����� Every Helly system can be extended to a parameterized Helly system�

This theorem is non�constructive because Lemma ����	 was non�constructive�

We reiterate that although we can parameterize any Helly system by intersection�

we cannot guarantee that the natural objective function always gives a GLP� In the next

section� however� we get a useful GLP by a careful choice of the nested family S�

��� Convex Programming

We now have the machinery to show that Convex Programming is GLP� Remem�

ber that a d�dimensional Convex Program is a mathematical program �X�H�w��� where

the ground set X is Ed� H is a family of convex sets� and w� is a convex function from X

to R� That means that all the sets w�
�  fx � X j w��x� � �g are convex�

Theorem ����� Any d�dimensional Convex Program which meets the Unique Minimum

Condition is a GLP of combinatorial dimension d�

Proof� The important observation is that the family of sets P  fw�
� j � � Rg is a nested

family of of convex sets� isomorphic to R� Remember that �X�H� is a Helly system with
Helly number d� � �an instance of Helly�s Theorem proper� since H is a �nite family of
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convex sets�� We let S  � � P �X� Then we just apply Theorem ��	�� to �X�H � S�

and S�

Since we know� from Corollary ����� that there are GLP problems whose con�

straints are not even connected� let alone convex� we can infer from Theorems ����� that

Corollary ����� The class of GLP problems strictly contains the class of convex pro�

gramming problems�

It cannot be the case that all Helly systems produce a GLP when parameterized

by intersection� for as we shall see in the next section� there are some Helly systems for

which no function w gives a �xed dimensional GLP problem�

��� A Helly system with no �xed combinatorial dimension

In this section we exhibit a set system with a �xed Helly number which cannot

be turned into a �xed dimensional GLP problem�

Theorem ����� For all n � �� there is a family H of 	n sets with Helly number 	 such

that for any valid GLP objective function w the combinatorial dimension of �H�w� is n�

Proof� Let the universe X consist of the 	n points at the vertices of an n dimensional

hypercube� and let the constraint family H be the 	n subsets each of which lies in a facet

of the hypercube� If a subfamily G � H includes any pair of opposite facets� then G fails

to intersect� and otherwise G does intersect� So the Helly number of �X�H� is 	�

Any valid objective function w must assign w�G�  ! to the infeasible families G

which contain a pair of opposite facets� Meanwhile any feasible G which does not contain

a pair of opposite facets will have w�G�  � � S� with � � !� Let

�max  maxf� � Sj� � ! and �  w�G� for some G � Hg
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and consider some G with w�G�  �max� If jGj � n� then there exists some pair �h�� h��

of facets� such that G contains neither h� nor h�� This means that G�h� is also feasible�

By the Monotonicity Condition� w�G� h�� � w�G�� and since w�G� is maximal� we can

conclude that w�G � h��  w�G�  �max� This argument shows that there must be a

subfamily G of size n with w�G�  �max�

Now we show that there is no basis B for such a subfamily G such that B � G�

Assume� for the purpose of contradiction� and without loss of generality� that there is some

element h� � G such that h� �� B� Then B � h� is still feasible� so w�B� h��  w�B�  

�max� But w�G � h��  !� Since B � G and w�B�  w�G�� this means that w is not

a valid objective function because it fails to satisfy the Locality Condition� So any valid

objective function w must have B  G� and �H�w� must have combinatorial dimension

n�

For any valid objective function w� there is a Helly theorem about the constraints of

�H�w� for the value m  ! �see de�nition ������� Together with Theorem ������ then� this

theorem implies

Corollary ����� The class of GLP problems is strictly contained in the class of Helly

problems�

In this example� we increase the combinatorial dimension by increasing the di�

mension of the ground set X� It is also possible to present this example combinatorially�

as a function on family of abstract constraints� or on a family of �perhaps oddly shaped�

sets in some constant dimensional space� But is it possible to construct a family of sets

in a constant dimensional space which has the same intersection pattern as this example�

in which every set� or intersection of sets� is the union of a constant number of cells� We

make the following

Conjecture ����� Let �X�C� be a set system� closed under intersection� such that X

is Rd� and any element h � C is the disjoint union of at most m cells� Then for any

�nite H � C� there is an objective function w such that �H�w� is a GLP problem of

combinatorial dimension f�d�m�� where f�d�m� is a function independent of jHj�
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This would imply that the Helly number of such a family is no greater than f�d�m�� �� a

very general Helly theorem which would subsume both Helly�s Topological Theorem and

Morris� Theorem �see Section 	����
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Chapter �

Lexicographic objective functions

and quasiconvex programming

So far we have just assumed that we can satisfy the Unique Minimum Condition�

This is not immediate even for linear programming� The objective function

minimize x�

fails to ensure a unique minimum for every �nite subset of constraints� since the minimal

value of x� might be achieved over a face of any dimension in the feasible polytope� One

way to �x this is to rotate the polytope� or equivalently the objective function� slightly so

that no facet is parallel to the hyperplane x�  �� This is an example of a perturbation

technique� Although conceptually simple� these can be messy in practice� Instead� we

usually use a lexicographic objective function

minimize hx�� x�� � � � � xd��i

where the minimum point is the one which minimizes xd��� over all which minimize xd���

etc� In this section we use this idea to build a GLP objective function for other Helly

systems�

We �nd that the lexicographic objective functions interact strangely with the

combinatorial dimension� Here is one way of looking a problem with a lexicographic ob�
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jective function v� Say v has k parameters� The most signi�cant parameter is determined

by some simple one�parameter objective function w�� At each value � of w�� H� is the

constraint set of another problem whose lexicographic objective function has k�� param�
eters� � By analogy with linear programming� if the original problem has combinatorial

dimension d� we expect the new problem to have combinatorial dimension d � �� but in
fact this is not always the case� surprisingly� the combinatorial dimension can go down by

as much as a half�

This strange behavior does not occur for GLP problems where we could have used

a perturbed one�parameter objective function instead of the lexicographic function� But

some non�convex problems can only be formulated as GLP using a lexicographic objective

function� These include a class of problems from the mathematical programming literature

called quasiconvex programs� Some of our applications will fall into this class�

	�� Constructing a lexicographic objective function

We construct a lexicographic objective function recursively� If the natural objec�

tive function on a parameterized Helly system fails to meet the Unique Minimum Condi�

tion� the most signi�cant parameter � is minimized over a region R � X� rather than at a

single point� The recursive assumption we make is that minimizing the other parameters

over R is a GLP problem of combinatorial dimension d� Given this assumption� we show

that the problem of �nding the overall minimum is also GLP�

Let �X � S�H� be the Helly system parameterized by � with Helly number k

and natural objective function w� For all �� we assume that there is an objective function

v�  G�  S�� where S� is some totally ordered set containing a maximum element !��

such that �G�� v�� is a GLP problem� We will de�ne a lexicographic objective function

v  	H  S � S� in terms of w and the functions v�� So that the range of this function

is a simply ordered set� we impose a lexicographic order on the pairs in S � S�� where

��� 	� � ���� 	�� if � � ��� or �  �� and 	 � 	��

�This idea is sort of like building the problem up using parametric search�
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Since the parameterized system �X � S�H� has Helly number k� so does every

�X�G��� But a �xed Helly number does not necessarily imply a bound on the combinatorial

dimension� So we will simply assume that the combinatorial dimension of every �G�� v��

is bounded above by some other constant d�

Theorem ����� Let �X � S�H� be a parameterized Helly system with Helly number k

such that� for all G � H �

�� ��  w�G� exists� and

�� for all �� there is a function v�  	
G�  S�� such that �G�� v�� is a GLP problem of

combinatorial dimension at most d�

Let v�G�  ���� 	��� where ��  w�G� and 	�  v���G���� Then �H� v� is a GLP problem

of combinatorial dimension at most k � d�

Proof� As in the Main Theorem� we note that the constraints H are subsets of X � S�

so �H� v� obeys the Monotonicity Condition�

To establish locality� consider G � F � H� with v�G�  v�F �  ���� 	�� and

v�F�h�  ��� 	� � v�F �� Then v���F���h��� � v���F���� since either �  �� and 	 � 	��

or � � �� and v���F�� � h���  !
�� In either case� since v�� is a GLP objective function

obeying the Locality Condition� v���G�� � h��� � v���G���� and v�G� h� � v�G�� So the

lexicographic function v also satis�es the locality condition�

Finally we consider the combinatorial dimension� LetB be a basis for any G � H�

Then v�B � h�  ��� 	� � v�B�  ���� k��� for any h � B� Let the subset B�  fh �
B j v�B � h�  ��� 	� and � � ��g� Since the combinatorial dimension of �B�� � v��� is d�

B � B� contains at most d constraints�

Again following the proof of the Main Theorem� we let �max  maxf� j v�B �
h�  ��� 	�� h � B�g� B fails to intersect at �max and hence must contain some set A of

size at most k which also fails to intersect� And again� every h � B� must also be in A�

since B � h intersects at �max and A does not� so A �� B � h� So jB�j � jAj � k� and

jBj � k � d�
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	�� Some lexicographic functions are equivalent to pertur�

bation

Certainly the bound on the combinatorial dimension which we get using this

theorem is not always tight� For instance� consider the lexicographic objective function v

for d�dimensional linear programming which we mentioned at the beginning of the chapter�

induced by the lexicographic order on Ed� which we shall write as v�  hx�� x�� � � � � xd��i�
We know the combinatorial dimension of �H� v� is d� but Theorem ����� tells us only that

the combinatorial dimension is at most d�d� ��
	� since each G� is the constraint set of

a �d� ���dimensional linear program� and so on�
But notice that for any speci�c �nite family H of constraints� there is a single�

parameter GLP objective function u which has combinatorial dimension d� and which

behaves on H exactly like the lexicographic function v� This function u is the one induced

by the linear function

u��x�  x� � �x� � ��x� � � � �� �d��xd��

for some in�nitesimal � � � � �� For linear programming� we can actually �nd some �

small enough so that for any pair of subsets F�G � H� if v�F � � v�G� then u�F � � u�G��

and if v�F �  v�G�� then u�F �  u�G��

Observation ����� If �H� v� is a GLP problem� and there is some other objective func�

tion w� such that v and w impose the same total order on the subsets of H� then the

combinatorial dimension of �H� v� is the same as the combinatorial dimension of �H�w��

Notice that we are not required to actually produce such a one�parameter function u by

�nding some small enough �� the fact that it exists is enough to tell us the combinatorial

dimension of �H� v��

In general� given a lexicographic objective function v� on X with k parameters

hv�� � � � v�k��i� we can construct the single parameter function u��x� ��  v���x� � �v���x� �

� � � � �k��v�k���x�� Call the corresponding induced objective functions v and u� We can
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think of u� as a family of functions parameterized by �� any member of which we will write

as u��� We can also think of u
� as a perturbation of the most signi�cant parameter v�� of v

��

Let us consider using this construction with the objective function of

Problem� Lexicographic Convex Programming

Input A �nite family H of convex subsets of Ed� and a lexicographic function v� on Ed�

such that v��x�  hv���x�� � � � � v�k�x�i� and and each v�i is a convex function on Ed�

Output The minimum of v� over
T
H�

We can de�ne a one�parameter ground set objective function u�� as above� corresponding

to v�� but there might be no � small enough that v and u� behave exactly the same on

every subfamily of constraints� For instance� in the Lexicographic Convex Program below�

v�fa� bg�  v�fag�� where v is the function induced by the usual lexicographic order on
E�� This is not true of the corresponding function u� for any � � ��

Figure ��� Minima are di�erent under u�

As � goes to �� however� the points realizing u� converge to the points realizing

v� so that if v�F � � v�G�� for in�nitesimal �� u��F � � u��G�� We make a slightly stronger

