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Abstract

The medial axis transform (or MAT) is a representation of an ob-

ject as an in�nite union of balls. We consider approximating the MAT

of a three-dimensional object, and its complement, with a �nite union

of balls. Using this approximate MAT we de�ne a new piecewise-linear

approximation to the object surface, which we call the power crust.

We assume that we are given as input a suÆciently dense sample

of points from the object surface. We select a subset of the Voronoi

balls of the sample, the polar balls, as the union of balls representation.

We bound the geometric error of the union, and of the correspond-
ing power crust, and show that both representations are topologically

correct as well. Thus, our results provide a new algorithm for surface

reconstruction from sample points. By construction, the power crust

is always the boundary of a polyhedral solid, so we avoid the poly-

gonization, hole-�lling or manifold extraction steps used in previous

algorithms.

The union of balls representation and the power crust have cor-

responding piecewise-linear dual representations, which in some sense

approximate the medial axis. We show a geometric relationship be-

tween these duals and the medial axis by proving that, as the sampling

density goes to in�nity, the set of poles, the centers of the polar balls,
converges to the medial axis
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1 Introduction

The input to the surface reconstruction problem is a set S of sample points
from the surface W of a three-dimensional object, and the output should be
a piecewise-linear approximation ofW . Surface reconstruction arises in a va-
riety of contexts, and it has recently become important in computer graphics
because of the development of laser range scanners and other technologies
for collecting sets of sample points from the surfaces of real objects.

Our approach to surface reconstruction, in a nutshell, is �rst to use the
sample points to approximate the medial axis transform (or MAT) of the
object, and then to produce the piecewise-linear surface approximation from
the approximate MAT. See Figure 1 for a two-dimensional example.

The MAT is a representation of the object as the in�nite union of its max-
imal internal balls. As our approximation, we use the polar balls, a subset
of the Voronoi balls of S. The polar balls belong to two sets, one more or
less �lling up the inside of the object, and the other the outside. These two
sets approximate the MAT of the object, and the MAT of its complement,
respectively. When the sample S is suÆciently dense it is easy to distin-
guish the inner from the outer poles; Section 9 contains our algorithm. In
a subsequent paper, we will describe additional heuristics and a very robust
implementation.

Our main innovation lies in the following algorithm for converting these
unions of balls into a surface representation. We compute a weighted Voronoi
diagram, the power diagram, of the polar balls. The power diagram divides
space into polyhedral cells, each cell consisting of the points in IR3 closest to
a particular ball, under a convenient distance function, the power distance.
The boundary separating the cells belonging to inner polar balls from the
cells belonging to outer polar balls is a piecewise-linear surface, which is our
output, the power crust.

We also use the power diagram to de�ne the adjacencies of the polar ball
centers (the poles). Subsets of inner (resp. outer) poles whose power diagram
cells share a face are connected with a dual weighted Delaunay face. These
faces form a simplicial complex, the power shape, analogous to the medial
axis.

We prove a variety of bounds on the quality of our approximations, under
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Figure 1: Two-dimensional example of power crust construction. Upper left,
an object (shaded) with its medial axis; one maximal interior ball is shown.
The medial axis is the union of the centers of these maximal interior balls.
Upper right, the Voronoi diagram of a sample of points from the object
boundary. In two dimensions, we select all Voronoi vertices as poles; in three
dimensions we select only certain ones near the medial axis. Middle left, the
sets of inner (shaded) and outer polar balls. Outer polar balls with centers
at in�nity degenerate to halfspaces on the convex hull. Middle right, the
power diagram cells of the poles. In two dimensions this is the same as the
Delaunay triangulation of the samples, but not in three dimensions. Bottom,
the power crust and the inner portion of the power shape.
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the assumption that the input sample is suÆciently dense. We show that
the power crust, and the surfaces of the two unions of polar balls, inner and
outer, are all close to the surface of the original object, that their surface
normals are close, and that they interpolate the samples. These geometric
bounds allow us to show not only that the power crust is homeomorphic to
the original object surface, but also that it's interior is homeomorphic to
the solid object itself. This in turn implies that the power shape, like the
medial axis, is homotopy equivalent to the original object. We characterize
the geometric accuracy of the power shape by showing that the set of poles
converges to the medial axis as the sampling density goes to in�nity.

2 Related work

Computer graphics

The clean abstraction of the problem of reconstruction from unorganized
points was introduced to the computer graphics community by Hoppe et
al. [23]. They proposed an algorithm which locally estimates the signed
distance function, the function on IR3 which returns the distance from the
closest point on the surface; the distance is negative at interior points of
the object. They use as an estimate the distance to the closest point in the
input sample. The output surface is a polygonization of the zero set of the
estimated signed distance function.

Curless and Levoy [14] gave a really e�ective algorithm which represents the
distance function on a voxel grid. To save space, they store only the part
of the grid near the input sample. This allows them to handle very large
and noisy data sets, so that their algorithm can be applied to combinations
of many laser range scans. Because they only approximate part of the dis-
tance function, they need a post-processing step for hole-�lling. They used
silhouettes of the object to constrain hole-�lling, which works well except in
indentations, where there might be data but no silhouettes; our algorithm,
which returns a solid interpolating all of the data, even within indentations,
has an advantage here.

Like the algorithms above, our algorithm can be described in terms of the
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signed distance function. The medial axis sketches the \ridges" of the signed
distance function, the points at which the direction to the closest surface
point changes discontinuously. Thus estimating the medial axis is a way of
representing the signed distance function on the entire space, in about the
same amount of storage as the input data itself.

Computational geometry

The surface reconstruction problem has received a lot of recent attention in
the computational geometry community. There have been several algorithms
for reconstructing curves [4, 6, 15, 19, 21] including algorithms which handle
plane curves with boundaries [16] and curves with sharp corners [1, 20], and
an algorithm for space curves with a strong topological guarantee [27] similar
to ours. In three dimensions, Amenta and Bern [3] gave an algorithm which
selects a subset of the Delaunay triangles of S as the output surface. They
de�ned a sampling condition (which we use, see Section 5), under which they
proved that their output surface is close to that of the original object. They
also de�ned the poles, which are at the heart of our algorithm. Their algo-
rithm selects a set of candidate triangles from the Delaunay triangulation,
and then selects the output manifold from the candidate set. This mani-
fold extraction step fails when the sampling condition is not met, a serious
drawback in practice. Amenta, Choi, Dey and Leekha [2] gave a similar,
but simpler algorithm, with a much simpler proof, and also showed that the
output surface is homeomorphic to the original object surface. They describe
a manifold extraction heuristic which seems to work well. Boissonnat and
Cazals [10] avoid the manifold extraction diÆculty by proposing an algo-
rithm which reconstructs a smooth surface interpolating the sample points.
As part of their theoretical analysis they independently proved a version of
the theorem (see Section 8) that the set of poles converges to the medial axis
as the sampling density goes to in�nity. Computing the smooth surface is
time consuming compared to the Voronoi diagram computation.

A key feature that di�erentiates our algorithm is that in addition to being
simple and providing theoretical guarantees, we also guarantee that our out-
put is the boundary of a three-dimensional solid, irrespective of the sampling
density. This not only avoids the manifold extraction problem, but makes
the algorithm quite robust in practice.
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Our algorithm is perhaps most similar to an old algorithm of Boissonnat [9],
which labels a subset of the Delaunay tetrahedra of the input sample as the
interior of the solid. We avoid diÆculties in labeling by using the power
diagram instead of the Delaunay tetrahedra.

