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Figure 1. Laser range data, the reconstructed watertight polygonal model, and its simplified medial axis.

Abstract

The power crustis a construction which takes a sample of points
from the surface of a three-dimensional object and produces a sur-
face mesh and an approximate medial axis. The approach is to first
approximate the medial axis transform (MAT) of the object. We
then use an inverse transform to produce the surface representation
from the MAT.

This idea leads to a simple algorithm with theoretical guarantees
comparable to those of other surface reconstruction and medial axis
approximation algorithms. It also comes with a guarantee that does
not depend in any way on the quality of the input point sample.Any
input gives an output surface which is the ‘watertight’ boundary of
a three-dimensional polyhedral solid: the solid described by the
approximate MAT. This unconditional guarantee makes the algo-
rithm quite robust and eliminates the polygonalization, hole-filling
or manifold extraction post-processing steps required in previous
surface reconstruction algorithms.

In this paper, we use the theory to develop a power crust im-
plementation which is indeed robust for realistic and even difficult
samples. We describe the careful design of a key subroutine which
labels parts of the MAT as inside or outside of the object, easy in
theory but non-trivial in practice. We find that we can handle areas
in which the input sampling is scanty or noisy by simply discard-
ing the unreliable parts of the MAT approximation. We demon-
strate good empirical results on inputs including models with sharp
corners, sparse and unevenly distributed point samples, holes, and
noise, both natural and synthetic.
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We also demonstrate some simple extensions: intentionally leav-
ing holes where there is no data, producing approximate offset sur-
faces, and simplifying the approximate MAT in a principled way to
preserve stable features.

1 Introduction

Surface reconstruction is increasingly important in geometric mod-
eling for generating surfaces from data points captured from real
objects, often by laser range scanners but also by hand-held digitiz-
ers, computer vision techniques, edge detection from medical im-
ages, or other technologies. Industrial applications include reverse
engineering, product design and the construction of personalized
medical appliances.

The medial axis transform, or MAT, is a skeletal shape represen-
tation which has been proposed as a tool for various applications in
shape recognition and manipulation. It represents a solid by the set
of maximal balls completely contained in the interior, rather than
by the set of points on the boundary (see Figure 2a). Computing
the exact MAT, given a surface representation, is difficult, but a
simplified approximate MAT is, in any case, often more useful.

The power crustalgorithm constructs piecewise-linear approx-
imations to both the object surface and the MAT given an input
point sampleSfrom the object surface. The algorithm is to first use
S to approximate the MAT, and then apply aninverse transformto
the MAT to produce a piecewise-linear surface approximation. The
main tools we use are theVoronoi diagramand a convenient kind
of weighted Voronoi diagram called thepower diagram; these are
defined in Section 2.

A two-dimensional version of the algorithm is shown in Figure 2.
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Figure 2. Two-dimensional example of power crust construction. a) An object with its

medial axis; one maximal interior ball is shown. b) The Voronoi diagram ofS, with the

Voronoi ball surrounding one pole shown. In 2D, we can select all Voronoi vertices as

poles, but not in 3D. c) The inner and outer polar balls. Outer polar balls with centers

at infinity degenerate to halfspaces on the convex hull. d) The power diagram cells

of the poles, labeled inner and outer. e) The power crust and the power shape of its

interior solid.

The MAT is approximated by a subsetV of the Voronoi vertices of
S, called thepoles, which (whereS is a good sample) lie near the
medial axis. The balls surrounding the poles and touching the near-
est samples are thepolar balls. The polar balls approximate maxi-
mal balls contained in the interior or exterior ofF ; the radii of the
polar balls define weights on the poles. We approximate the inverse
transform using thepower diagramof the set of weighted poles
which, like the usual Voronoi diagram, divides space into polyhe-
dral cells. We label a subset of the power diagram cells as repre-
senting the interior of the object. The subset of the two-dimensional
polygonal faces of the power diagram which separate these inner
cells from the outer cells forms our output surface, thepower crust.
We connect the inner poles according to the connectivity of their
power diagram cells, forming a simplicial complex approximating
the interior medial axis, which we call thepower shape.

The Voronoi diagram is computationally expensive. For the
billion point sets collected by long-term projects like the Digital
Michelangelo Project [35] or the IBM digitization of Michelan-
gelo’s Pietá [8], computing the Voronoi diagram with current codes
is not feasible. Codes exist, however, that can handle the hundred
thousand or few million points of many industrial applications.

The advantage of using the Voronoi diagram is that it produces

global information about the shape of the object and the distance
function induced by its surface on IR3. The approximate MAT
represents this information. Besides enabling later applications, it
also simplifies the surface reconstruction process: onany input, the
power crust is the ‘watertight’ boundary of the three-dimensional
solid described by the approximate MAT, with no clean-up post-
processing steps required.

Other theoretical guarantees on the quality of the output depend
on assumptions about the object surface and the density of the input
sample. In a companion paper [3], we prove theoretical guarantees
for the power crust which are similar to those of previous Voronoi-
diagram based surface reconstruction algorithms, under similar as-
sumptions. We also give topological and geometric guarantees on
the quality of the reconstructed medial axis, similar to those of [23].

Such theoretical results, of course, do not necessarily imply that
an algorithm is practical. Real input data sets rarely meet any pre-
cise sampling requirement everywhere. Some of the ideas that are
important in the development of the theory do prove to be useful,
however, in developing a robust implementation.

One important area in which the implementation needs to be well
designed is in the crucial subroutine which labels each cell in the
power diagram as inside or outside of the object. We perform this
labeling by traversing the cell structure. While in theory any traver-
sal suffices, in practice it may not be clear how labels should be
propagated in places where the sampling assumptions fail. We use
lemmas about the local geometry to define a weighting heuristic for
propagating the labels in which we have the most confidence first.

