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1 Introduction  
 
Inferring forest parameters such as biomass, coverage, or basal area from airborne laser 
scanning (ALS) data with ground-truth training data is a well-established practice (Hyyppä et al., 
2008). Generally forest parameters are estimated at the plot level, often for circular plots with a 
radius of 10-30 meters. Segmenting individual tree crowns from the canopy and using tree-level 
statistics to infer parameters at a finer scale is a topic of considerable research interest (eg. 
Popescu et al. 2004, Lee et al., 2010, Tittmann et al. 2011, Li et al. 2013). But it remains quite 
difficult to segment trees reliably from discrete-return LiDAR data, especially in the dense 
forests that account for most of the  planet’s  terrestrial  biomass. 
 
In this study we analyze discrete-return ALS data at higher-than-plot resolution without 
attempting to identify individual trees. We use a strategy popular in computer vision, the 
computation of regional shape descriptors. Our shape descriptor is a particular binning of points 
within a local area, intended to combine data at a point with context data from its neighborhood. 
In computer vision, regional shape descriptors have been used to discover and match features in 
images (Belongie, et al., 2002) and in three-dimensional point clouds representing small objects 
generated by triangulation laser scanners (Johnson and Hebert, 1999, Frome, et al., 2004). In 
this paper we show how regional shape descriptors can be used as input variables to infer forest 
parameters via regression. Also, we observe that regional shape descriptors can be used as 
points in a high-dimensional space with a natural metric, allowing the use of some unsupervised 
analyses such as clustering. This is in contrast to disparate collections of local LiDAR statistics, 
for which the choice of metric would be rather arbitrary (eg. Hastie, et al., 2009). The inherent 
scarcity of field data makes robust unsupervised methods appealing. 
 
We also use visualization to evaluate the quality of our results. Evaluating a linear model or 
clustering on shape descriptors computed at a dense grid of points over an entire tile of LiDAR, 
shows spatial variation and lets us compare it to features visible in the LiDAR.  
 
2 Shape descriptors 
 
We define a local shape descriptor for any point in the x-y plane as a way of summarizing the 
local point distribution. We divide a vertical cylinder centered at the point into bins of equal 
volume. The shape descriptor then is a vector, each element of which is the number of points 
falling into the corresponding bin. We would like the bins to be invariant to rotation around the 
z axis, on the assumption that small patches of forest that differ only by a rotation should be 
similar. To produce rotationally symmetric bins, first, the cylinder is sliced horizontally into 
uniformly sized disks, and then each of those smaller disks is divided into annular bins; see 
Figure 1. To keep the bin volumes equal, the difference between the two radii determining a ring 
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decreases as we go out from the core. The height of the cylinder is determined by the maximum 
height value for the entire dataset.  
 

   
(a)                    (b)        (c)       (d)      (e)      (f) 

Figure 1: The shape descriptor bins the LiDAR points within a cylinder. On the left (a), we highlight the 
cylinder of a shape descriptor of radius 6.5 meters centered on a peak in the CHM; all peaks are indicated 
by blue arrows. The cylinder is divided into height levels, each of which is binned into concentric rings 
(annular bins), as shown on the right (b). Some example shape descriptors are depicted in (c) and (e), with 
corresponding LiDAR points shown in (d) and (f). Brighter squares represent higher bin counts, with 
left-to-right representing inner-to-outer radius bins and bottom-to-top representing lower-to-higher height 
bins.  
 
This descriptor, being a histogram, can be embedded naturally into a high-dimensional metric 
space. This allows any kind of unsupervised learning, such as clustering, to be performed.  
Distance metrics for histograms are well-studied. Bin-to-bin measures compare only the 
corresponding bins of two histograms. Examples are Euclidean distance and the other 
Minkowski norms, Chi-squared distance, KL divergence, and Histogram Intersection distance. 
Bin-to-bin distances do not account for the relationships between different bins (see Figure 2). 
In contrast, cross-bin histogram dissimilarity measures, besides comparing individual bin counts, 
also incorporate some measure of the similarity between histogram bins. They include quadratic 
form distance (Puzicha, Buhmann, Rubner, & Tomasi, 1999),  Earth  Mover’s  Distance  (Rubner, 
Tomasi, & Guibas, 1998) and Diffusion Distance (Ling & Okada, 2006). For this study, we 
chose Diffusion Distance, which is convenient and efficient to compute. 
 
To compute Diffusion Distance, we augment each histogram with two levels of lower-resolution 
histograms. To compute each of these histogram we blur the previous level with a Gaussian 
filter and then downsample. The resulting augmented vectors, containing original and diffused 
bins, can then be compared using any bin-to-bin similarity measure; we use the L1 norm. 

 
Figure 2: The one dimensional histogram in 2(a) is more similar to the one in 2(b) than to the one in 2(c), 
but a bin-to-bin distance measure assigns the same distance in both of these cases. 