Another algorithm based on Delaunay triangulation is the �-shape algorithm
of Edelsbrunner and M�ucke [18]. This algorithm selects candidate Delaunay
triangles based on the radius of their smallest empty circumspheres. We use
many of the beautiful ideas developed in the context of �-shapes, although in
a di�erent way. In particular, the relationship between power diagrams and
unions of balls was developed by Edelsbrunner [17], and the power shape is
almost, but not exactly, the same as the weighted �-shape of the polar balls.

Bernardini et al. [8] have also given an algorithm based, conceptually, on �-
shapes, while avoiding the computation of the Delaunay triangulation. This
allows them to apply the algorithm to very large data sets. The Delaunay
triangulation is the expensive step in the construction of the power crust
as well. It would be very interesting to �nd a power crust algorithm which
similarly avoids computing the Delaunay triangulation.

Medial axis approximation

Another distinguishing feature of our algorithm is that it generates a discrete
approximation of the MAT, the power shape, which is a useful alternative
representation of the object. Applications for the MAT have been proposed
in a wide variety of contexts, but particularly in three dimensions it has gen-
erally failed to lead to practical algorithms. One problem is that the MAT is
hard to compute exactly. The computation of the exact medial axis for simple
polyhedra has been demonstrated only recently [13]. For more complicated
shapes, approximation probably continues to be more appropriate. Attali
and Montanvert [7] and others [26] have proposed approximating the medial
axis using the Voronoi diagram. This approach is sometimes justi�ed by a
reference to [22], which argues, incorrectly, that the set of three-dimensional
Voronoi vertices converges to the true medial axis as the sampling density
goes to in�nity. Since the set of poles does converge to the medial axis, we
believe that the power shape is a better MAT approximation.

The set of interior polar balls is a good approximation of the object as a
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union of balls, which is a also a useful shape approximation. Hubbard [24]
promotes the use of unions of balls for collision detection, guided by the
observation that detecting the intersection of two balls is much easier than
detecting intersections of two other primitives like triangles or polyhedra.
He constructs a hierarchical representation, using increasingly simple unions
of balls, and gives convincing experimental evidence that this hierarchy is
more eÆcient in practice than others. Hubbard's experience shows that the
success of the approach depends on the quality of the shape approximation.
He �nds that the set of Voronoi balls is superior to a larger and less accurate
set of balls derived from a quad-tree; we believe that the set of polar balls
should be better still.

Finite unions of balls or discrete medial axis transforms have also been pro-
posed as a representation for deformable objects. Rajan and Fournier [25]
use a union of balls for interpolating between shapes. Teichman and Teller
[28] use a discrete medial axis as a skeleton in a semi-automatic system for
animating arbitrary computer models. Both papers again begin with the set
of Voronoi balls and use a heuristic clean-up phase, and again, we believe
that the polar balls would be a better starting point. Cheng, Edelsbrunner,
Fu and Lam [11] do morphing in two dimensions with skin surfaces, which
are smooth surfaces based on unions of balls. Our work can be seen as a step
toward converting an arbitrary polygonal surface into a provably accurate
skin surface.

3 Geometry

In this section we formally introduce the geometric structures we will use,
and describe some of their known, although perhaps not widely known, prop-
erties.

Surfaces and balls

All our ideas are based on the relationships between surfaces and balls.

LetW be the closed, bounded two-dimensional surface of an objectW in IR3.
To avoid having to deal with points at in�nity, we assume that surface W
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is contained in an open, bounded region Q. W divides Q into two bounded
open solids, the inside and the outside of W. Hence, we allow both the
inside and the outside to be disconnected. For our theoretical arguments,
we will assume that W is not only closed but smooth, by which we mean
C1-continuous.

A (Euclidean) ball Bc;� has a center c and radius �. In the context of power
diagrams, a ball is often equivalently represented by a weighted point with
position c and weight �2. We will also need the concept of a point c with
negative weight ��2, equivalent to a ball Bc;i� (with i =

p�1). A point with
weight zero (ie a ball with radius zero) is unweighted.

Medial axis transform

We say ball B = Bc;� � Q is empty (with respect to W ) if the interior of
B contains no point of W . A medial ball is a maximal empty ball; that is,
it is completely contained in no other empty ball. The center of a medial
ball is either a point with more than one closest point on W , or a center of
curvature of W .

De�nition: The medial axis transform of surface W is the set of medial
balls. The set of centers of the medial balls form the medial axis M of W .

We could equivalently de�ne the medial axis as the closure of the set of all
points with more than one closest point of W . Notice that either way the
medial axis includes both a part inside of W (the inner medial axis) and a
part outside of W (the outer medial axis). Also note that since we de�ne the
medial axis as a locus of centers of balls contained in Q, the medial axis is
always bounded.

Barring degeneracies, the medial axis of a two dimensional surface in a region
Q is another two dimensional surface. The medial axis is usually not a
manifold, but if W is piecewise smooth and in general position its medial
axis will consist of piecewise smooth two-dimensional patches, with singular
edges and vertices contained in two and three patches respectively.

The medial axis is homotopy equivalent to the complement ofW , Q�W [12].
This is a way of saying that the two solid shapes, W and its complement,
and the medial axis have the same holes, tunnels and connected components,
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even though they generally di�er in dimension. This can be shown by giving
a continuous deformation retraction of Q�W ontoM , de�ning a continuous
motion which moves every point away from its closest surface point [12].

Power diagrams

The duality just described between the surface W and its medial axis M is
akin to the relationship between a �nite union of balls and its �-shape, which
in turn is related to power diagrams, a species of weighted Voronoi diagram.
Since we will use power diagrams extensively we review them in some detail.

De�nition: The power distance between two weighted points c1; �
2
1 and

c2; �
2
2 is d

2(c1; c2)� �21 � �22.

Note that either �1 or �2 might be imaginary. Equivalently,

De�nition: The power distance between two balls B1 = Bc1;�1 and B2 =
Bc2;�2 is dpow(B1; B2) = d2(c1; c2)� �21 � �22.

For example, let B = Bc;� be a ball with real weight �, and let x be a point
with weight zero (equivalently, a ball of radius zero). If x is on the boundary
of B, then dpow(B; x) = 0; if x is inside B, then dpow(B; x) < 0 and if x is
outside of B then dpow(B; x) > 0.

The motivation behind the de�nition of power distance is that computing
the induced weighted Voronoi diagrams is easy.

De�nition: The power diagram Pow(B) of a set of balls is the weighted
Voronoi diagram which assigns an (unweighted) point x = Bx;0 in space to
the cell of the ball B which minimizes dpow(B; x).

Very conveniently, programs which compute the (unweighted) d-dimensional
Voronoi diagram by computing a convex hull in dimension (d+1) (the stan-
dard approach in dimensions three and higher) can be easily converted to
compute power diagrams as well.

The two-dimensional faces separating the cells of a three-dimensional power
diagram - the sets of points in space with two \closest" samples - are subsets
of two-dimensional planes. If the balls corresponding to the two weighted
points determining a face intersect, then the face is a subset of the plane
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containing the circle in which the boundaries of the two balls intersect.

Just as the regular unweighted Voronoi diagram de�nes the Delaunay trian-
gulation, the power diagram de�nes a dual weighted Delaunay triangulation,
sometimes called a regular triangulation (since not all triangulations of a set
S of samples are regular.)