Another use of the theoretical results is to detect where the MAT
approximation is unreliable. We find that simply discarding unreli-
able poles and using the remaining part of the MAT approximation
gives reasonable outputs. This idea is useful in two contexts: when
there is noise in the data, and for models with sharp corners. Sharp
corners are a problem for all surface reconstruction algorithms, but
reconstructing the sharp corners of mechanical parts is an important
problem with industrial applications. Noise arises in laser range
scanner input, mostly when several scans are combined, and small
errors in alignment produce point samples that lie near, but not on,
the surface.

Finally, we demonstrate three simple but useful extensions of
the algorithm. First, we consider intentionally leaving holes in the
output surface models where there are large holes in the input data,
for instance at the bottom of the hand in Figure 1. We characterize
large holes by examining the polar balls corresponding to the cells
on either side of the power diagram face.

Second, we construct approximate offset surfaces. The exact off-
set surface, like the exact MAT, is difficult to compute. But an
approximate offset surface sometimes suffices, for instance when
constructing the inside surface of a mold based on a model of the
outside surface. We get an approximate offset surface just by in-
creasing the radius of every outer polar ball, and decreasing the
radius of every inner polar ball, by a constant.

Third, we demonstrate a well-founded simplification heuristic
for the approximate medial axis. The medial axis of a complicated
object is not really useful for applications like shape decomposition
or feature recognition, since the medial axis is ‘unstable’ - small
perturbations of the surface can produce large changes in the true
medial axis. We produce simplified approximations that are demon-
strably impervious to noise.

Related work

There is a large body of related work, concerning surface recon-
struction, the three-dimensional MAT, MAT simplification and our
main tool, the Voronoi diagram.

Surface reconstruction: Earlier in computer graphics, Usel-
ton [48] and others investigated the problem of surface reconstruc-



tion. Hoppe et al. [32] gave a clean abstraction of the reconstruction
problem. Their solution approximated the signed distance function
induced by the surfaceF , and constructed the output surface as a
polygonal approximation of the zero-set of this function. Curless
and Levoy [18] gave a really effective algorithm which represents
the signed distance function on a voxel grid. Their algorithm is de-
signed for very large data sets, and is used in the Digital Michelan-
gelo Project [35]. The introduced a post-processing step for hole-
filling.

Amenta, Bern and Kamvysselis [2] first gave an algorithm with
theoretical guarantees, and also defined the poles. Our theoreti-
cal results [3] are comparable to theirs, and to those in a later and
simpler version due to Amenta,Choi,Dey and Leekha [4]. Tamal
Dey [19] reports that he has extended this algorithm to handle ob-
jects with sharp corners. All these algorithms have the drawback
that they produce a collection of triangles, from which a triangu-
lated manifold must be extracted in post-processing.

Our algorithm is most similar to an old algorithm of Boisson-
nat [11], which labels a subset of the Delaunay tetrahedra ofS as
the interior of the solid; we eliminate some ambiguities in that la-
beling algorithm by working with the power diagram of the poles.
Boissonnat and Cazals [12] have recently given an algorithm which
reconstructs a smooth surface related to the Sibson interpolant of
the sample points, also with theoretical guarantees.

Another algorithm based on the Delaunay triangulation is theα-
shape algorithm of Edelsbrunner and M¨ucke [20]. We use many
of the ideas developed in the context ofα-shapes, although in a
different way. In particular, our inverse transform algorithm and the
definition of the power shape is based on the theory ofweightedα-
shapes [21]. A drawback ofα-shapes for surface reconstruction is
that when the sampling is non-uniform it is difficult and sometimes
impossible to chooseα so as to balance hole-filling against loss of
detail.

Bernardini et al. [8] have developed a system based, conceptu-
ally, on α-shapes, whileavoiding the computation of the Voronoi
diagram. This allows them to reconstruct larger models. It would
be very interesting to combine their ideas with the new geometric
definitions we use here, which avoid the drawbacks ofα-shapes.
Another tracing algorithm [27] runs quickly but is unnecessarily
sensitive to the distribution of the samples.

Medial axis construction and approximation:
The three-dimensional MAT has been proposed as a tool for var-

ious applications [30, 45] including object decomposition for mesh
generation [41, 42], bounding objects for collision detection [34],
CAD [10], shape morphing and animation [40, 46], and motion
planning [15, 28, 51].

Computing the exact three-dimensional MAT directly is difficult
because of numerical issues. Hoffman [31] gave an early algorithm
for the MAT of CSG objects. Finding the exact MAT of polyhe-
dra given by their boundaries has only recently been demonstrated
by Culver, Keyser and Manocha [17] using a tracing algorithm; see
also [43, 36]. But computing the exact MAT of a complicated object
model captured from real-world data is probably overkill; a simpli-
fied approximate MAT suffices for applications such as computing
bounding volumes, decomposing solids, morphing, or motion plan-
ning.

The idea of approximating the three-dimensional MAT using a
subset of the Voronoi vertices of a sample of points on the object
surface is well-known [5, 13, 34, 41, 46, 47], and the connection
to Voronoi-based surface reconstruction methods has been notes as
well [2, 6, 26]. When the object boundary is given as well as the
point sample, it can be used to discard spurious parts of the Voronoi
diagram and to refine the approximation [47]. Our use of the power
diagram, and the resulting definitions of the power crust and the
power shape are new.