(a)  

(b)  

(c)  
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3 LiDAR and field data 
 
We used data from the Panther Creek study area as an example of analysis using regional shape 
descriptors.  
 
3.1 LiDAR survey 
 
The Panther Creek study area was established by the US Bureau of Land Management with 
participation by other interested parties as a LiDAR laboratory. The approximately 2580ha 
(6100ac) area is located in western Yamhill county, northwest of McMinnville, Oregon. We are 
using a 2009 LiDAR survey of the Panther Creek study area, close in time to the collection of 
the field data. It utilized a Leica ALS60 sensor mounted in a Cessna Caravan 208B. The 
specifications for this survey are detailed in Table 1. 
 

Table 1: Panther Creek LiDAR survey specifications 
Survey Altitude 900m 

Pulse rate >105kHz 

Pulse mode Single 

Mirror scan rate 52 Hz 

Field of view 28°(±14° from nadir) 

Overlap ≥100% (≥50% side-lap) 

Avg. pulse density 10.18 pt/m2 
 
 
 
3.2 Field data collection 
 
Stands were delineated and stratified into three classes: conifer, mixed and riparian. Three 
16.05m radius plots are located within each stand; one is fully sampled and must be entirely 
within the stand. Two supplementary plots have plot centroids within the stand, but the plot can 
extend into neighbouring stands. All trees with Diameter at Breast Height (DBH) of 2.5cm and 
larger in the plots were measured. We use the following field data in our analysis: Species, DBH, 
Total Height (recorded to the nearest 0.1m from ground level to the highest green point), and 
location.  Information on height-to-live-crown, and additional indicators for dead trees, etc, are 
included in the dataset but not used in this study.  
 
3.3  Computing shape descriptors 

 
We experimented with two ways of choosing locations for the shape descriptor centers. First, 
we chose centers on a grid covering each plot. This kind of sampling would be useful for 
estimating basal area or biomass across a region by combining higher-resolution estimates at the 
grid points. Second, we computed peaks in the Canopy Height Map (CHM) using the 
Fusion/LDV software package (McGaughey, 2013) and placed a shape descriptor at each peak. 
This approximates a per-tree sampling. In this case the shape descriptors of nearby peaks 
overlap arbitrarily, and since some areas are not covered by any shape descriptor, we cannot 
form per-plot parameter estimates by adding up the per-peak parameter estimates.  
 
On the Panther Creek data, we computed shape descriptors using both kinds of sampling; the 
grid we used was 5x5 meters. For each kind of sampling, we tried shape descriptors at two radii, 
summarized in Table 2.  
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Table 2: Shape Descriptor Parameters 

Radius (m) / parameter 5 6.5 

Number of annular bins 6 8 

Number of vertical bins 32 32 
Radius of inner bin (m) 2.041 2.298 

Volume of each bin (m3) 28.66 36.33 
 
 
Larger shape descriptors have more bins, to retain roughly the same resolution per bin for 
comparison purposes. The vertical height of every bin is 2.19m.  
 
3.4  Normalizing shape descriptors 
 
LiDAR data acquisition involves a significant amount of flight line overlap, meaning there are 
regions covered by multiple swathes of LiDAR. In order to avoid having higher values in the 
shape descriptor bins in regions of higher coverage, we normalized each shape descriptor by 
dividing each bin count by the total number of first returns falling within the shape descriptor. 
This approach is similar, but not quite equivalent, to the more common practice of normalizing 
height bins by reporting them as percentiles of the total number of returns; normalizing only by 
first returns preserves local differences in the number of returns per laser pulse.  
 
4 Regression 
 
We used the shape descriptors from the field plots of the Panther Creek data as independent 
variables for estimating basal area (BA), volume (Vol) and biomass (Mass). For each shape 
descriptor, we selected the trees whose trunk centers lay within the cylinder defined by the 
shape descriptor. To estimate the value of the variable on the shape descriptor, we computed 
basal area and the volume statistic from the field data: 
 
BA = trees (DBH)2  (1)           and              Vol = trees (DBH)2xHeight  (2) 
  
We also used DBH to estimate the biomass covered by each shape descriptor, using the formula: 
 

Mass = exp[ 1+ 2 ln(DBH) ]    (3) 
 
taking 1 and 2 from Table 3 in (Jenkins, et al., 2004) based on the tree type in the field data.  
 