Observation ����� Let �H� v� and �H�u� be GLP problems� If v�F � � v�G� implies

that u�F � � u�G�� then the combinatorial dimension of �H� v� is no greater than the

combinatorial dimension of �H�u��

To see this� let B be any basis under v� Then B is also a basis under u� since u�B� �

u�B � h� for all h � B� So the maximum cardinality basis of �H� v� is no larger than the

maximum cardinality basis of �H�u��
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Observation ��	�	 now tells us that the combinatorial dimension of �H�u�� is an

upper bound on that of �H� v�� Finally� notice that u� is a convex function because it is the

sum of positive convex functions� So �H�u�� is a convex program with a single�parameter

objective function� which� as we established in Theorem ������ has combinatorial dimension

d� This implies the following

Theorem ����� Any d�dimensional Lexicographic Convex Program can be solved by a

GLP of combinatorial dimension d�

	�� An example which requires a lexicographic function

There are some problems� however� for which the lexicographic objective function

is not equivalent to any one parameter function�

Theorem ����� There is a parameterized Helly system �X � S�H� with Helly number

d� �� and a family of functions v� where every �G�� v�� is a GLP problem with combina�

torial dimension d� such that �H� v� has combinatorial dimension 	d � �� where v is the

lexicographic objective function�

Notice that the combinatorial dimension in this theoremmeets the upper bound of theorem

����� for k  d� �� Proof� We de�ne a problem in which every G� is a d�dimensional

linear programming problem� Every nested family h � H is a subset of Ed � R of the

form a � x � b�� where a is a vector� � is dot�product� x � Ed and b� is a scalar quantity

that varies with � as follows� Let b and c be constants� For � � c� b�  b� and for � � c�

b�  ��� Essentially� a constraint remains in force below c� and recedes to �� above�

The function v� can be any linear function� Notice that �E
d � R�H� is a parameterized

Helly system with Helly number d��� and that every �G�� v�� has combinatorial dimension

d�

We can construct an instance of this problem for which some basis B � H has

size jBj  	d� �� Figure ��	 is an example for the case k  �� The constraints h� and h�
determine the minimum value of �� while constraint h� determines the minimum value of

x�
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Figure ��	 Size of basis is three

To construct such an example in general dimension� let u be any linear objective

function on Ed� Construct a tiny simplex s by intersecting some family A� of positive

halfspaces with jA�j  d� �� Let A be the corresponding family of negative halfspaces� A

is the constraint set of an infeasible d�dimensional linear program� withA a basis for �A� u��

Now let B be the basis of a feasible d�dimensional linear programming problem� with the

same objective function u� such that jBj  d and the simplex s is strictly contained in the

interior of
T
B� We parameterize A and B by �� as above� assigning some arbitrary value

ca to every h � A� and some other value cb � ca to every h � B� Let the constraint set of

the whole problem be H  A � B� For every � � S� let the function v� be u�

Then v�H�  ���� 	��� with ��  ca� and 	�  u�B�� So what is ���� 	��� and

how big is a basis for �H� v�� Since A is the basis for an infeasible linear program� �� is at

least ca� Since the little simplex s is strictly contained in
T
B� if we remove any h � A� we

get w�H�h�  ��� Since 	�  u�B�� then v���Hl��hl�� � k� for all h � B� So removing

any element of H causes the minimum to go down� and H is a basis of size 	d� ��

	�� Quasiconvexity

The strange constraints in the GLP problem of Theorem � are certainly not

convex� They belong to a category from the mathematical programming literature known
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as quasiconvex functions� Like a convex program� the only minimum of a quasiconvex

program is the global minimum� We will show that like convex programs� quasiconvex

programs can be solved by GLP� using lexicographic objective functions� �

Consider functions from Rd to R� Remember that a function f is convex if

f��x� ��� ��y� � �f�x� � �� � ��f�y�� for any x� y in Rd� with � � � � �� A function
f is quasiconvex if f��x � �� � ��y� � maxff�x�� f�y�g� and strictly quasiconvex when

f��x� ��� ��y� � maxff�x�� f�y�g� with � � � � ��

Figure ��� convex� quasiconvex� strictly quasiconvex

De�ne the �� k��level set of f to be the fx j f�x� � kg� An alternative de�nition
of quasiconvexity is that a quasiconvex function is one whose �� k��level sets are convex�

Notice that all convex functions are quasiconvex� Also notice that if a quasiconvex function

f is constant along any line segment� it is not strictly quasiconvex�

A �d� ���dimensional quasiconvex program is a problem of the form

minimize �� subject to

fi�x�� � � �� for i  �� � � � n� n � �

cj�x� � �� for j  �� � � �m�m � �

where the fi are quasiconvex functions� the ci are convex functions� and x is a d�vector of

variables� A two�dimensional example might look like �gure ����

Programs in which all the constraints are convex and the objective function g�x�

is quasiconvex are also common� but they can be expressed in the more general form above

�I am indebted to Nimrod Megiddo for telling me that the functions I was interested in are called
quasiconvex�
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Figure ��� Quasiconvex program

by adding � as a new dimension and g�x�� � � � as a new constraint ��

Many interesting and useful functions are quasiconvex �see �Mag���� page �����

Ratios of linear functions

f�x�  
a � x
b � x

are quasiconvex over any domain where the denominator b � x is never �� Also� functions
of the form

f�x�  
g�x�

b � x
over any domain where g�x� is convex and b � x is positive are quasiconvex�

We now proceed to show that quasiconvex programming is GLP by constructing

nested families parameterized by ��

For a quasiconvex constraint fi� de�ne

h�  fx j fi�x� � �g

Each h� is a convex subset of E
d� The h� form a nested family� hi� indexed by �� For a

convex constraint� cj� de�ne

g�  fx j cj�x� � �g

The g� also �trivially� form a nested family gj �

The constraints of our GLP are H  fhi j i  � � � � ng � fgj j j  � � � �mg�
�Ed �R�H� is a parameterized Helly system� and the natural objective function w� gives

us a mathematical programming problem �Ed �R�H�w���

�In this case a strictly quasiconvex function g�x� can often be replaced with a convex objective function
guaranteed to have the same minimum�



��

As we do for linear or convex programs� we can ensure that the objective function

is well de�ned by adding constraints to the problem which bound the solution from below�

In this case any single quasiconvex constraint � will do� so long as w�f�g� � w�G� for

all subfamilies G � H such that w�G�  � exists� We rede�ne H by replacing every

constraint h or g with h 
 � or g 
 �� If it is not the case that all the fi are strictly

quasiconvex� we also require � to bound the minimum of every G� as well as of G�

Theorem ����� A quasiconvex program �Ed � R�H�w�� in which all the fi are strictly

quasiconvex� is a GLP problem of combinatorial dimension d� whenever the subfamily

objective function w is well�de�ned�

Proof� We need to show that �H�w� is a GLP problem� Since �R� Ed�H� is a param�

eterized Helly system� and we assume that w�G� is de�ned for all G � H� it su�ces to

show that jTG��j  �� and then apply the Main Theorem�
This condition follows from the de�nition of strict quasiconvexity� Assume for

contradiction that
T
G�� contains two points x� y� Any point on the segment between them�

for instance �x
	� y
	�� is in
T
G� Because f is strictly quasiconvex� �  f�x
	� y
	� �

maxff�x�� f�y�g ��� so the point �x
	� y
	� � TG�� This contradicts the de�nition of

�� as the minimum value � at which G� is non�empty� So
T
G�� must consist of exactly

one point�

For quasiconvex� but not strictly quasiconvex� functions� we need to use a lexi�

cographic objective function�

Theorem ����� A quasiconvex program �Ed � R�H�w�� is a GLP problem of combina�

torial dimension d� whenever the subfamily objective function w is well�de�ned�

Proof� Since
T
G�� is convex� it has a unique minimum with respect to any convex

objective function g on Rd� So the parametric objective function v  �w�w�� where w is

the natural objective function on G� and w� is the function on subsets of Rd induced by
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g� gives a GLP problem of combinatorial dimension � 	d�

In fact� the idea of a parameterized Helly system generalizes the idea of a qua�

siconvex program� In a quasiconvex program� each family H� if a convex family of sets�

obeying Helly�s Theorem proper� whereas in a general parameterized Helly system� H�

can be any family of sets which obeys some Helly theorem�
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Chapter �

GLP algorithms

�I think you have just rediscovered the simplex algorithm�� � Raimund Seidel�

after a research talk�

This chapter contains a survey of GLP algorithms� It establishes that there are

algorithms for the entire class of GLP problems� and gives a high�level overview of their

relative merits in terms of simplicity and asymptotic analysis� Such a survey is interesting

beyond the context of this thesis� since the �eld has been very active in the past few years�

Most of the GLP algorithms can be seen as variants of the simplex algorithm� the oldest

and perhaps the most e�cient linear programming algorithm� We will begin by showing

that any simplex algorithm can be generalized to GLP�


�� The simplex algorithm

Most of the GLP algorithms� when applied to linear programming� are what is

called dual�simplex algorithms� Remember that any linear program can be put into a

standard form

maximize cTx� subject to

Ax  b

xi � �� i  �� � � � � n
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Lets say the A is a matrix with n columns and d rows �so the dimension of the primal space

is n�� Geometrically� the a�ne subspace de�ned by the intersections of the hyperplanes

Ax  b intersects the positive orthant in an �n� d��dimensional polytope� over which we

maximize� The maximum is achieved at a vertex� which lies in the d hyperplanes Ax  b

and in n � d of the coordinate hyperplanes xi  �� The maximum is determined by the

d coordinate hyperplanes which are not involved in the intersection� which select some d

columns of A� We�ll call the standard form the primal�

The simplex algorithm was introduced by Dantzig in ���� �D���� The simplex

algorithm begins at some vertex of the feasible polytope �� and �nds the maximum ver�

tex by �walking� along a path of adjacent feasible vertices� increasing the value of the

objective function at each step� Let H be the family of coordinate hyperplanes� A vertex

is determined by the subset V � H of coordinate hyperplanes that do not meet at the

vertex� with jV j  d� De�ne a function u�V � on a subset of coordinate hyperplanes to

be the value of the objective function at the vertex� if V de�nes a feasible vertex� and

�� otherwise� Using this �somewhat nonstandard� terminology� we can give this very

high�level description of the simplex algorithm

choose a feasible vertex V

while 	h � V and 	h� � H such that u�V � h� h�� � u�V �

do V  V � h� h�

return V

Each iteration of the while loop is called a pivot step� At any time there may be many

allowable pivot steps� and a simplex algorithm must provide a rule for choosing which to

take� So it is more precise to speak of the family of simplex algorithms�

The linear programming dual of the standard form is

minimize bTy� subject to

�The problem can always be extended to one which has a vertex which is guaranteed to be feasible� It
will be easy to see this in the dual�
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AT y � c

Here� geometrically� we are minimizing over the full�dimensional polytope whose facets

are the inequalities AT y � c� and the minimum is determined by d halfspaces� which we

shall call a basis� We shall also call the d halfspaces determining the minimum of any

subproblem de�ned by G � H a basis� This is the geometric form in which we introduced

the linear programming problem�

Any vertex of the arrangement in the dual corresponds to some subset of d

coordinate planes in the primal� since a subfamily of rows of A in the dual is a subfamily

of columns in the primal� But notice that not every vertex in the dual arrangement is

a basis� just as not every d coordinate planes de�ne a feasible vertex of the polytope in

the primal� In fact� a basis in the dual problem corresponds to a feasible vertex in the

primal� and the value of the dual objective function at the basis is the value of the primal

objective function at the vertex�

Let�s look at this idea in a little more detail� We know that the minimum of the

dual problem is the maximum of the primal� this is the Strong Duality Theorem of linear

programming� Any other basis in the dual is the minimum of another linear program with

fewer constraints� Removing a constraint in the dual corresponds� in the primal� to �xing

the variable corresponding to the omitted constraint to zero� or� geometrically� restricting

the problem to the facet of the feasible polytope supported by the corresponding coordinate

hyperplane� We know there is such a facet because the restricted primal problem is feasible�

since the new dual problem is bounded� So every basis in the dual corresponds to a feasible

vertex in the primal� and again by the Strong Duality Theorem� the values of the objective

functions are the same�

In the primal� two vertices are adjacent if they di�er in one constraint� Similarly

in the dual� two bases are adjacent if they di�er in one constraint� Most of the GLP

algorithms walk along a path of adjacent infeasible bases� During this walk the value

of the objective function increases� until �nally the algorithm reaches the single feasible

basis� A walk on increasing adjacent bases in the dual is exactly the same computation

as a walk on increasing adjacent feasible vertices in the primal� Any such algorithm is a

simplex algorithm� when applied to linear programming� we are just watching its progress
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in the dual� Same computation� di�erent graphics�

This dual point of view seems simpler in many ways� For instance� we can add a

bounding box to the dual problem� so that any subset of constraints has a feasible basis�

which may include some of the constraints from the box� We can then start the walk from

the basis of the bounding box� This corresponds to the somewhat more abstract idea of

adding variables to the primal to ensure a feasible vertex from which to start�

More importantly� the dual viewpoint is more useful than the primal for extend�

ing the simplex algorithm to convex and other non�linear problems� Using the simplex

algorithm for non�linear problems is an old idea� and examples of such algorithms can be

found in nonlinear programming textbooks �BS���� �F���� Let�s consider the simple case

of minimizing a convex function over a polytope� The minimum might lie in any face of

the feasible polytope� not only at a vertex� The primal�simplex algorithm becomes rather

clumsy� since it keeps track of the coordinate planes in which the current point does not

lie� and in the interior of some face� there may be as many as n of these� A better idea

is an active set algorithm� This is a primal simplex algorithm which keeps track of the

coordinate planes in which the current point does lie� The size of the active set can be as

great as n� d� which is reasonable only when d is not much smaller than n�

We don�t have to make any such modi�cations to the dual�simplex algorithm�

since there we always keep track of of the constraints whose boundaries contain the current

point� If again we minimize a convex function over a polytope� the minimum point of the

feasible polytope for any subfamily of constraints will lie on some face� and hence be

contained in at most d constraints� The amount of combinatorial information needed

remains bounded by d� Since the Strong Duality Theorem of linear programming carries

over to convex programming �although perhaps not to all GLP problems�� we can �nd the

solution to a problem given in the primal by solving the dual�

We can use Sharir and Welzl�s GLP framework to give a generalized version of

the simplex algorithm which applies to any GLP problem� As usual� �H�w� is a GLP

problem of combinatorial dimension d� and we assume a function basis which returns a

basis for a subset of at most �d � �� constraints� We also assume that we can �nd an
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arbitrary basis at the beginning�

choose any basis B

while 	h � H such that w�B � h� � w�B�

do B  basis�B � h�

return B

Applied to any GLP problem� this generalized simplex algorithm returns a basis for H�

since for any basis B with w�B� � w�H�� there is some h � H with w�B � h� � w�B��

And it terminates� since w�B� increases with each pivot step� When applied to a linear

program� this is just the standard simplex algorithm� since the function basis will always

swap h into the basis� Since we have not speci�ed how to choose the pivots� all we can

say about the running time is that it is O�ndtb�� where tb is the time required for a basis

computation� since there are O�nd� fesible bases and each feasible basis is visited at most

once�


�� Deterministic algorithms

The �rst linear time �xed dimensional linear programming algorithms �M�����D����

�C���� were deterministic and do not follow the simplex model� They all rely on �nding

vertical � hyperplanes through the intersection of a pair of constraints� which makes them

di�cult to generalize to non�linear problems� Megiddo and others have generalized his ap�

proach to speci�c non�linear problems �M���� Dyer �D�	� gave a deterministic algorithm

for the general class of non�linear �xed dimensional problems which have an arbitrary

number of linear constraints and only a constant number of convex constraints� In partic�

ular� a problem with linear constraints and a convex objective function can be expressed

in this form�

The linear programming algorithms of Megiddo� Dyer and Clarkson had run�

ning times of O�	�
d

n� �M��� �O��d
�

n� �D��� � and O��d
�

n� �C��� � respectively� Although

�parallel to the direction of optimization
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these algorithms are linear in n� the dependence on d is usually unacceptable in practice�

Another deterministic algorithm is derived from Clarkson�s algorithm� below�


�� Clarkson�s algorithm

Clarkson�s randomized algorithm �C��� improved the running time by separating

the dependence on d and n� � He used a three�level algorithm� with a �base�case� algorithm

at the lowest level solving subproblems of size �d��

The higher two levels reduce the problem to smaller problems using the following

idea� Take a sample R � H� �nd a basis B� for R by calling the next lower level algorithm�

and then �nd the subset VR � H of constraints which violate B�� A simple consequence

of the GLP framework is

Fact ����� VR contains at least one constraint from any basis B for H�

The purpose of the top level is to get the number of constraints down so that we can apply

the second level� which is more e�cient in d but less e�cient in n� We take a random

sample R� with jRj  d
p
n so that E�jVRj�  O�

p
n�� that is� we take a big random sample

which gives an expected small set of violators� We iterate� keeping the violators in a set

G� and �nding a basis B� for �R�G�� At every iteration we add the violators to G� so that

after d iterations G contains a basis B for H and E�jGj�  d
p
n� Solving the subproblem

on G then gives the answer�

All recursive calls from the �rst level call the second level algorithm� which uses

small random samples of size �d�� Initially the sample R is chosen using the uniform

distribution� but then we double the weights of elements in V and iterate� Since at least

one basis element always end up in V � eventually they all become so heavy that B � R�

The analysis shows that the expected number of samples before B � R is at most �d lg n�

Since we need O�n� work at each iteration to compare each constraint with the basis B�

�I bene
t in this section from the insights in an enlightening lecture by Mike Luby and a graceful survey
by Emo Welzl �W���
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of R� without the �rst phase this algorithm alone would be O�n lg n�� All the recursive

calls from this reweighting algorithm are made to some �base�case� algorithm�

The running time comes to O�d�n � d�
p
n lg n � d��lg n�s�d���� where s�d�� is

the time required for a call to the base�case algorithm with O�d�� constraints� So the

algorithm is not polynomial in d only because s is not a polynomial function� We can see

Clarkson�s algorithm as a tool for reducing a GLP problem with many constraints to a

collection of small problems with few constraints�

Clarkson noted that his algorithm could also be applied to Smallest Enclosing

Ball� and� interestingly� to integer programming in �xed dimension�

The �rst level algorithm� if it called itself recursively instead of the second level

algorithm� would be a simplex algorithm �at least if we add the speci�cation that the

current basis B� be included in G at every step�� The second reweighting algorithm is not�

since the current vertex does not change at each iteration� We can see the second level

algorithm as a series of experiments� which eventually �nds a short sequence of pivot steps

from the current vertex to the top�

Clarkson�s algorithm can be derandomized � to give a deterministic algorithm for

a broad subclass of GLP problems� Let B be the family of bases for a GLP problem �H�w��
let VB be the violators of basis B � B� and let V  fVB j B � Bg� Chazelle and Matou�sek
�CM��� show that if the set system �H�V� has constant VC�dimension D �see Section

	���� then Clarkson�s random sample R can be replaced by a deterministicly constructed

sample R� �called an ��net�� such that jVR� j � E�jVRj�� Unfortunately� as we observed
before� there are set systems with �nite Helly number which have in�nite VC�dimension�

and as a result this algorithm does not apply to all GLP problems� Constructing R�

requires �O�D��Dr�D lgDDr�n time� where D is the VC�dimension of �H�V� and r  jHj
jV
R�
j �

for the desired jVR� j� so that even when r is �xed� the constant on n is usually unacceptably
large�

�that is� the random sample can be replaced by a deterministicly chosen one�
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�� Seidel�s algorithm

As originally presented� Seidel�s algorithm relied heavily on the geometry of

�dual� linear programming� The idea was to select a random halfspace h � H� and

recursively �nd the minimum point x in H � h� If x � h� then output x� If not� the true

minimum must lie on the boundary of h� so we �nd it by solving the �d� ���dimensional
linear programming problem within that hyperplane� These recursions bottom out when

either H is empty or the minimum is constrained to lie in d hyperplanes� at which point

we just take the intersection�

Notice � that it is not really necessary to construct each �d � ���dimensional
problem� Instead� let the recursive call include a list of hyperplanes in which the current

minimum must lie� called the tight constraints� Each successive minimum that we actually

compute in the base case is the minimum of a problem consisting of just tight constraints�

Looking at it this way frees the minimum from actually having to lie on the boundaries of

the tight constraints� and makes this a GLP algorithm� The only condition on the problem

is that if a constraint h violates a basis B of a subfamily G� then any basis B� for G� h

has h � B�� and this follows from the GLP framework�

The analysis of Seidel�s algorithm is extremely simple� The probability that we

begin by removing an element of the basis is at most d
n� If we do have to do a recursive

call on h� then there are at most d� � remaining basis elements to �nd� So the expected
running time satis�es

T �n� d� � T �n � �� d� � d

n
T �n � �� d� �� � O���

which is O�d"n�� that is� O�	d lg dn��


�� Sharir and Welzl�s Algorithm

Notice that Seidel�s algorithm is not exactly a simplex algorithm� since the min�

imum might go down at the beginning of a recursive call� The algorithm of Sharir and

�As Seidel and Mike Hohmeyer did� while implementing the algorithm�
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Welzl is similar to Seidel�s algorithm� except that it is a simplex algorithm� Again we

remove a random constraint h� and then recursively �nd a basis B for H � h� But now� if

h violates B� we solve the problem recursively starting from a basis for B � h� Although

the statement of the algorithm does not include a set of tight constraints� you can show�

using the GLP framework� that any basis found in the recursive call will include h� So� as

in Seidel�s algorithm� the dimension of the problem is e�ectively reduced� They call this

the �hidden dimension� of the recursive call�

Matou�sek� Sharir and Welzl gave a careful and complicated analysis of this algo�

rithm and showed that it requires expected O�eO�
p
d lnn	� calls to the basis subroutine on

subproblems with d�� constraints� and expected O�neO�
p
d lnn	� violation tests� Since� for

linear programming� both the violation test and the basis computation can be performed

in time polynomial in both n and d� this gives a subexponential algorithm for linear pro�

gramming� Using this as the base�case algorithm at the third level of Clarkson�s algorithm

gives expected O�eO�
p
d ln d	 lg n� basis computations and expected O�d��n� eO�

p
d ln d	�� vi�

olation tests� Let tb be the time required for a basis computation and tv be the time

required for a violation test� When d is constant� the running time of the combined algo�

rithm is O�tvn� tb lg n�� We will use this expression in the analysis of the running times

of many of our applications�


�	 Kalai�s algorithm

Matou�sek� Sharir and Welzl were inspired to reexamine the analysis of the algo�

rithm of Sharir and Welzl in response to the discovery of a subexponential randomized

simplex algorithm by Kalai �K�	�� Like any simplex algorithm� we can generalize this to

a GLP algorithm�

Kalai actually gives three pivot rules� one of which is a variant of Sharir and

Welzl�s� He writes

Starting from a vertex v of the feasible polyhedra� choose a facet F contain�
ing v at random� �nd the top vertex w in F �using the algorithm recursively��
set v   w and repeat�
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In dual�simplex language� this rule is to start with some basis B� remove a random con�

straint h from H � B� and �nd a basis B� for H � h recursively� starting from B� We

repeat only if h violates B� �since otherwise we are done�� in which case we �nd a basis

for H recursively� starting from B�� The di�erence between this and the algorithm of