Another approach is to approximate the MAT using an octree

[24, 50]. Etzion proves that for polyhedra this method converges
in the limit to the true MAT, and uses an approximate, but com-
binatorially correct, MAT to construct an exact MAT for simple
objects [23].

MAT simplification: The MAT is ‘unstable’ - small perturbations
in the object boundary can induce large features in the medial axis.
As a result, bumpy objects like the shell in Figure 18 have medial
axes which are too complicated to be very useful.

This common observation is somewhat misleading, however.
Partsof the medial axis are unstable, and other parts, corresponding
to significant object features impervious to noise, are quite stable.
Several researchers have noted, some by analyzing the action of
smoothing functions on the boundary [7], some by considering the
effect of noise on the medial axis [5, 6], some by studying the ef-
fects of sampling on MAT approximation [3, 12], and still others by
experience [45, 38, 37], that the maximum solid angleγ formed by
the vectors connecting a medial axis pointm to its closest surface
points is related to the stability ofm, as is the radius of the maximal
ball centered atm. These criteria have been used for simplification
of three-dimensional medial axes [5, 45]. We use a very simple for-
mulation of this idea to eliminate parts of the medial axis induced
by features below a given noise threshold.

Voronoi diagram computation: The applicability of the power
crust depends on the feasibility of computing the three-dimensional
Voronoi diagram, or more specifically its dual the Delaunay trian-
gulation, so we briefly review the state of the art. Ten years ago
there were no robust three dimensional Delaunay codes, and simple
randomized theoretical algorithms [16, 29] were just being devel-
oped. The first program based on these methods,qhull, uses float-
ing point arithmetic with user-specified tolerances for robustness.
Somewhat later programs such ashull, the free open-source code
which we use, employ adaptive precision exact arithmetic, evaluat-
ing geometric predicates only to the precision required to produce
a combinatorially correct output. In our experience,hull is about
four times slower thanqhull, but it has the advantage of being
completely robust.
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Figure 3. The time required forhull to compute the three-dimensional Delaunay tri-

angulation of a set of random points distributed uniformly on the surface of an ellipsoid

scales linearly. Wall-clock time was measured on a 400MHz Sun with 1G memory.

Efficient adaptive precision exact arithmetic is an active research
area, and the next generation of 3D Delaunay codes, now in the
late stages of development, are reported to be about an order of
magnitude faster thanhull. Jonathan Shewchuk [44], at Berkeley,
has computed the Delaunay triangulation of 20 million points, and
can produce the Delaunay triangulation of 10,000 samples from an
object surface at 1.8 seconds on a Pentium II. At INRIA, Boissonnat
and Cazals [12] report that Devillers’ 3D Delaunay triangulation
code handles a comparable 500,000 randomly distributed points per



minute (performance is slightly worse for points distributed on a
surface).

Scalability is also an important factor. Theworst-casecomplex-
ity of a three-dimensional Delaunay triangulation isO(n2), but in
general only contrived examples achieve this bound. Experience
suggests that many real instances require linear time. To illustrate
this bit of ‘folklore’, we computed the Delaunay triangulation of
different numbers of points distributed on an ellipsoid. The running
times are shown in Figure 3.

Alternatively, one could use an approximate Voronoi diagram
computation based on space subdivision (eg. [23],[50]) instead of
the exact Voronoi diagram. This approach might be capable of han-
dling larger inputs. We decided to begin by developing an imple-
mentation of the exact algorithm, however, since it is actually eas-
ier using current Delaunay codes, and it demonstrates the strengths
and weaknesses inherent in the power crust construction rather than
possible artifacts of the approximation method.

2 Geometric definitions

Let F be the boundary of a three-dimensional object. To avoid hav-
ing to deal with points at infinity, we assume thatF is contained in
a bounded open regionQ. F dividesQ into interior andexterior
solids.

2.1 Medial axis transform

We represent a ballB= Bc;ρ � Q by its centerc and radiusρ. We
sayB is empty(with respect toF) if the interior of B contains no
point of F . A medial ball is a maximal empty ball; that is, it is
completely contained in no other empty ball. The center of a medial
ball is either a point with more than one closest point onF , or a
center of curvature ofF .

Definition: The medial axis transformof surfaceF is the set of
medial balls. The centers of the medial balls form themedial axis
of F ; the MAT includes the radii as well.

We could equivalently define the medial axis as the closure of the
set of all points with more than one closest point onF . Notice that
either way the medial axis includes both a part inside ofF and a
part outside ofF .

The medial axis of a three-dimensional solid is generally a
(non-regular) two-dimensional surface, but it accurately reflects the
topology of the solid in that it has the same connected components,
loops, and so on. Formally, the medial axes of a solid ishomotopy
equivalentto the solid [14].

2.2 Voronoi diagram

The Voronoi diagram of a setS�Q of sample points is the subdivi-
sion ofQ into cells, each cell consisting of the pointsx2Q closest
to a particular input points2 S (see Figure 2b). Each Voronoi cell
is a convex polyhedron, and the vertices of these polyhedra are the
Voronoi vertices. A Voronoi vertexv in IR3 is shared by the cells
of at least four samples. TheVoronoi ball centered atv has these
samples on its boundary, and no samples in its interior. Notice the
analogy to the maximal empty balls in the definition of the medial
axis: a Voronoi ball is a maximal empty ball with respect toS.

The well-known idea of approximating the medial axis with the
Voronoi vertices is motivated by this analogy. In fact the vertices of
the two-dimensional Voronoi diagram approach the medial axis as
the sampling density goes to infinity, as expected. In three dimen-
sions, however, the Voronoi diagram can, and usually does, contain
vertices very close to the surface and far from the medial axis, even
when F is smooth and the sampling is noise-free and arbitrarily

dense. This is because four sample points close together onF can
determine a Voronoi ball whose center lies very near, or right on,F
itself [1, 2]. Such a Voronoi vertex is dual to a very small flat De-
launay tetrahedron. In two dimensions, in contrast, a Voronoi circle
determined by three points close together on a curve has to lie far
from the curve and near the medial axis.