De�nition: A face f of the weighted Delaunay triangulation WDT (B) of a
set of weighted points (equivilantly, a set of balls) is the simplex formed by
the convex hull of the set Bh of weighted points inducing a face h of Pow(B).
We say that faces f and h are duals.

In the usual unweighted Voronoi diagram, the maximal empty ball centered
at an arbitrary point x is incident to the samples which induce the face of
the Voronoi diagram containing x. Similarly in the weighted case we can
describe the power diagram face containing a point x using a ball centered
at x, as follows. We begin with a de�nition due to Edelsbrunner [17].

De�nition: Two weighted points are orthogonal if the power distance
between them is zero.

We can give a geometric interpretation of orthogonality.

De�nition: The boundaries of two balls B1 and B2 intersect in a circle
C. We say that B1 and B2 meet at angle �, where � is the angle between
their tangent planes at any point on C; equivalently, � = � � �, where �
is the angle between the normal vectors to B1 and B2 at any point of C.
Considering Figure 2 and using the Pythagorean theorem, we see that two
orthogonal positive balls meet at an angle of �=2, which implies that the
center of either ball is outside the other. When a ball with negative weight
B1 = Bc1;i�1 is orthogonal to a positive ball B2 = Bc2;�2 , c1 lies inside B2

and the two balls intersect in a great circle of B1. Two negatively weighted
points cannot be orthogonal.

Observation 1 Let x be a point, and let B be a set of balls, and let ball B be
element of B which minimizes dpow(B; x). Consider the ball Bx;w orthogonal
to B, and let Bx;w0 be the ball orthogonal to any other ball B0 2 B. Then
w � w0.
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Figure 2: On the left, two orthogonal positively weighted balls meet at a right
angle. On the right, the larger ball is positively weighted and the smaller is
negatively weighted.

Proof: We know that dpow(B; x)) � dpow(B
0; x), and

0 = dpow(B;Bx;w) = dpow(B; x)� w2

so that
0 = dpow(B

0; x)� (w0)2 � dpow(B
0; x)� w2

2

For example, a point x on a two-dimensional face of Pow(B), with positive
power distance to the two balls B1; B2 inducing the face, will be the center of
a ball Bx;w which intersects both B1 and B2 orthogonally, and meets every
other ball corresponding to a point in B at an angle of less than �=2.

The following Lemma may be obvious to experts. It highlights the role of the
power diagram in the well-known duality between the Voronoi diagram and
the Delaunay triangulation. In order to handle in�nite Voronoi faces cleanly,
we assume that the Voronoi diagram includes a vertex at in�nity, to which
all in�nite Voronoi edges and faces are adjacent.

Lemma 2 Let S be a set of points in general position in IR3 and let B be
the set of Voronoi balls centered at the Voronoi vertices of S. Pow(B) is the
Delaunay triangulation DT (S).

Proof: Each point p 2 S lies on the boundary of each ball corresponding to
a vertex of the Voronoi cell of p, and outside of all the other Voronoi balls.
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Consider a k-face f of DT (S), let Vf be the set of Voronoi vertices corre-
sponding to d-simplicies in DT (S) containing f , and let Bf be the set of their
Voronoi balls. Face f is the convex hull of a set Sf of (k + 1) points of S.
The points in Sf all lie on the boundaries of the Voronoi balls in Bf . Each
point x 2 Sf thus has dpow(Bi; x) = 0, for all Bi 2 Bf , and cannot lie in the
interior of any other balls in B, and hence belongs to the face f 0 of Pow(B)
determined by Bf (which must exist). This face f 0 is convex, and is a subset
of the aÆne hull of Sf , so that f � f 0. Since this is true of every face f in
DT (S), we have DT (S) = Pow(B).
2

4 Our constructions

We now de�ne our construction of the union of balls representation and the
power crust. Let S be a suÆciently dense sample of points from a smooth
surfaceW ; we shall de�ne \suÆciently dense" in the following section. Again,
to avoid dealing with in�nity, we add a set Z of eight points, the vertices of a
large box surroundingW , to S, so that all the Voronoi vertices of each sample
in S are �nite points. Amenta and Bern [3] made the following de�nition.

De�nition: The poles p1; p2 of a sample s 2 S are the two vertices of its
Voronoi cell farthest from s, one on either side of the surface. The Voronoi
balls Bp1;�1 ; Bp2;�2 are polar balls, with �i = d(pi; s).

Amenta and Bern [3] show that both poles of s are found correctly by the
following procedure, assuming that S is suÆciently dense in the technical
sense described below. Select the Voronoi vertex of s farthest from s as the
�rst pole p1. From among those Voronoi vertices v of s such that the angle
6 vsp1 > �=2, select the farthest as the second pole p2.

The intuition behind the de�nition of poles is that the polar balls approxi-
mate medial balls. Let P be the set of poles. The surface W divides the set
of poles into the set PI of inside poles and the set PO of outside poles. The
corresponding sets of polar balls are BI and BO.
De�nition: Let UI = SBI be the union of Voronoi balls centered at inside
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poles, and UO =
SBO be the union of Voronoi balls centered at outside poles.

Let UI = @UI and UO = @UO be the boundaries of these unions.

Observation 3 Every sample s 2 S lies on both UI and UO.

We will show in Section 6 that both UI and UO form good approximations
of W when S is suÆciently dense.

Now consider the power diagram Pow(BI [ BO). Some cells of this power
diagram belong to balls in BI , and others to balls in BO. (Unlike the power
diagram of a general set of balls, every input ball ends up with a cell in
Pow(BI[BO).) The collection of two-dimensional faces induced by one inside
and one outside polar ball separate the part of the domain Q belonging to
the inside balls from the part belonging to outside balls.

De�nition: The power crust of S is the set of faces in Pow(BI [ BO)
separating cells belonging to inside polar balls from cells belonging to outside
polar balls.

Observation 4 Every sample lies on the power crust.

Observation 5 The power crust is the (possibly non-regular) boundary of a
three-dimensional solid.

We show that the power crust is also a good approximation ofW , in Section 7.

Dual shapes

Both the union of balls and the power crust have dual shapes, skeletal rep-
resentations by simplicial complexes. The dual shapes can be considered
discrete analogs to the medial axis. Some partial geometric results can be
found in Section 8.

Edelsbrunner [17] de�ned the dual shape of a union of balls (also known as
the weighted �-shape), for which he demonstrated an elegant correspondance
with the structure of the union.
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De�nition: The dual shape of a union of balls U = [B is a simplicial com-
plex. The centers of a subset Bf � B are connected by a simplex whenever
the power cells of all balls in Bf have a point x in common, such that x 2 U .
Edelsbrunner proved the following [17], establishing a topological analogy
between the dual shape and the medial axis.

Theorem 6 The dual shape of a union of balls is homotopy equivalent to
the union.

He in fact de�nes a deformation retraction, very similar to that which estab-
lishes that the medial axis is homotopy equivalent to the object [12].

We make a similar de�nition of the dual shape of a subset of power diagram
faces (eg. the power crust). (We abuse notation by writing Pow(B) for the
set of faces of Pow(B).)
De�nition: Let B be a set of balls, and let Y be a set of closed faces
selected from Pow(B). The dual shape of Y is the union of the dual faces of
of every face in Pow(B)� Y .

De�nition: The power shape of S is the dual shape of the power crust.

Note that the dual shape is the dual, in the standard computational geometry
de�nition, of the complement of the power crust, not of the power crust itself.