All of these forest parameters are strongly and positively correlated with maximum height.  
But height alone, as measured by the LiDAR data, is only a moderately good predictor, as 
measured by the adjusted R2 statistic. For instance using maximum measured height on 6.5m 
radius regions gives models predicting basal area with R2 0.37, volume with R2 0.45, and 
biomass with R2 0.43. The regional shape descriptors produced linear models which fit the field 
data with much greater accuracy. We tried combining maximum height with the regional shape 
descriptors, but it produced no significant improvement.  
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Figure 3: Visualizations of linear models of basal area as predicted by height bins and by PCA 
components of regional shape descriptors, on a tile of the Panther Creek dataset. Deep blue is the lowest 
BA prediction and white is the highest. The model on the left has an R2 of 0.590, but this is due to 
over-fitting, and the model assigns both very large and very small values to the atypical tall trees in the 
upper left, washing out mostly reasonable predictions on the rest of the tile. The model on the right, using 
the first 50 PCA components of the shape descriptor data as input, makes reasonable predictions 
everywhere with an R2 of 0.572.  
 
Unfortunately visualization (left in Figure 3) reveals that much of the improvement in the 
models produced from shape descriptors is due to overfitting using the increased degrees of 
freedom in the higher-dimensional input space, resulting in wildly incorrect predicted values on 
other parts of the Panther Creek LiDAR in which the shape descriptors do not resemble that in 
the field data plots. Binning the LiDAR only by height, a more traditional method of 
representing local LiDAR data as a histogram, also suffered from overfitting (we used 32 height 
bins, again normalized by number of first returns). For example, the binning-by-height linear 
model applied to the ground truth resulted in a minimum basal area of -869.5 cm2 and maximum 
of 29,583 cm2 with an average of 8,363 cm2 and standard deviation of 4,597 cm2. However, 
applying the same model to the 2500 m2 region in Figure 3 gives a minimum of -277,750 cm2 
and maximum of 831,210 cm2 with an average of 17,108 cm2 and standard deviation of 44,573 
cm2. The huge increase in the standard deviation suggests that the linear model is overfitted. 
 
Reducing the dimensionality by computing the Principal Components of the 198 or 256 shape 
descriptor bins, and only using the most significant components, gave much more satisfactory 
results. We found that even using 50 components, accounting for 94% of the variability of the 
input, we produced models that generalized well to other parts of the Panther Creek dataset; the 
lower R2 and MSE scores reflect the reduction in overfitting. In this case the PCA based linear 
model applied on the ground truth results in a standard deviation of 15,805 cm2 and a standard 
deviation of 5,970 cm2 on a larger plot. Notice that the Principal Components depend on the 
metric applied to the input data, so this technique is more appropriate with a representation of 
the local LiDAR distributions that comes with a natural metric, such as our shape descriptors or 
height bins. 
 

Table 3: Adjusted R2 values for regressions using grid sampling of local regions. 
 

Radius / Variables 5 6.5 

Shape Descriptors – BA 0.631 0.710 

Height Bins – BA 0.505 0.590 

PCA – BA 0.467 0.572 

Shape Descriptors –Vol 0.762 0.831 

Height Bins – Vol 0.620 0.699 

PCA – Vol 0.570 0.679 
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Shape Descriptors – Mass 0.705 0.764 

Height Bins – Mass 0.570 0.631 

PCA – Mass 0.496 0.602 
 

We tried fitting each of the three parameters using the three different representations of the local 
distribution information. The shape descriptors and height bin models show overfitting when applied to 
entire tiles, although their R2 values on the training data are better.  

  
 

Table 4: Adjusted R2 values for regressions using peak sampling 
 

Radius / Adjusted R2 5 6.5 

Shape Descriptors – BA 0.784 0.827 

Height Bins – BA 0.647 0.733 

PCA – BA 0.637 0.673 

Shape Descriptors –Vol 0.893 0.931 

Height Bins – Vol 0.745 0.827 

PCA – Vol 0.719 0.744 

Shape Descriptors – Mass 0.843 0.897 

Height Bins – Mass 0.681 0.788 

PCA – Mass 0.668 0.688 
 
Clearly the larger shape descriptors produce better models than smaller ones, by averaging together 
more ground-truth data and separating the LiDAR data into more spatial bins. The volume statistic is 
easier to infer than basal area, probably because it includes height, which is readily apparent in 
LiDAR data. It is interesting that biomass is also better inferred than basal area, which suggests that 
the shape descriptors might be capturing some of the variation due to different tree species. While 
shape descriptors evaluated at peaks in the CHM give more accurate linear models than shape 
descriptors placed at grid points, it is less clear to us how to interpolate these local values to produce 
estimates of forest parameters over larger regions.  
 
5 Clustering 
 
Any Minkowski metric applied to the augmented shape descriptors (vectors with original and 
diffused bins) forms a well-justified metric space, within which unsupervised learning 
algorithms such as clustering can be performed. As an example, we used the k-means clustering 
algorithm, under the L1 norm. We found that there was no obvious best choice for the number of 
clusters k, so we chose k to be six, balancing number of clusters against the quality score.  
               