2.3 Power diagram

Figure 4. Thepower diagramof four weighted points. A pointc with weight ρ2 is

represented by a ball centered atc with radiusρ.

Our plan is to use the Voronoi diagram to approximate the me-
dial axis with a finite set of balls. Edelsbrunner [21] showed that
finite sets of balls are intimately related topower diagrams, a kind
of weighted Voronoi diagram. We can think of a ballBc;ρ as a
point c with weight ρ2. Thepower distancebetween an ordinary
unweighted pointx in IR3 andBc;ρ is

dpow(x;Bc;ρ) = d2(c;x)�ρ2

where functiond represents the usual Euclidean distance. Whenx
is inside the ballBc;ρ, dpow is negative, and whenx is outside,dpow
is positive.

We can usedpow to define a weighted Voronoi diagram, the
power diagram. The power diagram is the subdivision ofQ into
cells, each cell consisting of the pointsx2Q closest, in power dis-
tance, to a particular input pointv 2 V. Figure 4 shows a two-
dimensional example.

The advantage of usingdpow rather than some more natural
weighted distance function is that the power diagram has polyhe-
dral cells and can be computed by essentially the same algorithm
as the usual Voronoi diagram. As in Figure 4, the face of the power
diagram separating the cells of two intersecting balls is a subset of
the plane in which the boundaries of the two balls intersect.

3 Constructions

Our constructions of the poles, the power crust and the power shape
are based on special properties of the Voronoi diagram of a set of
points densely distributed on an object surface. To prove theoret-
ical guarantees about the quality of our algorithm requires some
assumption about the quality of the input sampleSwith respect to
the surfaceF ; in practice, we want to implement the algorithm so
as to give good results even when this assumption is not met.

3.1 Sampling assumption

We assume, for the analysis, that surfaceF is smooth and without
boundary. Our assumption about the density of sampleS is taken
from [1, 2]:



Definition: TheLocal Feature Sizefunction,LFS(x), is the min-
imum Euclidean distance from pointx to any point of the medial
axis. S is an r-samplefrom F when the distance from any point
x2 F to the nearest sample is at mostrLFS(x).

HereLFS(x) serves as a local measure of “level of detail” onF ;
when the medial axis is close to the surface either the curvature is
high or some other patch of the surface is nearby. Note that whenF
is smooth, the distance from any point to the medial axis is strictly
greater than zero. At a sharp corner ofF the medial axis meets the
surface, and according to our definition the sampling density would
have to be infinite.

3.2 Poles

Where the sampling is dense, the Voronoi cell of every samples
is long and skinny and perpendicular to the surface. This hap-
pens because in directions tangent to the surface the Voronoi cell
is bounded by the proximity of other samples on the same local
patch of surface; the reader may wish to refer to Figure 2b for some
intuition. We quantify this idea in Lemma 1, below. The Voronoi
cell of s extends perpendicularly away from the surface. It cannot
extend much farther than the medial axis, because theres ceases
to be the closest surface point and samples on some other patch of
surface will be closer. Thus, the Voronoi vertices at the two ends of
the long, skinny Voronoi cell should lie near the medial axis.

This motivates the selection of thepoles[1, 2] as an approxima-
tion of the medial axis:

Definition: The polesof a samples2 S are the farthest vertex
of its Voronoi cell in the interior ofF and the farthest vertex of its
Voronoi cell on the exterior ofF . LetV be the set of poles, for all
s2 S.

WhenS is a dense sample, the setV of poles excludes Voronoi ver-
tices close toF and forms a good estimate of the medial axis, albeit
as a discrete set of points. Note also that the vectors froms to its
poles approximate the surface normals ats.

Figure 5. A set of inner polar balls and the resulting three-dimensional power crust.

The opening at the top of the foot was detected because large inner polar balls protrude

out of the model, and intentionally left as a hole; see Section 7.1.

To avoid dealing with infinity, we add a setZ of eight points, the
vertices of a large box surroundingF , to S, so that both poles of
each sample inS are bounded. In our implementation, this box is
five times larger than the minimum bounding box ofS.

Each polev is the center of a Voronoi ball, which we shall call
its polar ball. The set of polar balls for allv2V gives our approx-
imation of the medial axis transform: the MAT is an infinite set of
balls, and the approximation is the similar finite set of polar balls.

The polar balls corresponding to poles inside ofF areinner polar
balls; outer polar ballsare defined analogously. The union of the
inner polar balls forms a good approximation of the object bounded
by F (we make this quite formal in [3]), and similarly the union of

outer polar balls forms a good approximation of the complement of
the object; see Figure 5 for an example.

3.3 Power crust

Now we consider the power diagram of the polar balls, which sub-
divides IR3 into a set of cells.

Definition: The power crustis the boundary between the power
diagram cells belonging to inner poles and power diagram cells be-
longing to outer poles.

Since most points of the interior solid bounded byF are inside the
union of the inner polar balls, and outside of the union of outer po-
lar balls, they belong to cells of the power diagram corresponding
to inner poles. Similarly most points in the exterior solid belong to
cells corresponding to outer poles.