Again using techniques borrowed from Edelsbrunner, we show that when
Y is a surface selected from the 2-faces of Pow(B), the dual shape of Y is
analgous to the medial axis in the following sense.

Theorem 7 Let Y be a set of (d � 1)-dimensional faces, together with all
their subfaces, selected from Pow(B). The dual shape is homotopy equivalent
to
S
(Pow(B)� Y ).

Proof: The d-dimensional cells of Pow(B)�Y form a family of convex sets.
The nerve of a family of convex sets is a simplicial complex, with a vertex for
every convex set and a simplex connecting every subset of convex sets which
have a common intersection. The Nerve Theorem states that the nerve of
a family of convex sets is homotopy equivalent to their union. The dual
shape is a geometric realization of the nerve of the d-dimensional cells in
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Pow(B)� Y , since any tuple of weighted points (that is, ball centers) which
induce a face in the power diagram either induces a face of Y , in which case
the corresponding convex sets fail to intersect, or a face of the dual shape,
in which case the corresponding convex sets do intersect.
2

5 Sampling condition

Before we get into the proofs that the unions of polar balls and the power
crust are geometrically accurate, we need to de�ne what we mean by a \suÆ-
ciently dense" sample S. We use the following de�nitions and lemmata from
recent papers on surface reconstruction [3],[4].

De�nition: The Local Feature Size at a point w 2 W , written LFS(w), is
the distance from w to the nearest point of the medial axis of W .

Intuitively, LFS is small where two parts of the surface pass close together,
since they are separated by the medial axis. The medial axis is also close to
the surface where the curvature is high. We use the LFS function to de�ne
the sampling density we require to produce a good surface reconstruction.

De�nition: S � W is an r-sample if the distance from any point w 2 W
to its closest sample in S is at most a constant fraction r times LFS(w).

Sampling assumption: We assume that S is a r-sample from W and
r � 0:1.

The usefulness of this assumption depends on LFS being well behaved. The
following lemma says that the LFS function is Lipschitz.

Lemma 8 (Amenta and Bern [3]) For any two points p and q on W ,
jLFS(p)� LFS(q)j � d(p; q).

Observation 9 If d(u,s)= O(r)LFS(u) then d(u,s)=O(r)LFS(s) as well, for
r < 1.

The following lemma is a Lipschitz condition on the surface normal with
respect to LFS.
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Lemma 10 (Amenta and Bern [3]) For any two points p and q on W
with d(p; q) � �minfLFS (p); LFS(q)g, for any � < 1=3, the angle between
the normals to W at p and q is at most �=(1� 3�).

We need to state one more key lemma, which will be useful in our proofs later
on. Informally, the idea is that when S is suÆciently dense, the Voronoi cell
of every sample s 2 S is long and skinny and roughly perpendicular to the
surface. The way we quantify this is to say that, given a sample s and a
point v in its Voronoi region, the angle between the vector from s to v and
the surface normal at s has to be small (linear in r) when v is far away from
s (as a function of LFS).

For convenience, we de�ne r0 = r=(1� r) = O(r).

Lemma 11 (Amenta and Bern [3]) Let s be a sample point from an r-
sample S. Let v be any point in V or(s) such that d(v; s) � �LFS(s) for
� > r0. Let � be the angle between the vector ~sv and the surface normal ~n at
s. Then � � arcsin(r0=�) + arcsin r0.

Conversely, if the angle is large, then point v has to be close to s. Speci�cally,
if � � arcsin(r0=�) + arcsin r0, then d(v; s) � �LFS(s). Rearranging things,
we get

Corollary 12 For any v such that � > arcsin r0, we have d(v; s) � �LFS(s)
with

� =
r0

sin(�� arcsin r0)

The Voronoi cell of a sample s 2 W must contain the point m of the inside
(outside) medial axis for which s is a closest surface point. Since m is at least
distance LFS(s) from s, while the inside (outside) pole p of s is at least as
far away, the angle between the vector to m and the vector to p is at most
2 arcsin r0 by Lemma 11. The polar ball Bp centered at p is at least as large
as the medial ball centered at m, so that m has to fall inside Bp, whenever
2 arcsin r0 < �=3.

Corollary 13 Every polar ball contains a point of the medial axis, when
r < 1=3.
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6 Unions of polar balls

We will now show that, under the sampling assumption, �rst, that the bound-
ary UI of the inner polar balls and the boundary UO of the union of the outer
outer polar balls, are both close to W . Second, we will establish that their
surface normals agree with those of W , and third, that both of them are
homeomorphic to W .

Shallow intersections

First, an observation, illustrated by Figure 14 below.

x

Figure 3:

Observation 14 Let BI and BO be two intersecting balls, and let x be a
point on the segment connecting them. Any ball centered at x and containing
a point outside of both BI and BO also completely contains BI \BO.

The main idea in all the proofs is that inside and outside balls cannot intersect
each other deeply. We say this in three di�erent ways in the lemmata below.
We measure the depth of the intersection by the angle � at which the balls
intersect, as in Figure 4, below.

The �rst version of the lemma deals with the special case in which the two
balls are the inner and outer polar balls of the same sample s, for which we
can get the best bound.
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Figure 4: An inside and outside ball can intersect only at a small angle �.

Lemma 15 The two polar balls of a sample s intersect at an angle of O(r)LFS(s)=�,
where � is the radius of the smaller polar ball.

Proof: Without loss of generality let the inner polar ball Bp;� be smaller
than the outer polar ball BO. The line segment between p and the center
of BO intersects the surface in at least one point x. Since Bp;� and BO

cannot contain samples, s is the nearest sample to x (Observation 14) and
d(x; s) � rLFS(x).

Let z be the center of the circle C in which the boundaries of BI and BO

intersect, and let � be the radius of C, as in Figure 4. We have � � d(x; s),
and so, using Observation 9, � � O(r)LFS(s). The angle between P and the
tangent plane toBp;� at s is the same as 6 zps = arcsin(O(r)LFS(s)=�). Since
LFS(s) � �, for small enough r this is O(r)LFS(s)=�. The angle between
P and the tangent plane to BO is no greater, so � = O(r)LFS(s)=�.
2

Now we show that in the general case, any pair consisting of an inner and an
outer polar ball must intersect shallowly.

Lemma 16 Let BI be an inside polar ball and BO be an outside polar ball.
BI and BO intersect at an angle of at most 2 arcsin 3r = O(r).

Proof: Consider the line segment connecting cI and cO, the centers of BI

and BO. Since cI and cO lie on opposite sides of W , this segment crosses W
in at least one point x.
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Let Bc;� be the smaller of the two balls BI and BO. If x 2 Bc;�, we have
LFS(x) � 2�, since the polar ball Bc;� contains a point of the medial axis
(Corollary 13).

Otherwise x is in the larger of the two balls, but not in the smaller, as in
Figure 4. Let c be the center of the smaller ball, and again de�ne z and � as in
Figure 4. By Corollary 13, we have LFS(x) � d(x; c)+� = d(x; z)+d(z; c)+�.
But the distance from x to the nearest sample is at least

q
�2 + d2(x; z) =

q
�2 � d2(z; c) + d2(x; z)

So the r-sampling requirement means that

q
�2 � d2(z; c) + d2(x; z) � r[� + d(x; z) + d(z; c)]

Since d(z; c) � �, we can simplify to

d(x; z) � 2r0�

which, for r � 1=3, means that x is very close to Bc;�, and LFS(x) � 3�.

