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Figure 1. Reconstruction of a space-time surfateft: A sequence of point clouds of a running man containing halesto self occlusions.
Middle: Renderings of two iterations of our flow solver. Cells costfily identified as being inside the surface are colored didule. As the
solver progresses, mass accumulates inside the surfRfight The result of an implicit function reconstruction from thew solution.

Abstract

We introduce a volumetric space-time technique for thenstrac-
tion of moving and deforming objects from point data. Thepotit
of our method is a four-dimensional space-time solid, mguefu
spatial slices, each of which is a three-dimensional sadignided
by a watertight manifold. The motion of the object is desedib
as an incompressible flow of material through time. We opémi
the flow so that the distance material moves from one timedram
to the next is bounded, the density of material remains aomst
and the object remains compact. This formulation overcodedis
ciencies in the acquired data, such as persistent occhjséorors,
and missing frames. We demonstrate the performance of awr flo
based technique by reconstructing coherent sequencesetight
models from incomplete scanner data.

CR Categories. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
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1 Introduction

Recent advanced scanning technologies together with dgacre
ing computational power allow the space-time capture oéehr
dimensional objects as they move and deform. Systems such as
[Zhang et al. 2003; Fong and Buron 2005; Koninckx and van Gool
2006] produce dense point samples over large parts of tli@csur
of a moving object, at rates from ten to thirty frames per sdco
As these technologies mature, they make it possible to raphd
reconstruct both the deforming model and its motion. Orgagi
the data captured by these scanners into a coherent modelesf a
forming object is a challenging computational problem fegtist
beginning to be addressed [Mitra et al. 2007; Wand et al. 2007
Pekelny and Gotsman 2008].

As pointed out in one of the first applications of real-timarsc
ning [Rusinkiewicz et al. 2002], the main challenge posedHsy
time component is to fill in missing data by accumulating infa-
tion over time. The input scans are typically collected byreal
set of synchronized cameras. Because of the small numbexedf fi
views, large parts of the surface are occluded in each fréead;
ing to gaping holes that often persist across many framese@u
real-time systems also suffer from low resolution, insigfi¢ frame
rate and noise. While it is reasonable to assume advanceslin r
time scanning technology will improve the data quality,gi&ent
occlusions will always be an issue.

To complete the missing data in a principled way we take advan
tage of space-time coherence and adopt a global approadéth wh
considers all frames simultaneously. Furthermore, toegythe re-
construction, we include as many reasonable physical ggfms

as we can into our computation. First, we directly recors$tade-
forming solid, that is, a four-dimensional space-time acef By
explicitly modeling the mass field of the object, we leverdge
knowledge that the boundary of the reconstructed objectvig-a
tertight manifold. Most importantly, we explicitly modete flow

of this material through time. We constrain all of the matkein



one time-frame to move to some nearby position in the nesyren
ing mass conservation, while preventing mass from conagngy

or dispersing, producing what we call alcompressible flowWe
also introduce a momentum term which ensures that mateoiam
smoothly through time. We use this flow terminology somewhat
loosely; as will be seen, our method does not produce a pilsic
accurate fluid flow; nor does it need to.

This incompressible flow prior puts a very strong constrainthe
shape of the four-dimensional solid and on how its 3D spalieds
evolve over time. Using all the frames simultaneously to pota
the flow, data from arbitrarily distant frames is used to pibly
complete missing data in occluded regions. We can also ssicce
fully reconstruct entirely missing frames by extrapolgtinforma-
tion from sampled ones, overcoming sparse frame ratesr@gju

Our formulation requires the fairly mild assumptions tHa bb-
ject moves smoothly through time and that the speed of moreme
between consecutive time frames is bounded. We do not need to
sume that the motion is globally or locally rigid, nor do weréany
assumptions on the topology or geometry of the object. Irash

to many previous methods [Marschner et al. 2000; Guskov.et al
2003; White et al. 2007] we do not require additional spare-t
coherence information such as marker correspondences.

Specifically, each three-dimensional frame is represebtedts
characteristic function on a regular grid. We construct riess
field, i.e. the characteristic function, and its flow simokausly
for all frames. To do so, we constrain all the material at tinbe
move to some adjacent grid cell at timhe 1. We set the material
in any cell identified as inside the object to be one and in arty o
side cell to be zero, avoiding compression or dilatatiomimgach
cell. The estimation of both distribution of material in spand its
flow is computed by iteratively updating and solving a linegs-
tem, applying at each iteration a simple re-weighting stegnforce
incompressibility and enhance the object boundaries.