A two-dimensional face of the power crust separates cells corre-
sponding to an inner and an outer pole. The two polar balls should
intersect shallowly, if at all, since the inner polar ball is mostly in-
side the object and the outer polar ball is mostly outside (this is
formalized in Lemma 3, below). So the power crust face lies near
the boundaries of both unions of balls, and hence near the boundary
F of the object. A theorem along these lines is given in [3]. The
power crust actually interpolates the input samples inS, which lie
on the surface of the union of the inner, and of the outer, polar balls.

3.4 Power shape

The definition of the power crust implies a way to connect the poles
to form a topologically correct [3] approximation of the medial axis
as a simplicial complexM, which we call thepower shape. The ver-
tices ofM are the poles themselves. Inner poles whose cells are ad-
jacent in the power diagram are connected by simplices inM, as are
adjacent outer poles. The power shape is a subset of theweighted
Delaunay triangulation( also known as theregular triangulation)
dual to the power diagram, just as the Delaunay triangulation is dual
to the usual unweighted Voronoi diagram. While the medial axis of
F is a two-dimensional surface, the power shape generally contains
some very flat, but solid, tetrahedra.

4 Theory

The analysis of the power crust is given in the companion paper [3].
Here we state some key lemmas from the analysis which turn out
to be useful in developing an implementation which is robust when
the sampling assumptions do not hold.

β

Figure 6. The Voronoi cell of samples is long and skinny and perpendicular to the

surface. Lemma 1 states that if the vector froms to a pointx in its Voronoi cell is at a

large angleβ to the surface normal,x must be close tos.

One key idea driving the algorithm is that whenS is sufficiently
dense, the Voronoi cell of any samples2 S is long and skinny and
perpendicular to the surfaceF . The ‘skinnyness’ is formalized in
the following lemma by saying that any pointx in the Voronoi cell
such that the angleβ between vectorsx and the surface normal is
large must be close tos; see Figure 6. For convenience, we write



r 0 = r=(1� r) = O(r), wherer is the constant describing the dis-
tance between samples in the sampling assumption.

Lemma 1. ([3], Corollary 12) Let S be an r-sample from a
smooth surfaceF , for small enoughr. For anyx such thatβ >
arcsinr 0, we haved(s;x)� κLFS(s) with

κ =
r 0

sin(β�arcsinr 0)

The idea that the Voronoi cell has to be long is formalized simply
as follows.

Lemma 2. ([3], page 16)The distance to either pole of a sample
s is at leastLFS(s).

α

Figure 7. An inner and an outer polar ball can intersect shallowly, if at all, because the

dense set of samples separates them. Angleα measures the depth of the intersection.

Another key idea is that whenS is anr-sample, for small enough
r, any inner polar ball is almost entirely contained in the interior
solid, and any outer polar ball is almost entirely exterior. The fol-
lowing lemma formalizes this idea by saying that any inner polar
ball and any outer polar ball can only intersect shallowly, as in Fig-
ure 7.

Lemma 3. ([3], Lemma 5)Let S be anr-sample from a smooth
surfaceF , for small enoughr. The angleα at which an inner and
an outer polar ball can intersect isO(r).

5 Algorithm

The basic algorithm is a straightforward reflection of our strategy:
first estimate the MAT, and then use it to define the surface approx-
imation.

1. Compute the Voronoi diagram of the sample pointsS.
2. For each sample point, compute its poles.
3. Compute the power diagram of the poles.
4. Label each pole either inside or outside.
5. Output the power diagram faces separating the cells

of inside and outside poles as the power crust.
6. Output the regular triangulation faces connecting

inside poles as the power shape.

Given a good program for Voronoi diagram and power diagram,
only Steps 2 and 4 require some elaboration.

5.1 Selecting poles

In Step 1, we compute the Voronoi diagram of the sample points
S, augmented with the eight verticesZ of the surrounding box. For
each sample points2 S, we find the farthest Voronoi vertex,p1,
which is the first pole ofs. We then find the farthest Voronoi vertex
p2 such that the vectors~s; p1 and ~s; p2 have negative dot product.
WhenF is an r-sample for small enoughr, p1 and p2 are indeed
the farthest Voronoi vertices ofs on either side ofF [1]. The cor-
rectness of this procedure depends on Lemma 1, and it breaks down
when the assumption of the Lemma fails.

5.2 Labeling algorithm

We first compute the power diagram of all the polar balls, and then
label the poles as inner or outer by examining the power diagram.
We define a natural graph on the power diagram cells: two cells
are connected in the graph if they share a two-dimensional face. In
addition, two cells are connected if they belong to the two poles of
the same samples. We traverse this graph, labeling polesinner
or outer as we go. WhenS is well-sampled the simple algorithm
below can be proved correct, using two facts. The first is Lemma 3,
that an inner polar ball and an outer polar ball can only intersect
shallowly. The second is that one of the two poles of every sample
is an inner pole and the other is an outer pole.

The naive traversal algorithm begins by labeling poles adjacent
to points forming the bounding boxZ asouter and then propa-
gating labels as follows. For any polep labeledouter, if it has
an unlabeled neighborq such that the polar balls ofp andq inter-
sect deeply (that is, the angleα in Figure 7 is large), we giveq
labelouter as well. And for each samples for which p is a pole
(there might be more than one), we give the other pole ofs the label
inner. We propagate the labels of inner poles similarly: deeply
intersecting neighbors get labeledinner, and the opposite pole of
the same sample gets labeledouter.

But because the sampling assumption is not met everywhere, a
naive implementation of this graph-traversal algorithm could fail
dramatically - once an error is made, it propagates. Instead, we
choose which labels to propagate using the following greedy heuris-
tic. We keep track of the “belief” that an unlabeled ball is inner or
outer, based on the labels already assigned, and we label and prop-
agate the labels of the poles for which we are most confident first.