Since the distance from x to the nearest sample is at least � and at most
3r�, we know that � � 3r�. The angle between the plane P containing C
and a tangent plane on Bc;� at any point on C is thus at most arcsin 3r, the
angle between the plane P containing C and the tangent plane of the larger
ball is smaller, and the two balls meet at an angle of at most 2 arcsin 3r.
2

The third lemma shows that a similar fact holds when one of the balls is a
medial, rather than a polar, ball.

Lemma 17 Let Bp be an inside (outside) polar ball and let Bm be an outside
(inside) medial ball. The angle at which Bp and Bm intersect is at most
2 arcsin 2r = O(r).

Proof: Again we consider the line segment connecting p and m, the centers
of Bp and Bm, which crosses W in at least one point x, which is in Bp but
not in Bm (since the interior of any medial ball is empty of points of the
surface).
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We have LFS(x) � 2�p, since Bp contains a point of the medial axis. When
2�p � �m, we use this bound to show that the balls intersect at an angle of
at most 2 arcsin 2r, as in the proof of Lemma 16.

Otherwise, since m itself is a point of the medial axis, we have LFS(x) �
d(x;m) = d(x; z)+d(z;m). Again, the distance from x to the nearest sample
is at least

a =
q
�2 + d2(x; z) =

q
�2m � d2(z;m) + d2(x; z)

So the r-sampling requirement means that

q
�2m � d2(z;m) + d2(x; z) � r[d(x; z) + d(z;m)]

Since d(z; c) � �m, we can simplify to

(1� r)d(x; z) � r�m

which, for r � 1=2, means that LFS(x) � 2�m. We use this bound to
show that the angle between the two balls is most 2 arcsin 2r, again as in
Lemma 16.
2

Proximity

We now turn to the proof that the union boundaries UI and UO approximate
the surfaceW . We can immediately infer from Lemma 16 that the surfaceW
cannot penetrate too far into the interior of either union, as a function of the
radii of the balls forming the unions. We extend this to a stronger bound in
terms of LFS, which could be much smaller than the radius of either medial
ball at a surface point x.

Lemma 18 Let u be a point in the Voronoi cell of s but not in the interior
of either polar ball at s. The distance from u to s is O(r)LFS(s), for small
enough r.
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Proof: We assume without loss of generality that LFS(s) = 1. Let p1 be
the pole farther from s. If 6 usp1 � �=2, we let p = p1, otherwise we consider
p = p2, the pole nearer to s. We let Bp;� be the polar ball centered at p. In
either case d(u; s) � �, because of the way in which the poles were chosen.
Let � be the angle between vectors ~su and ~sp. Since u is outside the polar
ball, d(s; u) � 2� cos �.

Since d(s; u) � �, we have � � �
3
> 3 arcsin r0, for small enough values of r.

Let ~n represent the normal at s. We �nd 6 ~n ~sp < 2 arcsin r0 by Lemma 11.
So 6 ~n ~su > �=3 � 2 arcsin r0 > arcsin r0. From Corollary 12 it follows that,
for any point u in the Voronoi cell of s,

d(u; s) � r0

(sin(� � 3 arcsin r0))

Since � � �
3
, the angle, (� � 3 arcsin r0) � �

6
, again for small enough values

of r. Thus d(u; s) � 2r0. Since we assumed LFS(s) = 1, the lemma follows.
2

Corollary 19 Any point u which does not lie in the interior of either UI or
UO is within distance O(r)LFS(s) of its closest sample s.

It remains to bound the distance from any point on the boundary of one
union and in the interior of the other to the surface.

Lemma 20 For a point u contained in both UI and UO, the distance to the
closest sample s is O(r)LFS(s).

Proof: Point u is contained in an inner ball BI and an outer ball BO. The
line joining the centers of BO and BI intersects the surface at some point x.
Let sx be the closest sample to x and let s be the closest sample to u; see
Figure 6. A ball centered at x, and with radius d(x; sx), must also contain u
(Observation 14). This and the r-sampling condition give a bound on d(x; u).

d(x; u) � d(x; sx) = O(r)LFS(x)

Hence
d(u; s) � d(u; sx) � d(u; x) + d(x; sx) = O(r)LFS(x)
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By Observation 9, d(u; s) = O(r)LFS(s).
2

x
u

s

s x

Figure 5: The point u is closer to x than sx, which is outside both the polar
balls.

We use the two lemmata above to show that the two union boundaries UI =
@UI and UO = @UO have to be close to the surface.

Theorem 21 The distance from a point u 2 UI or u 2 UO to its closest
point on the surface x 2 W is O(r)LFS(x).

Proof: Let s be the closest sample to u. Assume without loss of generality
that u is on the boundary UI . The either u 2 UI and u 2 UO, so that
d(u; s) = O(r)LFS(s) by Lemma 20, or u is in the interior of neither UI or UO,
so that d(u; s) = O(r)LFS(s) by Corollary 19. The point x is at least as close
to u as s is, and hence d(x; u) = O(r)LFS(s) and d(x; s) = O(r)LFS(s).
The result follows from Observation 9.
2

Lemmata 18 and 20 imply that most of the domain Q lies in either the union
of inner balls or the union of outer balls, and only points very near the surface
W might lie in both unions, or in neither.

De�nition: The tubular neighborhood around surfaceW is the set of points
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within distance O(r)LFS(x) of a point x 2 W . Figure 6 illustrates the
tubular neighborhood.

Figure 6: The boundaries of the unions of balls UI and UO must lie close
to the surface W . Speci�cally, the boundaries are contained in the tubular
neighborhood, de�ned as the set u of points such that the distance from u to
the closest point x 2 W is at most O(r) times the distance from x to the
medial axis.

Normals

Now we show that the normals on the union boundaries UI and UO are also
close to the normals of nearby points of the surface W , approaching the
correct normal at a rate proportional to

p
r as r! 0.

Observation 22 Let B = Bc;� be a polar ball, at distance at most k from a

point x 2 W . Then � � LFS(x)�k
2

.

This follows because B is a polar ball, so it contains a point of the medial
axis, by Corollary 13, while the nearest point of the medial axis to x is at
distance LFS(x).

Lemma 23 Let u be a point such that the distance to the nearest surface
point x 2 W is at most O(r)LFS(x). Let Bc;� be an inner (resp. outer)
polar ball containing u. Then the angle, in radians, between the inner (resp.
outer) surface normal at x and the vector ~uc is O(

p
r).
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Figure 7: Since B cannot intersect BM very deeply, and d(u; x) has to be
small, the angles at m and c cannot be very large.

Proof: Let Bm;R be the medial ball at x on the opposite side of the surface
from c. Since x is the nearest surface point to u, the vector ~xu is normal
to the surface at x, and m; x and u are collinear. So we can write the angle
we are interested in as � = 6 ucm + 6 umc. We begin by bounding 6 umc.
Without loss of generality, assume LFS(x) = 1.

Since Bc;� and Bm;R cannot intersect at x at an angle greater than 2 arcsin 2r
(Lemma 17), the thickness of the lune in which they intersect is at most a
factor of O(r2) times the smaller of the two radii. Let B0 be the ball centered
at m and touching this lune, as in Figure 7.

Angle � = 6 cmu will depend on the ratio of the two radii R and �. The
following argument establishes that � is maximized when R = 1 and � =1,
as in Figure 7 on the left. Since � decreases as u moves towards the center
c, we assume u is on the boundary of Bc;�. For any �xed �, increasing R
makes � smaller, so we assume R = LFS(x) = 1, its minimum value since
Bm;R is a medial ball at x. For any �xed R, increasing � makes � larger, so
we assume that Bc;� is in�nitely large.