Sharir and Welzl is that Kalai starts the recursion from B� rather than basis�B � h�� In

a non�degenerate linear program� the only possible next step is from B to basis�B � h��

since �thinking about this in the primal for once� B is at the top of a facet� and hence has

d� � incident polytope edges going down and only one going up� Kalai�s algorithm will

discover this edge in at most O�n� time� so for linear programming� the two algorithms are

virtually identical� at least in the general dimensional case where the extra O�n� factor is

unimportant� To generalize Kalai�s algorithm to GLP� we replace the the pivot steps with

calls to basis�B� h�� which makes his algorithm and that of Sharir and Welzl completely

identical�
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Chapter �

Subexponential Algorithms

We now turn out attention to the question of which of the GLP problems can be

solved in expected subexponential time� Recall that �MSW�	� showed that their algorithm

runs in expected O�eO�
p
d lgn	� time for linear programming by showing that it requires

that many basis computations and violation tests� This is �ne for linear programming�

since a basis computation can be done in O�d�� time �brute force�� We use the fact that

the minimummust lie at a vertex� so all we have to do is compute the value of the objective

function at each of the vertices� This is not true for all GLP problems� of course� all we

know in general is that basis�B� h� includes h� when h is a constraint violating a basis

B� The minimum may be determined by any size subfamily of constraints� and not every

minimum determined by a subfamily is feasible� For many GLP problems we know of

no better way to �nd a basis for a subfamily B � h of size d� � than to test each of its

proper subsets which contain h� In this case the basis computation takes !�	d� time� so

the overall running time of the algorithm has to be exponential in d�

G�artner �G�	� shows that the basis computation for the following problem re�

quires expected subexponential time�

Problem� Minimum Separation Distance

Input Two polytopes� A and B� given as families of vertices�

Output The minimum distance between any pair of points �a� b�� where a � A and b � B�
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Since� as G�artner points out� Smallest Enclosing Ball is reducible to Minimum Separation

Distance� this gives a subexponential algorithm for the classic GLP problem as well�

In this chapter we explore how far these results generalize� in mathematical pro�

gramming terms� We show that� using G�artner�s approach� the basis function can be

computed in subexponential time for any problem which can be formulated as the mini�

mization of a smooth� strictly convex function over the intersection of a family of halfs�

paces� We call this problem Convex Linear Programming� or CLP� On the other hand� his

approach does not generalize� at least immediately� to general convex programming�

��� G�artner�s abstract optimization problem

G�artner �G�	� considered an abstract optimization problem which takes as input

a set H of constraints and a function   	H  S� where S as usual is a totally ordered set�

Unlike GLP� there are no conditions on G�artner�s �H��� He assumes that the following

oracle can be implemented in polynomial time

Improvement Oracle

Input� �H�F �� where F � H

Output� G � H� with �G� � �F �� if such an G exists� and F otherwise�

Using calls to this oracle� G�artner gives a randomized subexponential time algorithm to

�nd the subfamily B � H which minimizes � What does this have to do with �nding a

basis in a GLP problem�

De	nition ����� Let �H�w� be a GLP problem�   	H  S is an abstract objective

function for �H�w� when the B � H that minimizes � over all subfamilies of H� is a

basis for �H�w��

So G�artner�s algorithm �nds a basis when  is an abstract objective function for �H�w��
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��� The abstract objective function

Every �H�w� has some abstract objective function� for instance

De	nition ����� The trivial abstract objective function � assigns the special maximal

symbol ! to every subfamily of H except for one� which is a basis for H�

Implementing an improvement oracle for this trivial function is equivalent to �nding a

basis� Using the structure of a mathematical program� we can de�ne an abstract op�

timization function  which is sometimes not trivial� Like w�  is de�ned in terms of

w��

De	nition ����� Let �X�H�w�� be a mathematical program� where all of the h � H are

closed sets� For any subfamily F � H� let mF be the minimum point� with respect to

w�� in the intersection of the boundaries of the constraints in F � or � if the boundaries

fail to intersect� If mF is a feasible point� with respect to every constraint in H� let

�F �  w��mF �� Otherwise let �F �  !�  is the primal objective function for �X�H�w��
��

Notice that mF is usually di�erent from the minimum point m
�
F in the intersection of the

constraints�

Figure ��� mfa�bg � m�
fa�bg

For instance� in �gure ���� mfa�bg is the only point in the intersection of the

boundaries� and it di�ers from m�
fa�bg which is the minimum point in

Tfa� bg� Notice that
�Just as w encapsulates the behavior of the dual simplex algorithm on subfamilies of constraints� �

encapsulates the action of the primal simplex algorithm�
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there may be many subfamilies F � H such that mF is feasible�

Observation ����� When �X�H�w�� is a convex program� where all of the h � H are

closed sets� the primal objective function  is an abstract objective function�

The subset which minimizes  is a basis for �H�w�� since the minimum feasible point

in a convex program is the minimum point in the intersection of some �possibly empty�

subfamily of constraints�

For CLP�  is always non�trivial because the feasible region is a polytope� and the

subfamily V of constraints at any vertex of this polytope will have �V � � !� However�

Theorem ����� Given any � � i � d� there is a convex program �Ed�H�w�� with a basis

of size i� such that the primal objective function  is trivial�

Proof� We construct a convex program� using a linear function w�� and a family H of

n � d � � balls� Arrange i little balls so that the minimum of their intersection is the

minimum of the intersection of their boundaries� and this point is not the minimum of

the intersection of the boundaries for any subfamily of size j � i� Arrange the remaining

n� i large balls so that they all contain the i little balls� Then the only subfamily F for

which mF is a feasible point is the family of small balls�

The �gure provides an example�

Figure ��	 Only the the minimum is feasible

Since we know of no non�trivial abstract objective function for convex program�

ming� we are not in a position to apply G�artner�s algorithm� For CLP� however� the



��

primal objective function is non�trivial� so the next step is to give an algorithm for the

improvement oracle�

��� A subexponential primitive for CLP

We now focus on the CLP problem� Let P be a polytope� given as a family H of

n halfspaces� and w� a smooth strictly convex function on Ed� We need to assume some

computational primitive for the oracle itself� We assume

Subroutine� min

Input F � H�

Output The point mF and the value w��mF ��

For reasonable functions w� this subroutine requires polynomial time�

Theorem ����� There is an improvement oracle for d�dimensional CLP� on inputs of

the form F�H with F � H and jHj � d � �� which requires O�n�� calls to min� where

n  jHj�

Proof� The input to the oracle is a subfamily F � with jF j  d � k� � � k � d� We

�rst call min to �nd mF � If mF is infeasible� return any subfamily de�ning a vertex of

the feasible polytope� Since jHj � d � �� we can �nd such a subfamily in O�d�� time�

Otherwise� let the k��at fh be the intersection of the boundaries of the constraints in F �

mF lies in some face f of of the feasible polytope P � a subset of fh� The face f lies in

d� k polytope faces of dimension k� �� each of which is supported by an a�ne subspace

of dimension k � �� which contains and is divided by fh� Call min on the subfamilies

de�ning these supporting subspaces� and get the minimum for each of them� Select any

k� � dimensional face � call it g � for which the minimum mG of the supporting subspace

gh lies in the same side of fh as the polytope�

Claim� If there is no such supporting subspace� thenmF is the global minimum� Consider

the w��mF ��level set of w
�� This is some smooth strictly convex body kF � which touches

fh in the single point mF � So fh is tangent to kF � and lies in the tangent plane � at mF �
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If there is a separating plane which puts P in one closed halfspace and kF in the other� it

must go through mF � If not� then P and kF must intersect in some other point besides

mF � In this case some �k � ���face g adjacent to f must intersect the closed halfspace of

Figure ��� When a separating plane exists

� containing kF � Consider the situation in a tiny neighborhood around mF � There kF is

approximated by � � so g also intersects kF � Therefore the minimum of w� within gh lies

on the same side of of fh as P � This establishes the claim�

We will return the minimum of w� over g as the answer to the oracle� Let G be

the subfamily of constraints supporting g� and mG the point of g achieving the minimum�

Connect mF and mG by a line segment s� and �nd the intersection of s with every facet

of g� If s fails to intersect any facet� then mG must be in the interior of g� and we return

G� Otherwise� the closest intersection point along the line segment� p� is on the boundary

of g� in some facet g�� Find the minimum mG� in the supporting subspace g�h� Now recur

Figure ��� When mG is not in g

on p��m� and g�� Since g� is always one dimension less than g� we �nd a smaller basis when

we get down to a � dimensional subspace� if not before�
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Together with G�artner�s result� this implies

Corollary ����� A basis for a CLP �X�H�w�� with jHj � d�� can be found in expected

subexponential time using an expected subexponential number of calls to a subroutine min

which takes a subfamily F and returns the point mF and w��mF ��

Notice that it remains possible that there is a polynomial time and#or determin�

istic implementation of the basis function for CLP problems� Another interesting open

question is whether there is a subexponential basis function for general convex program�

ming�

The Bounded Box problem� which we shall consider in the next chapter� is an

example of CLP�
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Chapter �

Covering and �lling

We now begin to work through the practical implications of the theory we have

developed� We have a paradigm for constructing an objective function so that a Helly

problem can be solved by a GLP algorithm� Using this paradigm with known Helly

theorems produces a variety of algorithms for geometric optimization problems� most of

which run in expected linear time in �xed dimension�

By geometric optimization problem� we mean a problem in which the goal is to

select an element from a family of geometric output objects which is somehow optimal

with respect to a �nite family H of geometric input objects� The geometric optimization

problems in this chapter will involve �nding the smallest output object which somehow

covers the input family� or the largest output object which somehow �lls the intersection

of the input family� Smallest Enclosing Ball is an example of a covering problem� and a

few other covering and �lling problems which were known to be GLP are discussed at the

end of the chapter�

A common feature of these problems is that the ground set X is the space of

output objects� so that the objective function w on subfamilies of input objects is induced

�see de�nition ������ by some function w� on X�
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�� Translates and homothets

As this is the �rst application� we treat it in great detail and address� in the

process� some issues that will recur in other applications�

We use the following Helly theorem about translates of a convex object to show

that a number of problems are GLP� This is theorem 	�� from �DGK����

Theorem ����� �Vincensini and Klee� Let K be a �nite family of at least d�� convex

sets in Ed� and let O be a convex set in Ed� Then there is some translate of O which

�intersects	 is contained in	contains
 all members of K if and only if there is such a

translate for every every d� � members of K�

Recall that a homothet of an object is a scaled and translated copy�

Theorem ����� Let K be a �nite family of at least d � � convex sets in Ed� and let O

be a convex set in Ed� The smallest homothet of O which contains
S
K� or the largest

homothet of O contained in
T
K� or the smallest homothet of O which intersects every

member of K� can be found by a GLP of combinatorial dimension d� ��

Proof� We consider carefully the problem of �nding the largest homothet of O contained

in
T
K� the others are analogous� and also similar to Smallest Enclosing Ball� Informally�

the idea is to construct an objective function for the problem by �shrinking� the enclosed

homothet with �time��

We pick a distinguished point in O� A translate of O can then be expressed as

a translate of this distinguished point� So it is easy to see that the set of translates of O

which lie inside a convex body k form a convex set�

The theorem of Vincensini and Klee� above� can be expressed as a Helly system

�T�H�� where T is the set of translates of O and each hk � H is the set of translates which

are contained in a particular convex set k � K� We use the scale factor � � R� to produce

a parameterized Helly system �T �R��H�� Each h
k � H is the set of all homothets of O

which are contained in k� Each hk� is the set of homothets of ��O� O scaled by ��� which
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are contained in k� We use �� rather than � so that we can �nd the largest homothet

by minimizing ��� which is consistent with the GLP framework� Notice that hk is a cone
over a convex set� and hence is always convex�

�T � R��H� is a valid example of a parameterized Helly system� according to

de�nition ����	� since hk� � hk� for � � �� and each �X�H�� is a Helly system� So it has a

natural ground set objective function w�� which is just the scale factor �� and an induced

natural objective function w on subfamilies of H�

Now to show that �H�w� is GLP� we have to ensure that it meets the conditions

of the Main Theorem� To guarantee that every w�G� is well de�ned� we add a big bound�

ing box as an implicit constraint to every subfamily G� so that there is always a largest

homothet in
T
G� And to ensure the Unique Minimum Condition� we use a lexicographic

objective function v� with � as the most signi�cant parameter� followed by the transla�

tion coordinates in any order� This is equivalent to a perturbation of the linear objective

function �see Section ��	�� and since the constraints h
k
are convex � Theorem ��	�� implies

that the combinatorial dimension is d� ��

All of the problems treated by Theorem ����	 are special cases of convex pro�

gramming� so we don�t really need the Main Theorem to show show that they are GLP�

Presumably anyone tinkering with one of them for long enough would �nd the convex pro�

gramming formulation� But since we already have the relevant Helly theorem� the convex

formulation becomes obvious�

�� Simple objects

We have not said anything yet about the running time of the GLP algorithms on

the three problems above� That is because it depends on how e�ciently we can perform

the basis computations and violation tests� which in turn depends on the representation

and complexity of the convex objects in the particular problem instance� This issue will
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arise again� so we consider it in general before we return to the speci�c applications�

In order to state our algorithmic results in their full generality� we resort to the

traditional trick �eg� �GPW��� page ���� �EW���� of de�ning the objects we can use in

terms out our computational requirements� Recall that in Chapter � we said that the

combined algorithm from �MSW�	� runs in time O�tvn � tb lg n�� where tv is the time

required to perform a violation test and tb is the time required for a basis computation�

This is O�n� when tv  O��� and tb  O�n
 lg n�� We de�ne a simple object to be one

which has a constant�size representation and for which we can compute the primitive

operations within these time bounds� So a GLP problem involving convex sets in �xed

dimension requires expected linear time when the convex sets are simple�

�� Homothet covering problems in the plane

We consider a particular homothet covering problem in which we can give a

better running time than was previously known�

As far as I can determine� only planar versions of any of the homothet covering

and �lling problems have been considered� There is an algorithm for a dynamic version of

the problem of maintaining the smallest homothet of P containing K in �BEI���� There is

an O�k�n lg� n� algorithm in �T��� for �nding the largest homothet of a k�vertex polygon

P inside an n�vertex polygon Q in E�� This problem arises as a restriction of a pattern

matching problem� we can think of Q as input from a low�level vision system and P as

a model of an object we�d like to match� This is a restriction of the problem because we

allow P to scale and translate� but not to rotate�

For this problem of �nding the largest homothet of a polygon in another poly�

gon� the GLP formulation� after preprocessing� is just linear programming� We use the

halfspaces supporting Q as constraints� Let us identify translates of P with translates of

an arbitrary distinguished point q � P � For a �xed scale factor �� the possible translates

which put P on the correct side of some halfspace h lie in a halfspace h� parallel to h and

o�set by the distance from q to some vertex v of P �
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Figure ��� Constraint h�

In the plane� we can assign the correct vertex v to each halfspace h in O�n� k�

time by merging the lists of face normals for P and Q� as �rst observed in �C���� As

we increase the scale factor �� the distance from q to v changes linearly� and h� traces

out a three�dimensional halfspace in � � E�� The linear program maximizes � over the

intersection of the h� in O�n� time� so the total time is O�n� k��

�� Minimum Hausdor� distance

Now we turn our attention to a similar covering problem� which has received a

lot of attention in the literature� and show that a special case is much simpler than the

general problem� Let�s say that the distance between a point x � Ed and a body B is

dist��x�B�  minfdist��x� y�jy � Bg� where dist��x� y� is the usual Euclidean metric� The
distance from a body A to B is

dist��A�B�  supfdist��x�B� j x � Ag

and the Hausdor� distance between A and B is maxfdist��A�B�� dist��B�A�g� The Haus�
dor� distance between two bodies is one measure of the di�erence between their shapes�

and is used in pattern recognition and computer vision� We can consider applying a group

of transformations to one of the bodies� and ask for the the transformation which min�

imizes the resulting Hausdor� distance� There has been a lot of work in computational

geometry on computing the minimum Hausdor� distance between objects of various sorts�

under various groups of transformations� For the problem of �nding the minimum Haus�

dor� distance between two sets of k points in the plane under translation and rotation�
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�HKK�	� give an O�k
 lg k� algorithm� For simple polygons� an approximation algorithm

for the minimum Hausdor� distance under translation and rotation appears in �ABB����

For convex polygons �xed in the plane� �A��� just computes the Hausdor� distance in time

O�n��

Surprisingly� none of these algorithms consider scaling� Also� there are no results

in higher dimensions or using metrics other than L� as dist��

We consider the problem of �nding the minimum Hausdor� distance under trans�

lation and scaling of two convex polytopes A and B in Ed� using any quasimetric as dist��

We show that this can be formulated as �nding the minimum point in the intersection of

a family of convex constraints� For polygons in the plane� this leads to an expected linear

time algorithm�

The set of points in Ed at distance at most � from a polytope A form the ��o�set

surface� which we shall write F ��A�� The �gure shows an o�set surface for a polygon in

the plane� F ��A� is the Minkowski sum of A with the unit ball of the L� metric� scaled

Figure ��	 O�set surface

by �� We can replace the sphere with any other convex body c� Call the resulting o�set

surface F �
c �A�� Since c and A are convex� F

�
c �A� is convex� Using the quasimetric whose

unit ball is c as dist� in the original de�nition of the Hausdor� distance gives us a more

general function which we shall call the c�Hausdor� distance�

Theorem ����� Let c be a convex body in Ed� and let A and B be polytopes� with vertex

sets V �A� and V �B� respectively� The minimum c�Hausdor� distance� under scaling and
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translation� between A and B is no greater than �� if and only if� for every family of points

PA � PB� with PA � V �A�� PB � V �B� and jPA � PBj � d� 	� there is a translation and

scaling such that pA � F �
c �B� for all pA � PA� and pB � F �

c �A� for all pB � PB �

Proof� Consider the transformation space in which each point is a �d�	��tuple consisting

of a translation vector in Ed� a scale factor� and an o�set �� F �
c �A� is convex at a �xed

�� so for a �xed vertex p � V �B�� the set of transformations which produce homothets

of F �
c �A� containing p is also convex� Call this set of transformations h

A
p � and de�ne h

B
p

analogously for p � V �A�� The family fhAp jp � V �B�g � fhBp jp � V �A�g is a �nite family
of convex sets in Ed��� and so has Helly number d� 	�

This theorem corresponds to a Helly system �X�H� where X is the transformation space

and H is an in�nite family of subsets of X� with one element for every point in either A or

B� When A and B are polytopes� we can reduce H to a �nite family� since a polytope is

contained in a convex set if all of it�s vertices are� We can use this Helly system to de�ne a

GLP problem� much as we did in the previous application� Informally� we grow the o�set

distance with time� to produce a nested family of constraints�

Theorem ����� The minimum c�Hausdor� distance� under scaling and translation� be�

tween two polytopes A and B in Ed can be found by a GLP of combinatorial dimension

d� 	�

Proof� In this case we construct an objective function by �growing� the o�set with

�time�� We parameterize the Helly system �X�H� by the o�set �� giving a parameterized

Helly system �X � R�H�� Each h is a nested family because the ��o�set surface of a

convex body is contained in the ��o�set surface if � � �� In fact each h is a convex subset

of X � R� since it is the Minkowski sum of a cone over the convex body c that de�nes

the distance function� with the convex constraint h � H� The translation and scaling

which achieves the minimum Hausdor� distance is in general unique� degeneracies can be

eliminated by using the lexicographic objective function � �� s� � �� where s is the scaling

dimension and � is the translation� without increasing the combinatorial dimension� by

Theorem ��	��� The minimum value of � is determined by a basis of size d � 	� by the
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Main Theorem�

The general dimensional GLP of Theorem ����� is not very useful since the constraints are

not simple� In the plane� we can improve this so that we have a linear number of simple

constraints�

Theorem ����� The minimum c�Hausdor� distance between two convex polygons A and

B in the plane� under scaling and translation� can be found in expected O�n� time� where

A and B have a total of n vertices�

Proof� We break the o�set surfaces up into pieces of constant complexity� Each piece

consists of the o�set surface of a vertex of one of the polygons� plus the rays supporting

the adjacent sides� which we shall call an angle� If every vertex of A is within the ��o�set

surface of every angle from B� and visa versa� the Hausdor� distance is no greater than

�� This gives a GLP with O�n�� constraints� since we have to pair every vertex of A with

every angle from B� and visa versa�

We get a linear number of constraints by noting that for an angle � from B�

there is a critical subset V of vertices from A such that A is within the ��o�set surface of

� if every vertex from V is� Furthermore� every vertex of A is in at most two such sets�

Figure ��� Critical subset

and the critical subsets for every angle of B can be found by merging the circular lists of

face normals of A and B� This all applies� of course� to angles from A and vertices from

B as well�

There is one constraint in our GLP for each vertex in the critical subset of each



��

angle from either A or B� Since the constraints are simple� this gives an expected linear

time algorithm�

These arguments can also be applied to versions of the problem in which we

restrict the groups of transformations or compute the one�way Hausdor� distance from a

convex body A to a convex body B� or even the one�way Hausdor� distance from a convex

body A to a family of points in Ed� The important fact in the argument� that the set of

transformations which puts a point into an o�set surface is convex� remains the same�

�� Boxes

Perhaps the most common approximating volume used in practice is the bounding

box� because it is so easy to compute and to compute with� Consider the analogous

notion of a bounded box for an object� that is� the largest volume axis�aligned box which

is completely contained in the object� Like the bounding box� the bounded box can be

used as an approximation of the object� �DMR��� introduce the problem of �nding the

bounded box in the context of a heuristic for packing clothing pattern pieces� They give

an O�n��n� log n� algorithm which �nds the maximum area axis�aligned rectangle in an

arbitrary polygon in E�� and cite some results for special cases of 	�dimensional polygons�

There are no results that I know of in higher dimensions� although the problem may have

some practical importance� Three dimensional objects are frequently decomposed into

collections of axis�aligned boxes �eg� in ray tracing� �AK����pp 	���	��� which should

approximate the original object as well as possible� We show

Theorem ����� Finding the largest volume axis�aligned box in the intersection of a family

of convex bodies in Ed is a convex linear programming problem in dimension 	d�

Proof� We need to search the space of all axis�aligned boxes in Ed� which we shall call

box�space� We think of a box as a point in Ed� and a positive o�set in each coordinate

direction� We use the parameters x� a � Rd� where x�� � � � � xd are the coe�cients of the
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point� and a�� � � � � ad are the positive o�sets� Notice that box�space is therefore equivalent

to the union of those orthants of E�d in which the ai are all positive�

Now we construct a convex program in box�space� A box is contained in a convex

body C if and only if all of its vertices are contained in C� We add one convex constraint

to our problem for each vertex� Let us label the vertices with ��� vectors in the natural

way� so that ��� � � � � �� is the vector at the minimum corner of the box� The box�space

constraint corresponding to the vertex with label u is the set fx� a j x��u�a� � Cg �here
u � a is coordinate�wise multiplication�� This is a cylinder with base C� whose slope in

each of the ai directions is either � or �� depending on ui� Each cylinder is convex� so the

intersection of the cylinders for all the vertices� which is the feasible region� is convex�

It remains to show that maximizing the volume of the box corresponds to mini�

mizing some convex function over this convex feasible region� The volume� negated� is

�
dY

i��

ai

with all the ai constrained to be positive� This function is not convex� only quasiconvex

�� However� the function

� log�
dY

i��

ai�  �
dX

i��

log�ai�

is convex� This is easy to see� The sum of convex functions is convex� and � log�ai� is
a convex function of ai� Also� log��Q ai� is minimized over any polytope exactly where

�Q ai is minimized� so solving the problem with the convex objective function gives the

maximum volume box�

Theorem ����� implies of course that �nding the largest volume box can be done with

GLP� and also�

Corollary ����� For a family H of convex bodies in Ed�
T
H contains an axis�aligned box

of volume � if and only if every subfamily B � H with jBj � 	d contains an axis�aligned

box of volume ��

�By Theorem 	����� this su�ces to show that the problem is GLP�
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We get a Helly number of 	d here� rather than 	d � �� because the premise that every

subfamily of size 	d contains a box of volume one implies that every subfamily of size d��

is non�empty� so every subfamily contains some box and the problem is guaranteed to be

feasible� This allows us to apply Corollary ����	�

�	 Extensions of known GLP problems

Finally� we mention some simple extensions of earlier results on covering and

�lling problems which are GLP� Recall that the deterministic �xed�dimensional LP al�

gorithms �M�����D��� relied on the constraints being linear� Thus it was di�cult and

signi�cant for Megiddo to produce a linear�time algorithm to �nd the smallest ball con�

taining a family of balls �M���� although Dyer had already given an algorithm for �nding

the smallest ball containing a family of points� With GLP� however� such generalizations

are easy�

Say �X�C� is a Helly system with Helly number d� The intersection lemma �sec�

tion ��	� tells us that the set system �X�C ��� where C � is the collection of all intersections

of subfamilies of C� also has Helly number d� Finally� �X�K�� where K � C �� has Helly

number no greater than d� For example� the set of balls in Ed containing an input ball b

is the intersection� over all points p � B� of the set of balls containing p� So the Radius

Theorem implies that balls in Ed have Helly number d� � with respect to the property

of being contained in a unit ball�

If we can �nd an objective function w for a Helly system �X�C�� so that �H�w�

is a GLP problem for any �nite subfamily H � C� then usually there is an analogous

function for �X�K�� We have to be careful� however� since if C is in�nite� the intersections

which contribute elements to K may also be in�nite� and the existence of w only testi�es

that the Unique Minimum Condition is met for �nite subfamilies�

The following problems were listed as GLP problems in �MSW�	�

Smallest enclosing ellipsoid� Find the smallest volume ellipsoid containing a

family of points in Ed�
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Smallest volume annulus� Find the smallest volume annulus � containing a family

of points in Ed�

Largest volume ellipsoid in polytope� Find the largest volume ellipsoid con�

tained in a family of halfspaces in Ed�

The word �points� can be replaced by �compact sets� in the �rst two� and �halfspaces�

by �closed convex sets� in the third� It is important that the sets be closed� so that there

is always a unique optimal output object�

�an annulus is the region between two concentric spheres
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Chapter �	

Hyperplane transversals and

hyperplane �tting

A transversal of a family H of input objects is some element x of a family X of

output objects� such that x intersects every h � H� There are a lot of Helly theorems

about transversals� By de�ning an appropriate objective function� we can use such a

Helly theorem to construct a GLP which actually �nds a transversal� These GLPs �nd an

optimal transversal with respect to the objective function� which is sometimes useful� In

particular we will �nd that we can often interpret these same algorithms as minimax �tting

algorithms� which �nd some output object x which minimizes the maximum distance from

an input family H of points under some interesting distance function�

In the last chapter� our objective functions were induced by a function w� on the

ground set X of output objects� This corresponded to the intuitive notion of shrinking or

growing an output object until it satis�ed the constraints� Here� our ground set will be

the product of the space X of output objects with a scale parameter � � R� of the input

objects� This corresponds to the equally natural notion of growing the input objects until

they admit a transversal�
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���� Transversal of translates in the plane

One of the most interesting Helly theorems is about line transversals of a family

T of disjoint translates of a single convex object O in E�� Tverberg �T��� showed that

if every family B � T with jBj � � admits a line transversal� then T also admits a

line transversal� Egyed and Wenger �EW��� used this theorem to give a deterministic

linear time algorithm to �nd a line transversal� Here� we show that the problem can be

formulated as GLP� implying the existence of a number of simpler� although randomized�

linear time algorithms�

This problem is interesting in relation to the theory of GLP� Recall that using

our usual transformation we are working with a Helly system �X�T �� where X is the space

of lines in the plane� and each t� � T � is the set of lines intersecting a translate from T �

X is a two�dimensional space� If there were some a�ne structure on X such that the

constraints T � were convex subsets of X� then the Helly number of the system �X�T ��

would be �� But examples show that the bound of � is in fact tight� which means that this

is a GLP which is not a convex program� As we shall see� this is also a natural example

of a GLP problem in which the minimal object does not �touch� every constraint in the

basis�

We assume that the family of translates is in general position �we will de�ne

general position in a moment�� if not� we use a standard perturbation argument� Let

S  ��� ��� A subfamily G� � T � intersects when there is a line which intersects every

translate t � G� where G is the family of translates corresponding to G�� We pick a point

q in the interior of the object O� For a particular translate t� let �t be the homothet of O

which results from scaling translate t by a factor of �� keeping the point in t corresponding

to q �xed in the plane� Let the family t  f�t j � � � � �g� and T  ft j t � Tg�
Every line which intersects the homothet ��t also intersects ��t for any �� � ���

So each t corresponds to a nested family t
�
of lines� At a particular scale factor � � � � ��

the translates t� are always disjoint� so every �X��T
�� is a Helly system with Helly number

�� and �X � S� T
�
� is a parameterized Helly system�

The natural objective function w�G
�
� is the minimum � such that G�

� intersects�
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In the case where G
� � T

�
consists of a single translate� we de�ne w�G

�
�  �� Notice that

for certain degenerate placements of the translates �see �gure� it is possible for there to

be two or even three distinct line transversals at ��  w�G
�
��

Figure ���� Degenerate input

The general position assumption is that the line transversal at �� is always unique�

Under this general position assumption� �T
�
� w� is a GLP problem with combi�

natorial dimension �� since each T �
� has Helly number �� a minimum �� which admits a

line transversal always exists� and the line transversal at �� is unique� Either we �nd a

line transversal at some value of � � �� or no line transversal of the input exists�
To �nd whether this implies an expected linear time algorithm we need to �gure

out how to implement the primitive operations� Here� a violation test determines whether

the current minimum line m intersects a new homothet �t� For any m� there is pair of

lines tangent to O and parallel to m� These lines support a pair of vertices on O� which

we shall call an antipodal pair� The line m intersects a homothet �t if and only if m passes

between the pair of vertices on �t� Figure ���	 shows an example�

Figure ���	 Antipodal pair
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We can implement the basis computation so that whenever we �nd a new mini�

mum linem we also �nd the corresponding antipodal pair� This lets us perform a violation

test in time O���� The running time of the whole algorithm is then limited by tb �see the

end of Section ����� when the complexity of O is such that tb is O�n
 lg n�� we get an

expected linear time algorithm� So we get

Theorem �
���� A line transversal for a family of n disjoint translates of a convex object

in the plane can be found by a GLP of combinatorial dimension �� in expected O�n� time�

A point in X which lies on the boundary of one of the sets t�� corresponds to a

line which is tangent to t�� We say such a line �touches� t�� The line transversal at �
� is

tangent to at most three translates� for any non�degenerate example� Since the size of a

basis can be as great as �� it is easy to construct situations in which the line transversal

does not �touch� every element of the basis� The �gure below shows an example�

Figure ���� Transversal not tangent to every basis element

Consider the line transversals of the three central balls� as they grow with time�

Assuming that the balls are in general position� there will be three distinct moments at

which a new connected subset of line transversals becomes feasible� The two remaining

balls are positioned so that only the last of these subsets contains a transversal of the

whole family�

Curiously� it is not known whether the Helly theorem about line transversals of

disjoint translates can be generalized to a theorem about hyperplane transversals in higher

dimensions� even for the case of disjoint unit balls�
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���� Hyperplane transversals of polytopes

There is� however� a Helly theorem about hyperplane transversals of polytopes

in higher dimensions� This theorem is a byproduct of a reduction by Avis and Doskas

�AD�	� of the problem of �nding such a transversal to a collection of linear programs� We

will review their reduction� and then show how the same family of constraints can be used

with a di�erent objective function to give our �rst hyperplane �tting application�

Think of partitioning the hyperplanes in Ed into equivalence classes by partition�

ing the �d����sphere of hyperplane normals by the hyperplanes through the origin normal
to the polytope edges� For each equivalence class C there is an antipodal pair of vertices

v�� v� on the polytope such that a hyperplane h � C intersects the polytope if and only

if v� � h� and v� � h�� The �gure illustrates that the critical values of the hyperplane

normal at which antipodal pair changes are those normal to polytope edges�

Figure ���� Hyperplane at critical inclination

Within one equivalence class� then� �nding a hyperplane transversal for a family

of translates is simply a matter of �nding a hyperplane which is correctly oriented with

respect to each of the pairs of antipodal points� This is the dual � of the problem of

�nding a point in the intersection of a family of halfspaces� which can be solved by linear

programming� There are md�� equivalence classes� where m is the number of polytope

�Here we mean geometric� or projective� rather than linear programming duality� the vector inequality
a � x � � can be interpreted� geometrically� as saying that the point whose homogeneous coordinates are
a vector a is on the positive side of an oriented hyperplane with coordinates x� or� as the equivalent dual
statement that the point with coe�cients x is on the positive side of the oriented hyperplane a�
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edges� and the equivalence classes can be identi�ed in O�md��� time �EOS���� The result

of Avis and Doskas is that we can �nd a hyperplane transversal of a family of n polytopes

by solving a linear program with 	n constraints for each equivalence class� in a total of

O�nmd��� time� when d is a constant� By Theorem ������ we have the following

Corollary �
���� Let K be a family of polytopes in Ed with a total of m edge directions�

Then the space X of hyperplanes in Ed can be divided into O�md��� equivalence classes

X�� � � � �Xmd�� � such that for each class Xi� K has a hyperplane transversal x � Xi if and

only if each subfamily B � K with jBj � d� � has a hyperplane transversal x � Xi�

���� Hyperplane �tting with the L� and L
� metrics

Once again� this Helly theorem can be expressed as a Helly system� The ambient

space is Xi� and each constraint h � H is the subset of hyperplanes in Xi which pass

between the antipodal points for a particular polytope� Following the example of the

previous application� we parameterize this Helly system by selecting a �xed point p inside

each polytope c� and then scaling each c around p� The natural objective function w�G� for

this parameterized Helly system �Xi �R�H� returns the minimum scale factor by which
the polytopes contributing constraints h � G can be scaled so as to admit a hyperplane

transversal from the set Xi� The function w is inherently well�de�ned� and we use a

perturbation argument to ensure the Unique Minimum Condition� The Main Theorem

now tells us that �H�w� is a GLP problem� We solve this GLP for every Xi� If for any of

these problems w�H�  ��� x� with � � �� then x is a hyperplane transversal of the family
of polytopes� and if not� no transversal exists� So

Theorem �
���� A hyperplane transversal for a family of n polytopes with at most m

total edge directions can be found by a collection of O�md��� GLPs of combinatorial di�

mension d� � and 	n constraints�

This is not very interesting� since we already know that the problem of �nding

a hyperplane transversal is a special case of d�dimensional linear programming� which has
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combinatorial dimension d� But notice that the algorithm actually solves a slightly more

general problem�

Problem� Polytopal Hyperplane Fitting

Input A �nite family P of pairs �p� cp�� where p is a point� cp is a polytope� and p � cp�

Output A pair ��� x�� where � � R is the smallest scale factor such that �CP  

f�cp j �p� cp� � Pg admits a hyperplane transversal� and x is a hyperplane transversal

of �CP �

The notation �cp� � � R� means c scaled by � around p� We can now state the following
stronger

Theorem �
���� Polytopal Hyperplane Fitting in Ed� where the family of CP  fcp j �p� cp� �
Hg has at most m total edge directions� can be solved by a collection of O�md��� GLPs of

combinatorial dimension d� �� each with 	n constraints� where n  jHj�

We can think of cp as measuring the distance between p and any hyperplane h� so

that distp�p� h� is the smallest factor � by which cp can be scaled around p so that �cp 
h
is non�empty� This is distance function induced by the quasi�metric dp on E

d whose unit

ball is cp� distp�p� h�  minx�h dp�p� x� �dp is a quasi�metric because cp is not necessarily

centrally symmetric�� The collection of GLPs in this theorem �nds the hyperplane which

minimizes the maximum distp�p� h�� over all p � P �

Although this problem sounds obscure� it has a number of interesting special

cases� The only useful cases are those in which m� the total number of polytope edge

directions� is constant� This is certainly true when all the polytopes cp are translates of

a single polytope c with a constant number of edge directions� In this case the distance

function is induced by the quasimetric with unit ball c� distc� This general family includes

L� �m  d� and L� �m  d� � d� �� Also notice that allowing the polytopes cp to be

di�erent homothets of c is equivalent to using distc with multiplicative weights on the

points�

�The unit ball of the L� metric is the dual of a hypercube �sort of a hyper�octahedron� known as a
cross�polytope�� It has ��d� � d� edges� but each edge is parallel to one other�
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When the polytopes are translates� the antipodal pairs form two rigid families�

moving in di�erent directions� Factoring out the parallel component of their direction

vectors leaves us with a special case of the simple

Problem� Point Set Separation

Input Two rigid �nite families of points� P and Q� and a direction vector v�

Output A pair ��� x�� where � � R is the smallest scale factor such that there is a hyper�

plane x separating P � �v �ie� the point set P translated by �v and Q� �v�

This problem looks so simple that sometimes people assume that it is possible to reparam�

eterizing it as a linear program in dimension d � �� especially when they notice that we

can �x one family� so that the relative motion is all accounted for by the translation of the

other family by 	�v� In fact it is possible to simultaneously linearize all the constraints�

but the objective function then becomes quasiconvex� Here is the transformation�

We rotate the problem� so that v is pointing in the x� direction� We can then

write a constraint due to a point q � Q on a hyperplane x as

�	�� q��x� � q�x� � � � �� qdxd � � � �

Making a new variable ��  �x� linearizes all the constraints� but then the objective

function becomes

minimize ��
x�

This is quasiconvex� if we restrict our attention to hyperplanes for which x� is positive �see

section ���� or �Mag���� page ����� This restriction is no problem� since x� is the direction

in which the family of points is moving� so the separating hyperplane must have a positive

x� coe�cient anyway�

We note that this same GLP may be used to determine when a polytope P

translated along a linear trajectory will become separated from a �xed polytope Q� since

the two sets of vertices �rst admit a separating hyperplane at that moment�
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���� The weighted L
� metric

The collection of GLPs in theorem �����	 are also useful when each of the n points

is surrounded by a di�erent polytope� so long as all the edges of all the polytopes have no

more than m directions total� where m is constant� In this case we cannot linearize all the

constraints simultaneously� since the members of each family of antipodal points cannot

be divided into two rigid sets which only move with respect to each other�

Figure ���� Antipodal pairs in the weighted L� metric

This problem is interesting because it has an important special case� When each

coe�cient of each point is given a weight� each point is surrounded by a box�shaped unit

ball� This situation arises when the coe�cients represent heterogeneous quantities �height�

age� annual income�� and when di�erent measurements of the same variable are made with

di�erent amounts of error� It also comes up when the coe�cients are calculated and error

is bounded using interval arithmetic� or when the unit balls of more complicated error

metrics are approximated by bounding boxes� When every coe�cient of every point is

given the same weight� the unit ball is a hypercube� this is the L� metric� When we allow

the weights to vary� we call this the weighted L� metric�

The general�dimensional version of the problem of �nding the hyperplane which

minimizes the maximum distance to a set of points under the weighted L� metric has

been considered in �R���� �D�	�� and in �PR�	�� where it is shown to be NP�hard� This

is the �rst treatment of the �xed dimensional case� where GLP gives an expected linear

time algorithm� Finding the minimizing hyperplane requires solving 	d�� GLP problems
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�as we shall see in a moment�� so the NP�hardness result has no bearing on the complexity

of GLP�

The input to the problem is a pair of n � d matrices� one supplying the points

in Ed and the other giving the weights� The boxes de�ned by the weights have d edge

directions� partitioning the sphere of hyperplane normals into 	d orthants� We only need

to consider one member of each pair of opposite orthants in order to �nd the minimizing

hyperplane� so the number of GLP problems we have to solve is 	d��� There is an antipodal

pair of vertices on each box associated with each orthant� and the hyperplanes separating

these antipodal pairs form the nested families� This gives us

Theorem �
���� The hyperplane which minimizes the maximum distance to a family of

points in Ed under the weighted L� metric can be found by 	d�� GLPs with combinatorial

dimension d� �� in expected O�n� time for �xed d�

���� Remarks on �tting problems

How do these algorithms compare to other algorithms which �t a hyperplane to a

family of points� What merits do these algorithms have in comparison with linear regres�

sion� the classic hyperplane �tting algorithm� In this section we compare the paradigm

used by the GLP �tting algorithms with that used by linear regression� The results that

we present apply to the �tting algorithms in the following chapter as well�

A general structure for �tting problems involves a �nite input family p of n points�

a class X of possible output objects� a metric on Rd� and a norm on Rn� Using metric on

Rd� we de�ne the distance of an output object x from an input point p to be the minimum

distance p to any point in x� For n input points� this assigns a vector of n distances to

every output object� We measure the distance from x to the entire input family P by

combining these individual distances using the norm on Rn� The �tting problem is to �nd

the x � X with minimum norm�

In linear regression� both the metric and the norm are L�� This is nice because

the distance of a hyperplane x from a familyH of points can be written down as a analytic
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function of the hyperplane coe�cients and then minimized� When either the metric or the

norm is not smooth� like L� �which uses absolute value� or L� �which uses the maximum

function�� the problem becomes more combinatorial and the techniques of computational

geometry come into play �� Our �tting algorithms minimize the maximum distance from

the output object to any p � P � so they use the L� norm�

One important feature of our �tting algorithms is that a single �bad� data point�

one far from any output object which is close to the rest of the data� strongly a�ects

the choice of the output object� These bad data points� or outliers� are often just noise

or errors in the data� In statistics lingo� our algorithms are not robust� This is bad in

some applications� when we want to to choose a reasonable output object regardless of the

presence of outliers �� But it is good when we want to detect and eliminate the outliers�

since they show up in the basis� Linear regression� on the other hand� is not very good for

�nding outliers since the output objects it selects are often closer to the outliers than to

other� valid data points ��

Another positive feature of our algorithms is that we can make a strong distri�

bution free predictive claim about the optimal output objects� This claim will apply to

the common situation in which the input family of points is a sample drawn at random

from some unknown distribution D� To avoid having to introduce a lot of notation� we

will state the result for the simple Point Set Separation problem� although an analogous

theorem holds for all of our �tting algorithms�

We de�ne the appropriate distance function for Point Set Separation� The dis�

tance dist�p� x� between a hyperplane x and a point p � P is the distance from p to x in

the v direction� and dist�q� x� for q � Q is the distance from q to x in the �v direction�
Notice that the optimal hyperplane x is in fact the one which minimizes the maximum

distance from any point�

Theorem �
���� Let ��� x� be the solution to an instance of Point Set Separation� in

which the points in P and Q were drawn at random from a distribution D on points

�A survey of combinatorial 
tting algorithms can be found in �KM���
�Using L� as the collective metric gives more robust algorithms�
�I thank David Jacobs for this observation
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labeled either P or Q� The probability that a new point p drawn at random from D has

dist�p� x� � � is at most d
�n� ��� where n  jA�Bj�

Proof� Note that although we call the new point p� it may belong to either P or Q�

The theorem follows from the fact that Point Set Separation is GLP� The argument is an

example of Seidel�s backwards analysis� We choose n points from D �to make P �Q�� and

then one more �p�� We may as well think of choosing a set P � of n�� elements� and then

choosing one p � P � to be the �last� one� The probability that we choose a particular p is

�
�n� ���

As a consequence of the GLP framework� if dist�p� x� � �� then p is violated by

any basis for the set of constraints due to P �Q� and p is a member any basis B for the set

of constraints due to P �� Since jBj � d� the probability that a member of B was chosen

last is d
�n� ��� So the probability that dist�p� x� � � is no greater than d
�n� ���

All our �tting algorithms return an output object x and a maximum distance �� And for

all of them� a theorem analogous to this one says that the probability that a new point

will be further than � from x is less than d
�n���� where d is the combinatorial dimension

and n is the size of the input� Notice this is true for any distribution D� and requires no

information about the distribution�
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Chapter ��

Line transversals in three or more

dimensions

In the plane� a line transversal is a hyperplane transversal� In Ed� d � 	� a

hyperplane transversal is a point in the space of hyperplanes� which is also Ed� and the

geometric structure of the hyperplane transversal problem remains pretty simple� A line

transversal� on the other hand� is a point in the space of lines� which is a non�Euclidean

space of dimension 	�d � �� �a Grassmanian�� The geometric structure there is more

complicated� and GLP can only be used to �nd line transversals in special cases�

Finding line transversals in dimension greater than two is none the less an impor�

tant problem� In fact� it was an application of this problem which led me to study GLP� A

friend in computer graphics �Te��� asked for an algorithm to �nd a line transversal through

a family of axis�aligned rectangles in E�� Megiddo showed that� in any dimension� this

problem is reducible to a linear program� Like the LP for �nding hyperplane transversals

in the last chapter� this LP for �nding line transversals implies a Helly theorem which

leads to a GLP for �nding the line which minimizes the maximum distance from a set of

points under the weighted L� metric� This problem had been brought to my attention

long ago by �Pon ���� In the last section� I summarize an application of a further extension

of this algorithm to the correspondence problem� due to �J��
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���� Helly theorems about line transversals

We begin with some Helly theorems about line transversals inEd due to Gr�unbaum�

�G���� which lead to GLPs which can be used either for �nding line transversals or for the

corresponding �tting problems� The �rst concerns a family of ��at� polytopes� which lie

in parallel hyperplanes�

Theorem ������ �Gr�unbaum� A family K of convex bodies in Ed which are contained

in family of at least two parallel hyperplanes has a line transversal if and only if every

B � K with jBj � 	d� � has a line transversal�

The second is about a family of widely�spaced balls�

Theorem ������ �Gr�unbaum� Let K be a family of balls in Ed� such that the distance

between any two balls is greater than or equal to the sum of their radii� Then K has a line

transversal if and only if every B � K with jBj � 	d� � has a line transversal�

Gr�unbaum�s idea was to apply Helly�s Topological Theorem to the sets of lines which

intersect these objects� Since the space of lines in Ed is 	�d����dimensional� the conditions
of the topological theorem are that the intersection of any 	�d� �� of these sets is a cell�
and that the intersection of any 	d � � is non�empty� These conditions are met in these
special cases�

Theorem ������ is� in fact� a special case of Helly�s Theorem proper� When the

convex bodies are �d � ���dimensional polytopes� given by their facets� the problem of

�nding a line transversal can be reduced to linear programming� as follows� Without loss

of generality� let the at most n parallel hyperplanes be hi  fx � Rd  xd  cig� where
xd is the dth coordinate of x� Describe the line as u � xd�v�� where the vector u is the

intersection of the line with the plane xd  �� and v is the �slope� of the line� normalized so

that its xd component is �� The condition that the polytopes lie in at least two hyperplanes

ensures that the line intersects each hyperplane in a point� at which xd  ci� The facets

of polytope p lying in hi can be oriented cyclically� so that the line intersects p if and only

if this point lies on the positive side of all the halfspaces supporting the facets� Each facet
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then corresponds to a linear equation

a � �u� civ� � �

where the constant vector a speci�es the coe�cients of the facet� A solution to this system

of equations gives the line transversal� There are 	�d � �� unspeci�ed coe�cients in the
normalized vectors u and v� so this is the dimension of the resulting linear program�

Theorem ������ A line transversal for a family of polytopes in Ed that lie in a family of

at least two parallel hyperplanes can be found by a linear program in dimension 	�d� ���

A general �d� ���dimensional convex body can be thought of a polytope with an in�nite
number of facets� so the set of lines which pass through it is convex in the parameterization

above� So a line transversal for a general family of convex bodies in parallel hyperplanes

can be found by a convex program�

As before� we can also construct an objective function by selecting a �xed point

inside each convex body� and scaling the bodies around the �xed points� This gives a GLP

which can be used to �t a line to the family of points� as well as to �nd a transversal for

the family of convex bodies�

This �tting problem has a reasonable statistical interpretation� Say we want to

�t a line to data with one independent and d� � dependent variables� We determine the
distance from a data point to a line� as before� by putting a �possibly di�erent� convex

body around every point which is the unit ball of some �quasi��metric� Since we assume

that the error on the measurements of the independent variable is zero� these unit balls

will lie in a family of hyperplanes normal to the coordinate representing the independent

variable�

Statisticians call the problem of �tting a linear subspace using such a metric and

the L� norm �see Section ����� subset regression� So we call the problem of �nding the

line which minimizes the maximum distance under such a distance function

Problem� Subset Line Fitting

Input A �nite family P of pairs �p� cp�� where p is a point� cp is a convex body� and p � cp�
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Figure ���� Unit balls for Subset Line Fitting

such that all the cp lie in a family of at least two parallel hyperplanes�

Output A pair ��� x�� where � � R is the smallest scale factor such that �CP  

f�cp j �p� cp� � Pg admits a line transversal� and x is a line transversal of �CP �

Theorem ������ Subset Line Fitting can be solved by a GLP of combinatorial dimension

	d� � with n constraints� where n  jP j�

Constructing a GLP based on Theorem �����	 is also straightforward� We again

select a �xed point inside each ball� an �grow� the ball around the �xed point to produce

an objective function� Thus�

Theorem ������ A line transversal for a family of balls in Ed such that the distance

between any two balls is greater than the sum of their radii can be found with a GLP of

combinatorial dimension 	d� ��

This GLP� unlike most of the others� cannot be interpreted as a �tting algorithm

as well as a transversal algorithm� The reason is that the Helly theorem holds� and

the GLP �works� only so long as the balls remain widely separated� Running a GLP

algorithm while ignoring this restriction produces some line� but not necessarily the one

which minimizes the maximum distance from the points�

A construction using intersecting unit balls in the plane �D��� shows that there

can be no Helly theorem about line transversals of balls in general� � Because the Helly

�The reader will probably also be interested to know� in this context� that there is an ��n lgn� lower
bound for the problem of 
nding a line transversal for unit balls in the plane �LW�	�� via reduction to the
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theorem breaks down when the spheres get too close together� there is no a�ne structure

that we may impose on the space of lines such that the set of lines through any ball forms

a convex set� So Theorem ������ is another example �like Line Transversal of Translates�

which was also based on a Helly theorem with a disjointness condition� of a GLP problem

in which the constraints are not convex�

���� The weighted L
� metric

The �rst result on line transversals of boxes appears in �S���

Theorem �Santal�o�� A family of axis�aligned boxes in Ed has a line transversal if and

only if every subfamily of size 	d���	d� �� has a line transversal�

Unaware of this result �� Teller raised the problem of �nding a line transversal for a family

of n boxes in E�� The problem arose in the context of a computer graphics simulation

of an architectural model �Te���� During a pre�processing phase� the model is analyzed

to determine which rooms can see into which others� to reduce the amount of visibility

checking during the interactive simulation� Each physically connected sequence of door�

ways� windows and stairwells is tested to see if it admits a line of sight� The geometric

formulation of this test is to �nd a line transversal for a family of axis�aligned rectangles�

if one exists�

In �HT���� Hohmeyer and Teller gave an O�n lg n� algorithm� I then �A�	� showed

that a line transversal directed into the positive octant of E� �or a positive line transversal�

could be found using a generalization of Seidel�s linear programming algorithm� so that if a

transversal exists� it can be found in expected O�n� time by searching every octant in turn�

A modi�cation of that proof shows that the problem of �nding a positive transversal is� in

fact� GLP� Megiddo then �M� showed that the constraints in this GLP can be linearized�

reducing he problem to linear programming� Furthermore� his linear formulation extends

to any �xed dimension� Like the hyperplane �tting results� this technique is only useful in

Max�Gap problem on a circle� which is ��n lgn� in the algebraic decision tree model of computation�
�Well� who among us spends enough time perusing articles in Spanish in back issues of Publicaciones

del Instituto de Matematicas del Universidad Nacional del Litoral� Rosario� Argentina�
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�xed dimension� since we need to solve 	d�� linear programs� one for each pair of opposite

orthants in Ed�

IBM is applying for a patent on Megiddo�s reduction� and we are not at liberty

to explain it here� which will unfortunately make the rest of this discussion rather cursory

��

Like the reduction of Avis and Doskas in section ���	� Megiddo�s reduction implies

the following

Theorem ������ For a family H of axis�aligned boxes in Ed� there is a positive line

transversal of the family if and only if there is a line transversal for every subfamily of

size � 	d� ��

Instead of �nding a line transversal with linear programming� we can use this

Helly theorem in conjunction with the scaling objective function� By growing the boxes

around a family of �xed points� we get another GLP algorithm for �tting a line to a set

of points� this time using the weighted L� metric introduced in Chapter ���

Problem� Weighted L� Line Fitting

Input A �nite family P of pairs �p� cp�� where p is a point� cp is an axis�aligned box� and

p is at the center of cp�

Output A pair ��� x�� where � � R� is the smallest scale factor such that �CP  

f�cp j �p� cp� � Pg admits a positive line transversal� and x is a positive line transversal

of �CP �

We �nd the smallest � at which the boxes admit any line transversal by solving 	d��

problems� one for each pair of opposite orthants of Ed� The transversal with the smallest

� is the one which minimizes the maximum distance from any point in the weighted L�

metric� This gives us

Theorem ������ Weighted L� Line Fitting can be solved by a family of 	d�� GLP prob�

lems of combinatorial dimension 	d� �� each with O�n� constraints� where n  jP j�
�This seems to me to be evidence that patenting algorithms is a bad idea�
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���� Application to the correspondence problem

Here is a problem from computer vision� We are given a collection of similar

images� taken by a moving camera� in which our low�level vision system identi�es critical

points� which we call features� A rigid object appears in all the images as a set of corre�

sponding features� If we can �gure out the correct correspondence between the features

from image to image� we can recover the motion of the camera� This is the correspondence

problem�

Various heuristics are used to select possible correspondences� Given a purported

correspondence� we have some hope of checking it� since a rigid set of points in E� can only

produce a limited number of two�dimensional images� Jacobs has formulated a version of

the testing process which can be solved as a GLP �J��

Say we are given n images of a rigid object in each of which we identify k features�

In �J�	�� Jacobs represented the k features from each image as a pair of points� one in each

of two separate k � � dimensional feature spaces� He showed that all possible pairs of

points produced by a particular rigid object lie on two parallel lines� one in each feature

space� So if we have a correct correspondence across the n images� we should get a set of

n points in each space� lying on two parallel lines ��

But of course there is some unknown amount of error in the measurements of the

image feature locations� Jacobs assumes a uniform error on the measurements� and then

tracks this through the transformation to the feature space� This gives an oddly�shaped

error function around each point� which he bounds with a box�shaped error function� There

is some pair of parallel lines� one in each space� such that the maximum distance from a

point in either space to the line is minimized� This maximum distance is an approximate

measure of the quality of the proposed correspondence�

So we are left with the problem of �nding the pair of parallel lines which minimizes

the weighted L� distance to two sets� each of n points� in Ek��� To handle it in the

�To get this formulation he has to make the simplifying approximation that the images were produced
by orthogonal projection and scaling� rather than ordinary projection� Apparently this is common in
computer vision and does not introduce too much error�
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same manner as the usual Weighted L� Line Fitting problem� we need a Helly theorem�

Fortunately Megiddo�s reduction� to which we referred above� is easily generalized to the

problem of �nding a pair of parallel line transversals for two families of boxes� The fact

that this problem can be solved by a linear program implies the following Helly theorem�

which again� regrettably� we have to state without proof�

Theorem ������ For two families H��H� of axis�aligned boxes in Ed� there are two

parallel lines l�� l� such that l� is a line transversal of H� and l� is a line transversal

of H�� if and only if� for every pair of subfamilies B�� B�� B� � H�� B� � H�� with

jB� � B�j � ��d � �� � �� there is a pair of parallel lines l�� l� such that l� is a line

transversal of B� and l� is a line transversal of B��

Once again we construct a parameterized Helly system by scaling the boxes around their

center points� Considering each orthant of Ed in turn gives us an algorithm to �nd any

parallel pair�

Theorem ������ For two families P�� P� of points in Ed� with weights W��W� on their

coe�cients� the pair of lines which minimizes the maximum distance from any point under

the weighted L� metric can be found with 	d�� GLPs of combinatorial dimension ��d �
�� � �� each with O�n� constraints�

So using GLP� we can get an upper bound on the quality of a purported correspondence

for a constant number of feature points� in expected linear time�

This approach could also be applied to �tting k parallel lines to k families of

points with weighted coe�cients� or to the associated transversal problem�
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Chapter ��

Conclusions and Questions

In this thesis we have explored the class of GLP problems and its intimate rela�

tionship with the Helly theorems� Our theoretical results can be summarized as

Helly � GLP � CP

that is� the class of problems for which there is a Helly theorem about the constraints

strictly contains the class of GLP problems� which strictly contains the class of CP convex

programming problems� Previously� all that was known was GLP � CP � and that only

as folklore� Although we have shown that GLP is a broader class than some people

expected� we have not completely characterized it� since we only give a paradigm for the

construction of an objective function� Conjecture ����� suggests a characterization of the

GLP problems� and� if settled in the a�rmative� would imply a general Helly theorem

subsuming many others�

The connection between Helly theorems and GLP theory has been mutually

pro�table� We have greatly simpli�ed the proof of Morris� theorem� and proved two

interesting new Helly theorems �one about the largest box in the intersection of a family

of convex sets� and the other about the minimum Hausdor� distance between two convex

bodies under scaling and translation�� Going in the other direction� we have shown many

geometric optimization problems to be GLP by using Helly theorems� including problems

raised by workers in computer graphics �Te�	�� computer vision �J�� and computer aided
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manufacturing �DMR���� There are other interesting Helly theorems whose exploitation

remains to be explored� for instance theorems concerning separators �H����

We hope that both theoretically and practically the somewhat unexpected jux�

taposition of Helly theorems and GLP will continue to be a source of useful results�
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