Normal variation for adaptive feature size
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Background

Let ¥ be a closed, smooth surface in R3. For any two sets X, Y C R3, let d(X,Y)
denote the Euclidean distance between X and Y. The local feature size f(x) at a
point z € ¥ is defined to be the distance d(x, M) where M is the medial axis of
2. Let n, denote the unit normal (inward) to ¥ at point p. Amenta and Bern in
their paper [1] claimed the following:

Claim 1 Let g and ¢’ be any two points in ¥ so that d(q,q') < emin{f(q), f(¢')}

1 €
fore < 3- Then, Zng,ngy < T3

Unfortunately, the proof of this claim as given in Amenta and Bern [1] is
wrong; it also appears in the book by Dey [2]. In this short note, we provide a
correct proof with an improved bound of 1=-.

Theorem 2 Let q and q' be two points in 3 with d(q,q") < ef(q) where ¢ < %
Then, Zng,ngy < 1=

1—¢*

Definitions and Preliminaries

For any point p € R3, let 5 denote the closest point of p in ¥. When p is a point
in X, the normal to ¥ at p is well defined. We extend this definition to any point
p € R3. Define the normal npatp € R3\ M as the normal to X at . Similarly, we
extend the definition of local feature size f to R®. For any point p € R3, let f(p)
be the distance of p to the medial axis of . Notice that f is 1-Lipschitz. If two
points  and ¥ lie on a surface F' C R3, let dp(z,y) denote the geodesic distance
between z and y. The following facts are well known in differential geometry.

*Dept. of CS, U. of California, Davis, CA 95616, amenta@cs.ucdavis.edu
TDept. of CSE, Ohio State U., Columbus, OH 43210, tamaldey @cse.ohio-state.edu



Proposition 3 Let I be a smooth surface in R3. Let ¢ and q' be two points in F.
Then,
d /
i 9E(@0)

-1
d—0 d(q,q")

Proposition 4 Consider the geodesic path between q,q’ on a smooth surface F in
R3. Let k,y, be the maximum curvature on this geodesic path. Then Ing,ng <

kmdr(q,q).

The Proof

We are to measure Zn,, ny for two points ¢ and ¢’ in X. One approach would be to
use the propositions above to bound the length of a path from p to ¢ on ¥ and then
use that length to bound the change in normal direction, but we can get a better
bound by considering the direct path from p to q.

Let X, denote an offset of 3, that is, each point in X, has distance w from ..
Formally, consider the distance function

h:R® = R, h(z) — d(z,X).
Then, ¥, = h~1(w).

Claim 5 For w > 0 let p be a point in 3, where w < f(p). There is an open set
U C R? so that op = X, N U is a smooth 2-manifold which can be oriented so
that n, is the normal to o, at any T € oy,.

PROOF. Since w < f(p), p is not a point on the medial axis. Therefore, the
distance function A is smooth at p. One can apply the implicit function theorem to
claim that there exists an open set U C R3 where

op=h"Hw)NU
is a smooth 2-manifold. The unit gradient (%)m = ”;:2” which is precisely n,
up to orientation is normal to o, at x € oy,

PROOF. [Proof of Theorem 2] Consider parameterizing the segment ¢q’ by the
length of q¢’. Take two arbitrarily close points p = p(t) and p’ = p(t + At) in q¢
for arbitrarily small At > 0. Let 0(t) = Zng, nyy) and Aa = Zny, ny. Then,
|0(t + At) — 0(t)| < Aa giving

A

‘)| < lim =2,
6 < By
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If we show that lima;_.q % is no more than m we are done since then
Lngng < [ 100l
qq’

1
= / a—ar@"

d(q,q")
(1-¢)f(q)

- €
T (I-e)

We have d(q,p) < d(q,p) + d(p,p) and d(q,p) < €f(q). Since also w =
d(p,p) < d(p,q) < ef(q), we have w < 13525 (p) (by a standard argument using
the fact that the function f is 1-Lipshitz). Therefore, w < f(p) for e < 1/3, and
there is a smooth neighborhood o, C X, of p satisfying Claim 5.

Let r be the closest point to p’ in X, and let At be small enough so that
r and the geodesic between p and 7 in oy, lies in 0,. Notice that , by Claim 5,
A = Lny, Ny = Lng, ny.

Claim 6 lima; o 2%0) < 1.
PROOF. Consider the triangle prp’. If the tangent plane to oy, at r separates p and
P/, the angle Zprp’ is obtuse. It follows that d(p,r) < d(p,p’) = At. In the other
case when the tangent plane to o, at r does not separate p and p’, the angle Zprp’
is non-obtuse. Let x be the foot of the perpendicular dropped from p on the line of
p'r. We have d(p, r) cos o < d(p,p’) where « is the acute angle Zrpz. Combining

the two cases we have d(p,r)/At < ——. Since a goes to 0 as At goes to 0, we

4 cosa”
have lima;_.q % <1

Now consider the geodesic between p and 7 in 0, and let m be the point on
the geodesic at which the maximum curvature ., is realized. Recall that d,, (p, )
denotes the geodesic distance between p and r on o,. Let r,, be the radius of
curvature corresponding to K, i.e., Ky, = 1/rp,. Clearly, f(m) < rp. So,
Proposition 4 tells us that

Therefore,

ACM . da'p (p7 T)
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In the limit when At goes to zero, d,, (p, r) approaches d(p,r) which in turn
approaches At (Proposition 3 and Claim 6). Meanwhile, d(q,m) < d(q,p) +
d(p, r) approaches d(q,p) < ef(q) as At goes to zero (again by Claim 6). So, in
the limit, f(m) > (1—¢) f(q) (again using the fact that f is 1-Lipshitz). Therefore,

. Ao < 1
1m —— —
At—0 At — (1 —¢)f(q)

which is what we need to prove.

Remark: The bound on normal variation can be slightly improved to — In(1 — ¢)
by observing the following. We used that d(q,p) < €f(q) to arrive at the bound
f(m) > (1—¢)f(q). In fact, one can observe that d(q, p) < etf(q) giving f(m) >
(1 —et)f(q). This gives |6'(t)| < m. We have
1 d In(1 —
A’I’Lq,nq/ g / dt — (q7 q ) n( E)
qq’ (1 - Et)f(Q) Ef(Q)

= —1In(l —¢).
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