Since in this situationBm;R is the smaller ball, the radius ofB0 isR(1�O(r2)).
Let y be the point at which segment c;m intersects B0. The distance

d(u; y) =
q
d2(m; y)� d2(m; u) = O(

q
(1 +O(r))2 � (1�O(r2))2) = O(

p
r)
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We get 6 ucm = arcsin
�
d(u;y)
d(m;u)

�
= O(

p
r).

We use a similar argument to bound 
 = 6 ucm. Again we can assume that u
is on the boundary of Bc;�. For any �xed �, increasing R increases 
, and for
any �xed R, increasing � decreases 
, so in contrast to the previous situation,
we let � take on its minimum value of (1�d(u; x))=2 = �(1) (Observation 22),
and let R become in�nitely large. This worst case is shown on the right in
Figure 7. Here d(z; y) is at most the thickness of the lune added to d(u; x),

that is, O(r2) + O(r) = O(r). Distance d(x; u) =
q
d(c; u)2 � d(c; z)2 =

O
�q

1� (1� r)2
�
= O(

p
r). This �nally gives us 6 ucm = O(

p
r), complet-

ing the O(
p
r) bound on �.

2

Theorem 24 Let u be a point on UI (resp. UO), and let x 2 W be the closest
surface point to u. The di�erence between the outer (resp. inner) normal nu
(where it is de�ned) to the union boundary at u and the outer (resp. inner)
surface normal nx at x is O(

p
r) radians.

Proof: Point u is contained in the tubular neighborhood, and the distance
d(u; x) = O(r)LFS(x) (Theorem 21). If nu is de�ned, then u is contained in
the surface of exactly one ball and nu is the vector pointing towards the ball
center, so we can apply Lemma 23.
2

Homeomorphism

We use these geometric theorems to show that the surface of either UI or UO

is homeomorphic to the actual surface W . We'll do this using a natural map
from U to W .

De�nition: Let � : R3 !W map each point q 2 R3 to the closest point of
W .

Lemma 25 Let U be either UI or UO. The restriction of � to U de�nes a
homeomorphism from U to W .
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Proof: We consider UI ; the argument for UO is identical. Since UI and W
are both compact, it suÆces to show that � de�nes a continuous, one-to-one
and onto function. The discontinuities of � are the points of the medial axis.
From Theorem 21, every point of UI is within distance O(r)LFS(x) from
some point x 2 W , whereas every point of the medial axis is at least LFS(x)
from the nearest point x 2 W . Thus � is continuous on UI .

Now we show that � is one-to-one. For any u 2 UI , let x = �(u) and
let n(x) be the normal to W at x. Orient the line l(x) through x with
direction n(x) according to the orientation of W at x. Any point on UI such
that �(u) = x must lie on l(x); let u0 be the outer-most such point. By
Theorem 21, d(u0; x) = O(r)LFS(x).

Let Bc;� be the ball in UI with u on its boundary. Let � be the angle between
~uc and the surface normal n(x). By Theorem 24, � = O(

p
r). Meanwhile

� = 
(LFS(x)), by Observation 22.

Point u0 is at most O(r)LFS(x) from u, while the portion of l(x) extending
outward from u lies in the interior of Bc;� for distance at least 2� cos� =
O(LFS(x)). So every point of l(x) farther out from u but closer than
O(r)LFS(x) from x lies in Bc;�; in other words, u0 has to be identical to
u.

Finally, we need to establish that �(U) is onto W . Since � maps U , a
closed and bounded surface, continuously ontoW , �(U) must consist of some
subset of the closed, bounded connected components of W . But since every
connected component of W contains samples of S, and �(s) = s for s 2 S,
�(U) must consist of all the connected components of W .
2

7 The power crust

It seems natural that since UI and UO are accurate representations ofW and
its complement, that the power crust that they induce is also an accurate
representation of W . We establish this formally in this section.
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Proximity

The fact that the power crust is close to W is actually immediate from our
results so far. Since any point on a face separating an inside from an outside
cell is contained in either both of their Voronoi balls or in no Voronoi ball at
all, Theorem 21 implies the following.

Corollary 26 Any point u on a face of the power crust lies within O(r)LFS(x)
of some point x 2 W .

Notice that although a point u on the power crust might be nearest to inner
(outer) polar ball B, in Euclidean distance, it might belong to the power cell
of some other inner (outer) ball B0 which is nowhere near B. Our proof that
the power crust is homeomorphic to the original surface hinges on showing
that B and B0 cannot, in fact, be too far apart.

Observation 27 Let p be a point in the tubular neighborhood, and let s be
the sample nearest p. Then d(p; s) = O(r)LFS(s).

Let x 2 W be the closest point on the surface to p. The Observation above
follows since the distance d(p; s) is at most distance d(p; x) + d(x; s0), where
s0 is the sample nearest x, using Observation 9.

s

u

a
Bp,

BΟ

y

ρ

Figure 8:

Lemma 28 Let u be a point in the tubular neighborhood outside of any polar
ball, let x 2 W be the nearest surface point to u, and let s be the closest sample
to x. Let Bp;� be the smaller of the two polar balls at s. Then d(u;Bp;�) =
O(r2)LFS2(s)=�.
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Proof: Since u is in the tubular neighborhood, d(u; x) = O(r)LFS(x), and
d(x; s) � rLFS(x). So by Observation 27, d(u; s) = O(r)LFS(s), that is, u
is contained in a ball of radius O(r)LFS(s) centered at s, as in Figure 8. The
distance from u to Bp;� will be maximized when a) the two polar balls inter-
sect in as large an angle as possible (which is O(r)LFS(s)=�, by Lemma 15)
and b) the radius of BO is as small as possible (which is �).

From Figure 8, we have d(u;Bp;�) � d(u; a). The length of the chord sa
is O(r)LFS(s), so the angle between the chord and the tangent plane to
Bp;� at s is arcsin[O(r)LFS(s)=2�] = O(r)LFS(s)=�. So the total angle
6 ysa = O(r)LFS(s)=� as well.

This gives d(u; a) = O(r)LFS(s) sin[O(r)LFS(s)=�], and hence d(u;Bp;�) =
O(r2)LFS2(s)=�, for small enough r.

Lemma 29 Let u be a point in the tubular neighborhood, and let p be the
inner (outer) pole at minimum power distance to u, with polar ball Bp;�. Let
x 2 W be the nearest surface point to u and let s be the nearest sample to
x. Let Bc;� be the smaller of the two polar balls at s. If u 62 Bp;�, then
d(u;Bp;�) = O(r)LFS(s), for small enough r.

Proof: If u is inside Bc;�, then it is inside Bp;�, and the lemma is trivial.

u

B µc

Figure 9:

Otherwise, we claim that the radius � of the ball Bu centered at u and
orthogonal to Bc;� is at most O(r)LFS(s), for small enough r. Since this
ball must also intersect Bp;� (Observation 1), the Lemma follows.
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To establish the claim, assume without loss of generality that LFS(s) = 1, so
that LFS(x) = O(1) (Observation 9). By Lemma 28, d(u;Bp;�) � k(r2=�),
for some constant k. We have, as in Figure 9,

� =
q
�2 + 2(kr2=�)�+ k2r4=�2 � �2

=
q
2kr2 + k2r4=�2 = O(r)

2

Homeomorphism

From Lemma 23 and Lemma 29 we get the following observation, which we
need to establish the homeomorphism between the power crust and W .