Specifically, each ball keeps track of two values,in and out,
which lie between 0 (“unknown”) and 1 (“certain”). We start by
giving all poles far away from the bounding box of the original
samples anout value of 1 and anin value of zero, and initialize all
other balls’in=out values to zero.

We put all the unlabeled poles in a priority queue, with the prior-
ity determined by thein andout values. If only one of thein or out
values is non-zero, we use the non-zero value as the priority. If both
in andout values are non-zero, it means that the pole is “confused”;
we would like to label such poles as late in the process as possible,
so we give them the priorityjin�outj �1, which is between zero
and�1.

The algorithm is then to repeatedly remove the top element of
the queue and label itin or out, whichever has the bigger value. We
then propagate the newly assigned label to thein andout values of
the remaining unlabeled poles, changing their priority in the queue.

We use the local geometry to weight the effect of a newly la-
beled pole on its neighbors. For a samples of which p is the pole,
let β denote the angle formed byp,s and the other poleq of s, so
that we haveπ=2� β � π. According to Lemma 1, the denser the
sampling is, as measured by the parameterr, the largerβ should
be. So the biggerβ is, the more “likely” is it thatq should get the
opposite label fromp. We use 0� �cos(β) � 1 as the weight of
the connection betweenp andq.

According to Lemma 3, two balls with different labels should
intersect shallowly, as measured by angleα in Figure 7. So the
deeper the intersection, the more “likely”q will have the same label
asp. We set the weight of the connection betweenp andq to 0�
�cos(α)� 1.

We summarize the labeling algorithm with the pseudo-code in
Figure 8. Note that once a label is assigned, it is never changed.
An algorithm which toggles labels to find a locally optimal labeling
might be better, but we have not found it necessary.



Label Poles()f
For all polesp,

initialize in(p) = out(p) = 0.
insertp in the queue.

For each polep adjacent to points ofZ,
out(p) = 1.
UpdatePriority(p)

while (queue is not empty)f
Remove the top elementp of the priority queue
If in(p)> out(p), label(p) = in, tmp(p) = in(p)
Otherwise,label(p) = out, tmp(p) = out(p)
For each samples of which p is the pole,

let q be the other pole ofs,
opp(label(p))(q) = max(tmp(p)�wpq;opp(label(p))(q))

/* opp(in) = out, opp(out) = in, wpq =�cos(6 psq)*/
UpdatePriority(q)

For each deeply intersecting neighboring polesq,
(label(p))(q) = max(tmp(p)�wpq;(label(p))(q))

/* wpq =�cos(α), α is angle between ballsp andq*/
UpdatePriority(q)

g

g

UpdatePriority(polep) f
If in(p)> 0 andout(p)> 0, pri(p) = jin(p)�out(p)j�1.
Otherwise,pri(p) = max(in(p);out(p)).

g

Figure 8. The labeling algorithm we implemented. This is a special case of the naive

labeling algorithm, which is provably correct whenSandF meet the sampling assump-

tions.

6 Omitting poles

The quality of the power crust depends on how well polar balls ap-
proximate the MAT. When Lemma 1 fails, becauseF is not smooth
or becauseS is too sparse, our procedure for choosing poles breaks
down and the MAT approximation suffers. Detecting the failure
of Lemma 1 and omitting the poles of badly-shaped Voronoi cells
leaves us with an approximation of the portion of the MAT which
can be estimated from the input sample. We find empirically that
computing the power crust from this partial MAT as usual produces
good models.

6.1 Noise

One situation in which Lemma 1 fails is when there is significant
noise in the data, comparable to or greater than the distance between
samples on the surface. As on the left in Figure 9, some Voronoi
cells are roughly round, and others extend a long way perpendicu-
larly on one side of the surface but not on the other. This kind of
noise is typical when several laser range scans are combined; while
the individual scans are pretty clean, alignment errors between the
scans produce a scattering of samples near the surface.

Instead of just assuming that Lemma 1 is always satisfied, our
implementation tests the Voronoi cell of every samples2 S. Given
a user-defined estimateλ of r 0 we get a lower bound onLFS(s)
by evaluating the following ‘skinnyness’ formula at every Voronoi
vertexx:

LFS(s)� min
vertexx

d(s;x)sin(β�λ)
λ

This is derived from Lemma 1, estimating arcsinλ by λ for effi-
ciency, sinceλ is small.

According to Lemma 2, for a polep, d(s; p) � LFS(s). If the
distance from a pole tosviolates this lower bound, the Voronoi cell
is misshapen on that side of the surface, and we discard the pole.
As on the right in Figure 9, the resulting power crust lies between

the remaining inner and outer polar balls. In this case the power
crust lies near, but does not necessarily contain, the samples.

Figure 9. When the input sample lies near, but not on, the surface, not all Voronoi cells

are well shaped. We take a pole from the Voronoi cell of samplesonly if the cell is well

shaped and the pole is far froms. The resulting sets of polar balls roughly approximate

the MAT.

While we get watertight models from the power crust in the
presence of this characteristic noise in laser range data, as in Fig-
ures 1,18, and 19, and even with added Gaussian noise as in Fig-
ure 10, clearly we are not producing theoptimal reconstructions
based on all the data.

Figure 10. To demonstrate robustness in the presence of noise, we added Gaussian

noise to laser range scanner data. The resulting model is still watertight.

6.2 Sharp corners

Near a sharp corner, the poles on the inside of the corner will fail
the above ‘skinnyness’ test, while those on the outside will pass.
But discarding only the poles on the inside of the corner causes the
power crust to collapse and round off the corner.