Clustering a tile of the Panther Creek dataset with disparate land cover types yields clusters with 
very good spatial locality, picking out distinct regions of vegetation. We used the shape 
descriptors with a cylinder radius of 6.5m. We also performed the clustering using only the 
thirty-two height bins. The two representations produced very nearly identical clusterings. The 
clusters based on the height bins are shown in Figure 4.  
 
6 Discussion 
 
We used the simplest possible methods for parameter prediction and clustering. More powerful 
learning methods will likely give more useful results.  
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Using a representation with a natural metric space makes unsupervised methods such as PCA 
and clustering more justifiable. Possibly unsupervised methods and visualization applied to the 
LiDAR data might be used to guide field work, identifying areas with unusual LiDAR 
distributions that should be included in the field data. 
 
Semi-supervised learning combines supervised and unsupervised learning, to leverage the 
structure inherent in a dataset to better generalize from a small number of training items. 
Encoding the LiDAR data as points in a high-dimensional space with a natural metric should 
enable some semi-supervised as well as unsupervised learning techniques.   
 
Level-of-detail analysis is another direction of research in computer vision that could be applied 
to a shape descriptor representation. Analyzing the same point cloud with shape descriptors of 
different sizes could reveal different features; features consistent across several levels of detail 
are considered more significant.  
 
 

 
Figure 4: A tile from the Panther Creek data (left) containing a variety of ground covers. Clustering 
the 32 height bins does a good job of separating different stand types and revealing features. The 
orange cluster picks out roads or gaps, the deep blue is cleared, the purple is brush, the bright green 
is the tallest trees, followed by dark green and then light blue, with denser canopies. The figure on 
the right shows a visualization of the height clusters; brighter areas represent greater LiDAR density, 
with height increasing from left to right. 
 
Acknowledgments 
 
Many thanks to Jim Flewelling of Seattle Biometrics for providing the field and LiDAR survey 
data from the Panther Creek Cooperative Watershed Research project. Grateful thanks to NSF 
grants IIS-0964357 and IIS-1117663 for support. . 
 
References 
 
Belongie, S., Malik, J. & Puzicha, J., 2002. Shape matching and object recognition using shape 
contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), pp. 509-522. 
 

254



SilviLaser 2013, October 9-11, 2013 –Beijing, China 

  

Frome, A. et al., 2004. Recognizing objects in range data using regional point descriptors. 
Prague, Proceedings of the Eighth European Conference on Computer Vision. 
 
Hastie, T., Tibshirani, R. & Friedman, J., 2009. Object dissimilarity. In: The elements of 
statistical learning. Stanford: Springer, pp. 505-507. 
 
Hyyppä, J. et al., 2008. Review of methods of small-footprint airborne laser scanning for 
extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 
29(5), pp. 1339-1366. 
 
Jenkins, J., Chojnacky, D., Heath, L. & Birdsey, R., 2004. Comprehensive database of 
diameter-based biomass regressions for North American tree species, Newtown Square: USDA 
Forest Service. 
 
Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient object recognition in 
cluttered 3D scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(5), 
433-449. 
 
Lee, H., Slatton, K., Roth, B. & Cropper Jr., W., 2010. Adaptive clustering of airborne LiDAR 
data to segment individual tree crowns in managed pine forests. International Journal of 
Remote Sensing, 31(1), pp. 117-139. 
 
Li, J., Hu, B. & Noland, T., 2013. Classification of tree species based on structural features 
derived from high density LiDAR data. Agricultural and Forest Meteorology, Volume 171-172, 
pp. 104-114. 
 
Ling, H. & Okada, K., 2006. Diffusion distance for histogram comparison. s.l., IEEE Computer 
Society, pp. 246-253. 
 
McGaughey, R. J., 2013. FUSION/LDV: Software for LiDAR analysis and visualization, Seattle: 
US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 
 
Popescu, S. C. & Wynne, R. H., 2004. Seeing the trees in the forest: Using LiDAR and 
multispectral data fusion with local filtering and variable window size for estimating tree height. 
Photogrammetric Engineering & Remote Sensing, 24061(0324). 
 
Puzicha, J., Buhmann, J., Rubner, Y. & Tomasi, C., 1999. Empirical evaluation of dissimilarity 
measures for color and texture. Kerkyra, s.n., pp. 1165-1172. 
Rubner, Y., Tomasi, C. & Guibas, L., 1998. A metric for distributions with applications to image 
databases. Washington DC, IEEE Computer Society, pp. 59-66. 
 
Tittmann, P., Shafii, S., Hartsough, B. & Hamann, B., 2011. Tree detection and delineation from 
LiDAR point clouds using RANSAC. Proceedings of SilviLaser. 
 
Yu, X. et al., 2011. Predicting individual tree attributes from airborne laser point clouds based 
on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 
pp. 28-37. 
 
 

255