Observation 30 Let u be a point in the tubular neighborhood, and let p be
the inner (outer) pole at minimum power distance to u, with polar ball Bp.
Let x 2 W be the surface point closest to u with surface normal nx. The
vector ~uc forms an angle of at most � = �=6 with nx, for small enough r.

The set of points in the tubular neighborhood whose closest point on W is
x forms a line segment g, perpendicular to the surface at x. Note that when
we take a point u in the tubular neighborhood to its nearest point x 2 W , it
travels along the segment g corresponding to x.

Lemma 31 The segment g normal to the surface at a point x 2 W and
passing through the tubular neighborhood intersects the power crust exactly
once.

Proof: Consider the function fI(u) which returns the minimum power dis-
tance to any pole p 2 PI . The level sets of fI are piecewise-quadratic surfaces
formed by patches of spheres of equal power distance centered at the poles.
The restriction of fI to the segment g is a piecewise quadratic function. We
claim that this function is monotonically decreasing as u goes from the outer
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end of g to the inner end, since, by Observation 30, a point x moving inwards
on g is always moving at an angle of at most �=6 from the the vector from
the nearest pole p to x, and any angle less than �=2 would suÆce to ensure
that x is moving away from p.

Similarly, the function fO is monotonically increasing on g. So fI and fO
are equal at exactly one point, at a face of the power diagram separating the
cells of an inside and an outside pole.
2

Theorem 32 There is a continuous deformation of Q taking the power crust
into W .

Proof: Let Y be the power crust. We de�ne a deformation of all of the
domainQ which takes Y intoW , and hence the interior of Y into the interior
of W and the exterior of Y into the exterior of W . Speci�cally, we de�ne a
continuous parameterized map ft : Q ! Q, for t 2 [0; 1], such that at any
time t, ft is a continuous, one-to-one and onto map, and such that at time
t = 0, f0(Y ) = Y , and at time t = 1, f1(Y ) =W .

The power crust is strictly contained in the tubular neighborhood around W
(Lemma 26). Outside of the tubular neighborhood, we de�ne ft to be the
identity, at every time t. By Lemma 31, the segment g normal to W at a
point x 2 W and passing through the tubular neighborhood intersects the
power crust exactly once, in a point y 2 Y . By the de�nition of the tubular
neighborhood, g intersects W only in x. Let gi and go be the inner and outer
endpoints of g. We de�ne ft(y) = tx + (1 � t)y, and we let ft linearly map
the segments gi; y to gi; ft(y) and y; go to ft(y); go.
2

8 Medial axis approximation

Both topologically and geometrically, we can show that the power shape is
a good appoximation to the medial axis in some basic ways.
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Theorem 33 The power shape is homotopy equivalent to Q�W .

Proof: Theorem 7 established that the power shape is homotopy equivalent
to
S
(Pow(B)� Y ), where Pow(B) is the set of faces of the power diagram

and Y is the power crust. Since
S
Pow(B) = Q, this means that the power

shape is homotopy equivalent to Q� Y . The space homeomorphism of The-
orem 32 shows that Q� Y is homeomorphic to Q�W .
2

2γ

��������

C

Figure 10: A small bump on the surface induces a long \hair" on the medial
axis without having to contain any samples. Here, c is the endpoint of the
\hair", and r is about 1=2, so that neither of the samples lies on the bump.

In addition to this topological equivalence, we show that the set PI of poles
converges, geometrically, to the true medial axis ofW as the sampling density
goes to in�nity. In contrast to our previous results, we cannot guarantee that
every medial axis is adequately approximated by an r-sample for a speci�c
value of r such as 0:1. This is because, as in Figure 10, for any �nite value of
r, we can construct a a very small, shallow bump on the surface W , inducing
a \hair" on the medial axis but without requiring samples on the bump.
Note, however, that we have to choose the angle 
 to be small with respect
to r. This motivates the following de�nition.

De�nition: A medial axis point c belongs to the 
-medial axis of W when
at least two points u1; u2 2 W on the boundary of the medial ball centered
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at c form an angle 6 u1cu2 > 2
.

Interestingly, the 
-medial axis can be disconnected.

c

t

x

s

p

u

α

φ

Figure 11: Since p is in the Voronoi cell of t, it has to be on the same side of
the bisector of ts as t.

Lemma 34 Let Bc;� be a medial ball such that c belongs to the inner (outer)

-medial axis, for some �xed 
, with 
 = 
(r1=3). Let t be the nearest sample
to c. Then the distance from c to the inner (outer) pole p of t is O(�r2=3).

Proof: Without loss of generality let c be a point on the inner 
-medial axis.
Let t be the closest sample to c, and let u1; u2 be two surface points on the
boundary of Bc;� such that 6 u1cu2 � 2
. Let � be the maximum of angles
6 tcu1 and 6 tcu2, so that � � 
. Let u 2 fu1; u2g be the one realizing this
maximum angle and let s be u's closest sample; see Figure 11.

From the sampling criterion we have that d(u; s) � rLFS(s) � r�. Let x be
the point at which segment ct intersects the medial ball. Since 6 xcu = �,
d(x; u) = 2� sin(�=2). Also, d(c; t) � d(c; s) � �(1 + r), so d(x; t) � r�. We
conclude that d(t; s) � 2�(r + sin�=2).
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Next, we will bound the angle � = 6 pts � � +  + �, where � = 6 ptc ,
 = 6 utc, and � = 6 uts.

Point c lies in the Voronoi cell of t, and d(c; t) � LFS(t). So from Lemma 11,
both 6 ~n ~tc and 6 ~n ~tp are at most 2 arcsin r0, where ~n is the surface normal
at t. So � = 6 ptc � 4 arcsin r0 = O(r).

Since x and t are collinear, d(c; t) � d(c; x), and both are much greater than
d(x; u), we have  = 6 utc � 6 uxc = �=2� �=2.

We have d(s; u) � �r, and both d(t; s) and d(t; u) are at least 2 sin(�
2
� r), so

that angle � = 6 uts � arcsin( r
2 sin(�

2
�r)

) = O(r2=3). This completes our upper

bound on �.

Since p is t's pole, p is closer to t than it is to s. By intersecting the cone at t
around ts at angle � with the plane equidistant from t and s (see Figure 11),
we can get an upper bound on d(t; p):

d(t; p) � d(t; s)=2

sin(�
2
� �)

� �(r + sin �
2
)

sin(�
2
� � � �)

= O

 
�

r + r1=3

r1=3 � r � r2=3

!
= O(�(1 + r2=3))

Let q be the point at which the circle centered at t and passing through c
intersects the segment tp. Since � = 6 ctp = O(r), we get d(c; q) = O(�r).
Also, since d(t; p)� d(t; q) = d(t; p)� d(t; c), we have d(q; p) = O(�r2=3) and
�nally d(p; c) = O(�r2=3).
2

Note that the value 
 = 
(r1=3) in the theorem above is not crucial; a
similar statement could be made for any 
 = o(r1=2), with an appropriate
modi�cation of the bound.

Now we apply this bound to make a precise statement to the e�ect that the
set of poles converges to the medial axis as r ! 0.

Theorem 35 Consider a sequence of samples S0; S1; � � � from W , with the
property that ri converges to 0 as i ! 1. The set of inner (outer) poles of
Si converges to the inner (outer) medial axis of W.