Instead, if the user indicates that the model contains sharp cor-
ners, we discardboth p1 andp2 for any sample that fails the ‘skin-
nyness’ test. Nearby power crust faces extend into the region which
is left uncovered by the discarded poles, extending adjacent smooth
surfaces linearly into the empty region, until they meet at a sharp
angle. Figure 12 shows a three-dimensional example of this be-
havior. Notice that a sharp edge can be reconstructed nicely even
though there are no sample points on the edge itself.

Sharp cornered models of mechanical parts can be produced
from fairly sparse samples, such as the Renault steering knuckle
data shown in Figure 13, which was reconstructed from only 6002
points.



Figure 11. The inner poles of the samples near a sharp corner do not pass the ‘skinny-

ness’ test. But just discarding the inner poles collapses the power crust at the corner.

Discarding both poles of the badly-shaped Voronoi cells allows the power crust faces

formed in nearby well-sampled regions to extend into the region of uncertainty and

meet at a sharp corner.

Figure 12. Sharp corners with no nearby features can be reconstructed without any

samples on the edge itself. The corner between the cylinder and the top of the cube is

not resolved as well because the polar balls on both sides of the surface are not very

large compared to the sampling density.

Notice that when we try to resolve sharp corners on a noisy input,
both poles of every sample could be discarded.

7 Extensions

We present a few simple extensions of our algorithm which seem to
be of practical importance.

7.1 Holes

A ‘watertight’ surface representation is desirable in some contexts,
for instance as input to a layered manufacturing system or for CSG.
But we would also like the flexibility to produce surfaces which
are not closed manifolds. In general, we would like to be able to
fill in small holes in the data, but not cover over large ones: for
instance, we might want to leave a hole at the bottom of the hand
in Figure 1, while still filling in the hard-to-scan gaps between the
fingers. Big holes in the data need not lie on the convex hull or even
on any silhouette of the object; for instance the hole inside the shell
in Figure 18 where the scanner could not reach the visible surface.

Figure 13. All the holes, and even the small notch at the end of the arm, are correct.

This data was an example of something beyond the capabilities of the algorithm of [2]

We characterize holes using the idea behind Lemma 3: on well-
sampled regions of the surface, inner and outer polar balls cannot
intersect deeply. At a hole, inner polar balls can bulge out of the ob-
ject, as in Figure 5, and outer polar balls can bulge into the interior.
A power crust face formed by a deeply intersecting pair of polar
balls, one inner and one outer, fills in the hole in the surface. When
the intersecting pair of balls is large (as defined by a user-specified
parameter), we can choose to omit the face from the power crust.
Examples are the sea shell in Figure 18 and the foot in Figure 5.

7.2 Approximate offset surfaces

An ε-offset surfacefrom F is a surfaceF 0, formed by the pointsx
such that the distance fromx to the nearest point onF is exactlyε.
There is an inside and an outside offset surface fromF for everyε.
In terms of the MAT, the inside offset surface is formed by adding
ε to the radius of every ball in the exterior MAT, and subtractingε
from every ball in the interior MAT; the outer offset surface can be
defined analogously.

Computing an exact offset surface is difficult, in part because
it can differ topologically fromF . WhenF is represented by an
approximate MAT, we can construct an approximate inside offset
surface ofP by increasing the radius of every outer polar ball byε
and decreasing the radius of every inner polar ball byε, and then
computing the power crust as usual. Since the power crust is always
the watertight boundary of a solid, the output cannot suffer from
cracks or self-intersections. Figure 14 shows an example.

7.3 Medial axis simplification

The power shape accurately reflects the topology of the power crust,
and it is geometrically correct at least in the sense that an accu-
rate reconstruction of the surface can be found from the (inner and
outer) power shape by the inverse transform. But the power shape,
like the medial axis, of a natural three-dimensional object tends to
be complicated. This is because small bumps on the surface pro-
duce large “spikes” in the medial axis. Another way to say this is
that introducing small perturbations in the surface introduces large
features in the medial axis. A simplification of the medial axis,
preserving stable shape features but removing those corresponding
to surface details, can be more useful in some applications such as
feature recognition or shape decomposition.



Figure 14. An approximate inner offset surface. The transparent yellow surface is the

original. Like the power crust, the offset surface is always the watertight boundary of

a solid.

As described in Section 1, several groups of researchers have
independently given similar characterizations of the stable parts of
the medial axis. The method we adopt is similar to that used in [6],
but a little simpler.

Our approach is to assume that the position of each surface point
is perturbed from its “true position” by at most distanceε, which
represents the noise level. We classify a pointp of the medial axis
as stable or unstable with respect toε by examining the medial ball
B centered atp. If all the points at whichB touches the surface
are within distanceε of each other, then it is possible that their
“true positions” coincide, causingB to disappear; in this casep is
unstable. Certainlyp is unstable when the diameter ofB is less than
ε, but notice thatp might also be unstable whenB is quite large, as
in Figure 15, if the maximum angleγ spanned by points of contact
with the surface is small.

An alternative would be to definep as unstable whenγ is small,
regardless of the diameter ofB. This is appealing in that it is a scale
invariant function of shape, but it is not very useful for removing
the effects of noise; small surface perturbations do indeed introduce
balls with small diameter and large values ofγ, like the one on the
right in Figure 15.

γ

Figure 15. When the samples corresponding to a point of the medial axis are all close

together, either the medial ball is small or the angleγ is small. Either way the absolute

size of the surface feature represented by the ball is small.

We idea leads to the following simple procedure to eliminate
unstable polar balls. For each polep let Sp be the set of sample
points on the surface of its polar ball. Letdp be the maximum
distance between any two samples inSp. We removep if dp � ε.