Proof: Lemma 34 shows that for every point c on the 
-medial axis, 
 > 0,
and any �xed radius � > 0, there is some �nite i such that, for all j > i,
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there is a pole of Sj within distance � of c. A point c on the 0-medial axis (a
center of curvature of W ) belongs to the closure of the 
-medial axis, with

 > 0, so that, again, for any � > 0 there is a suÆciently small 
 such that
there is a point c0 of the 
-medial axis within distance �=2 of c, and a �nite
i such that for any j > i there is a pole of Sj within distance �=2 of c0. This
shows that in the limit the set of poles contains the medial axis.

We now argue that in the limit the medial axis contains the set of poles.
First, we assiciate a value 
x with each point x 2 W . Point x is associated
with an inner and an outer medial axis point, belonging respectively to the

i- and 
o- medial axes; let 
x be the minimum of 
i; 
o. Let the subset of
W with 
x � 
 be the 
-surface.

Now �x 
 > 0. The Voronoi cell of any sample s in the 
-surface contains the
interior medial axis point c corresponding to s, which belongs to the 
-medial
axis. So for any � there is some i such that small enough so that, if s 2 Sj
for any j > i, c is within distance � if the interior pole of s, by Lemma 34.
2

9 Theoretical algorithm

Even when the surfaceW is unknown, it is possible to correctly construct the
power crust given an r-sample for small enough r. The diÆculty of course
is in determining which are the inside, and which are the outside, poles. We
know that the polar balls of an inner and an outer pole can only intersect
shallowly. If we could determine that two inner (outer) polar balls which
induce a face of the power diagram must intersect deeply, then we could
assign all power diagram two-faces corresponding to shallowly intersecting
pairs of balls to the power crust, giving an algorithm analogous to that of
Attali [6] in IR2. Unfortunately, we could not establish that adjacent inner
(outer) polar balls intersect deeply. Instead, we have the following.

Lemma 36 Two inside (resp. outside) polar balls inducing a face f inter-
secting the tubular neighborhood meet at an angle of at least 2�=3, for small
enough r.
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Proof: Let p be any point on the f inside the tubular neighborhood, and
let c1; c2 be the centers of the two inside (resp. outside) polar balls inducing
the face. Since p is in the tubular neighborhood, and c1 and c2 are the poles
with (equal) minimum power distance to p, we can apply Observation 30.
Thus the angle between the surface normal n(x) at the point x 2 W closest
to p and either pc1 or pc2 is at most �=6, so 6 c1pc2 is at most �=3.
2

This leads to the following algorithm to label each pole as either outside (O0)
or inside (I 0).

Input: An r-sample S from a closed, bounded smooth surface W .
Output:The power crust of S.

Step 1: Construct the Delaunay triangulation of S, �nd the Voronoi vertices,
and select two poles for each sample. Let BP be the set of polar balls.

Step 2: Construct the power diagram Pow(BP ).

Step 3: Select a sample on the convex hull of S.
Label its in�nite outer pole with O0 and the opposite inner pole I 0.
Insert both poles in a queue.

Step 4: While the queue is non-empty:
Remove a labeled pole p from the queue, and examine
each unlabeled neighbor q of p in Pow(BP ).
If the Voronoi ball surrounding q intersects the Voronoi ball of p
at an angle of more than �=4:

Give q the same label as p and insert it in the queue.
For each sample s such that q is a pole of s,
if the pole q0 opposite q at s is unlabeled:

Give q0 the opposite label from
q and insert q0 into the queue.

Step 5: Output the faces of Pow(BP ) separating the cells of
one pole labeled I 0 and one pole labeled O0 as the power crust.
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To prove that this algorithm is correct, we need to show that the sets I and
O, corresponding to the inside an outside of W , are identical to the sets I 0

and O0.

Lemma 37 No pole in I receives label O0 and no pole in O receives label I 0.

Proof: Let q be the �rst mislabeled pole, and let p be the pole from whose
label that of q was determined. Either p and q should have opposite labels
but they meet at an angle of more than �=2, or p and q should have the
same label but they are opposite poles of the same sample s. The �rst case
is impossible by Lemma 16, and the second is impossible because the two
poles of any sample always should have opposite labels.
2

Lemma 38 Every pole receives a label.

Proof: We consider a pole p 2 I, Every ball in I has at least one point on
the power crust, since each sample s such that p is a pole of s appears on
the power crust.

By Lemma 36 we know that every power crust edge is contained in two balls
which intersect deeply (they meet at an angle of at least 2�=3). Therefore if
any pole q in the same connected component of UI receives label I 0, then p
will eventually as well.

Each connected component of either I or O eventually gets at least one
labeled pole. Assume not; consider some component that remains unlabeled;
we claim that there must be a sample on this component. If this is true, we
are done, because a label will be propogated across this sample.

The claim must be true; otherwise, consider any point x on the boundary of
that component. The line segment connecting x to its nearest sample s must
cross the medial axis, so that the distance d(x; s) � LFS(x), a contradiction.
2
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10 The Anti-Crust

We conclude with a brief comparison of the dual shapes described in this pa-
per with the anti-crust, the dual shape corresponding to crust constructions
such as [2],[3],[4],[5],[6],[16], and [21].

De�nition: Let T be a triangulated manifold (possibly with boundary)
selected from the Delaunay triangulation of a set S of surface samples, which
we shall generically call a crust. The anti-crust A is the set of Voronoi faces
of S whose duals do not belong to T .

Observation 39 The dimension of every face of A is at most two.

In this, the anti-crust is more like the medial axis than the power shape is.

Observation 40 Every Voronoi vertex of S is a vertex of A.

This is the main failing of the anti-crust, as discussed below.

De�nition: Let BV be the set of Voronoi balls of S.

From Observation 2 above, we see that T is a subset of Pow(BV ).

Observation 41 A is the dual shape of T in Pow(BV ).

Theorem 7 therefore implies the following.

Corollary 42 When T is homeomorphic toW , the anti-crust A is homotopy
equivalent to Q�W .

This is one sense in which A is a good approximation to the medial axis M ;
Q�W is homotopy equivalent to both. Another sense in which it is good is
functional: the surface approximation can be recovered from it.

Observation 43 The surface approximation T can be recovered from A by
computing Pow(BV ) and selecting the faces not dual to faces of A.
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Again, this follows from Observation 2. Thus, we can think of A as the
approximate MAT dual to T , an approximate surface representation.

In the limit, as the sampling density becomes in�nite, T ! W (eg. [3],[2]).
One would like to conclude that A!M as well, but this is not in fact true.
The problem is that even an arbitrarily dense sample can produce Voronoi
vertices very close to W and far from M : whenever four samples adjacent
on the surface and determining a Voronoi vertex v are nearly co-circular, v
might be anywhere on the line perpendicular to the circle. This introduces
unwanted \hairs" on the anticrust A, purely due to quantization, which do
not correspond to any feature of M .

It must be admitted, however, that this theoretical diÆculty has not had
much e�ect in practice. Equally erroneous \hairs" are caused by small errors
in the sample positions.

11 Open Questions

We were unable to resolve the following conjecture.

Conjecture 44 The power crust faces are exactly those for which the two
polar balls determining the face intersect in a lune of at most O(r) degrees.

This is the criterion used in Attali's (and Gold's) two-dimensional surface
reconstruction algorithm. If the conjecture is true, then the generalization
of their algorithms to three dimensions produce the power crust.
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