Even after the removal of unstable features, the power shape can
still be quite redundant, sinceSmight be arbitrarily dense irrespec-
tive of the noise level. We try to reduce this redundancy by remov-

ing poles whenever we can guarantee that the accuracy of the union
of the remaining polar balls as a representation of the object shape
is preserved, again to within a user-specified parameterδ, usually
less thanε.

We use a greedy method to eliminate redundant polar balls. We
sort the polar balls by radius and examine them in order from largest
to the smallest. For each ballBc;ρ we consider all neighboring balls
Bp;µ in the power shape such thatρ > µ. We removeBp;µ if Bp;µ is
contained in the slightly larger ballBc;ρ+δ . If Bc;µ is removed, we
recursively consider removing its neighbors as well.

After polar balls have been eliminated by simplification and re-
dundancy checking, we recompute the power diagram of the re-
maining balls, retaining the originalinner andouter labels, and
extract the new power shape.

Figure 16. Above, the power shape of the original hand model and its simplifica-

tion with 352,985 and 7805 faces respectively. Below, the power shape of the hand

model with added Gaussian noise and its simplification, with 438,855 and 7003 faces

respectively. Notice that the two simplified models are very similar; this is because

the simplification procedure removes unstable features which might be due to small

surface perturbations.

To demonstrate the stability of the parts of the power shape left
after simplification we simplified the power shapes of the hand data
and the hand data with added Gaussian noise from Figure 10, using
the same parametersε andδ. Figure 16 shows the results. Notice
that the simplified power shape of the noisy model is visually al-
most identical to that of the clean model; both represent the stable
parts of the medial axis, and sketch out the general shape.

8 Implementation

Our implementation uses robust computational geometry software.
We computed 3D Delaunay triangulation and weighted Delaunay
triangulation using Ken Clarkson’shull, an open-source exact-
arithmetic convex hull program.

To compute the power diagram usinghull, we used a well-
known transformation from weighted Delaunay triangulation to
convex hull (see eg. [22]), which required a slight modification
of the code.



r S is anr�samplefor F

user controllable parameters
λ user estimate ofr 0

α deep intersection angle between polar balls
ε for removing unstable poles
δ for removing redundant poles

Figure 17. Table of parameters

The output ofhull is a set of Delaunay tetrahedra, and we need
Voronoi vertices and power diagram vertices as well. Computing
these robustly is difficult since, for instance, when a tetrahedron is
nearly flat the circumcenter computation used for the Voronoi ver-
tex is inherently unstable. We used functions based on Jonathan
Shewchuk’s robust adaptive precision determinant subroutines. For
the Voronoi vertex computations, the input points were given with
fixed precision, and as a result the determinants we computed were
always either sufficiently precise or identically zero. To get the
same effect for the power diagram vertices, we rounded the loca-
tions of the poles to a fixed precision as well. This produced no
errors that we noticed.

We gave the program several user-specified parameters (see Fig-
ure 17) but found that we never needed to change the default values
for most of them. For example, the user can set the angleα at which
two balls are considered to intersect deeply; we generally left this at
a default value of arccos(�0:4). The one frequently used parameter
is the estimateλ of sample spacingr 0, which should vary depending
on the input data.

The simplification of the power shape is implemented as a sepa-
rate post-processing step.

Moderately sized inputs, eg. 30,000 samples, required about six
minutes on a 400 MHz Sun.

9 Outputs

Figure 18. A reconstruction from four different scans, 37,073 samples total. The area

in the interior, where there are no samples, is detected using the idea in Section 7.1

and intentionally left as a hole. A silhouette-based hole filling algorithm would have

trouble filling this hole properly, but our method does not (it is filled in the solid model

under the samples on the left).

We tested the power crust using both well-known models and
data we collected using a Cyberware M15 (tabletop) scanner. Al-
most all of the inputs immediately produced perfect surface recon-
structions, requiring no tweaking. Exceptions were the small holes

in the sparsely sampled steering knuckle in Figure 13, which re-
quired a careful choice ofα to optimize the labeling algorithm, and
the sharp corners on the noisy rubber stamp in Figure 19, where we
had to tuner 0 to balance the noise adaptation with the sharp corner
detection.

While any power crust output is guaranteed to be the boundary of
a solid, all our outputs wereregular solids, that is, their boundaries
are piecewise-linear manifolds. Holes in the data seem to be filled
in an appropriate and predictable way, for example the hard-to-scan
spaces between the fingers, and the end of the wrist, in Figure 1.

Figure 19. A rubber stamp model, and the imperfect laser range data (9755 points) used

to produce it. Six scans were combined, with the top sampled at a higher resolution

than the sides and bottom. Note the sharp corners on the sides, and the fill-in where

scans fail to overlap.

Power crust faces are not triangles, and although the power crust
interpolates the input samples, not all input samples are power crust
vertices and not all power crust vertices are input samples. The
shapes of the faces seem to conform to the shape of the object more
nicely than polygonal models which are constrained to have trian-
gular faces with the samples as vertices.

On the other hand, power crusts have more faces than compara-
ble triangulated surfaces. Using standard decimation techniques -
progressive mesh [33] with a quadratic error metric [25] - we can
reduce the polygon count to about 1/4 of the original with no visible
loss of detail, as in Figure 20.

Figure 20. The original club on top has 112,669 faces. The middle club with 32,000

faces is visually indistinguishable (the word “ESTEEM” on the face of the club is still

legible). The club on the bottom, with 5,000 faces, begins to show some degredation.



10 Software

The power crust and medial axis simplification software is available
at:
http://www.cs.utexas.edu/users/amenta/powercrust/welcome.html.
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