The obvious difficulty with our approach is that the entirdwnoe
and its flow are explicitly represented, producing a vergéalin-
ear system. We handle this by employing a preconditionedory
subspace iterative solver that exploits the sparsity aadprecific
spectral properties of the system.

2 Background

While numerous methods exist for reconstructing static Iidefs,
none of them is directly applicable to the dynamic setinge mtain
challenge faced by dynamic reconstruction is to properfindghe
relationship between the temporal and spatial dimensiomsder

to accumulate information over time to correctly completeally
missing data [Grosso et al. 1989; Rusinkiewicz et al. 200R]ch

of the attention in 4D reconstruction has been paid to psicgs
specific shapes such as humans or garments where additienal i
formation is available to guide the reconstruction, e.@rkar cor-
respondences between scans [Marschner et al. 2000; Guisébv e
2003; White et al. 2007] or between the scans and a templdtn[A
et al. 2002; Anguelov et al. 2004; Zhang et al. 2004; Anguelal.
2005]. Unmarked data is much simpler to acquire making a mark
erless approach like ours more general.

Arbitrary shape reconstruction from point cloud sequerisesu-
ally treated as a surface deformation over time. Speciicall
Shinya [2004] extracts an initial surface from the first pailoud,
and evolves it towards the subsequent point clouds whilénnigzna
ing a deformation energy computed over the surface trizigul.
Wang et al. [2005] further refine this energy using harmorapsn
Anuar and Guskov [2004] use optical flow to estimate the deéor
tion, switching from surface representation to volumefioe inte-
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Figure 2: Spatial and time adjacency in 1D, 2D and 3D space:
white cells are adjacent to the green cell in space; bluescate
adjacent to the green cell in time. Only blue cells can have-no
zero incoming flow from the green cell.

gration. Recently, Pekelny and Gotsman [2008] introducztheer
method to accumulate information for the specific case ifudd-
tions of rigid parts. The input point cloud is manually segieel
and the parts are tracked over time assuming that each fiame i
good initial guess for an iterative closest point rigid roatregis-
tration with the next frame. These approaches are sensititiee
quality of the initial surface since they accumulate infation only
forward in time.

To integrate time information for arbitrary shapes, Wandet
al. [2007] and Mitra et al. [2007] formulate the reconstrictprob-
lem directly in 4D, focusing on inter-frame registration. akd

et al. [2007] optimize a 4D shape represented by a set oflsurfe
They define the surface from statistical densities, immpspatial
smoothness and rigid motion priors. Mitra et al. [2007] sé&gyi
point clouds directly on a 4D hypersurface, assuming rigtér
frame motion. With dense temporal sampling, this allowaest
ing local deformations of the model. We approach the prokilrem
4D as well, but by operating on a volume, rather than a sulfkee
Wand et al. [2007] or Mitra et al. [2007]. In particular, wenge-
ate a sequence of watertight manifolds as output, and welrtizale
flow of mass in order to compensate for missing data. Unliks¢h
techniques our method does not require dense spatial saripli
complete missing data.

Other approaches address the related problem of recotistruc
moving objects from video sequences [Magnor and Goldlicke
2004; Goldliicke and Magnor 2005; Goldlicke et al. 2007jeyr
carve a 4D hypersurface and then optimize it by enforcinggho
consistency with a 2D video sequence.

The ability to reconstruct a watertight object using thermsty in-
compressible flow prior distinguishes our method from presi
techniques. This prior leads to more reliable reconstoacén-
abling us to obtain accurate, watertight reconstructiomsfpoorly
sampled data.

As a last note, our solution to the 4D problem uses the conufept
material flow. Similar techniques have been devised for 2i2wi
in the Computer Vision literature [Ullman 1979; Gupta anchEla
1995; Vedula et al. 1999; Barron and Thacker 2004], to traok m
tions through minimization of specific image similarity rseges.

3 Problem Formulation

We consider the problem of reconstructing a moving and pbssi
deforming object of arbitrary topology given a sequencehoée-
dimensional frames. Each frame consists of a cloud of pair3®
sampled over the object’s surface. Our goal is to reconstrua-
tertight surface in space-time, that is, a three-dimerdisuorface



Figure 3: Reconstruction of a scanned moving hand puppeft: Input scan points to the flow solver (green points), withittigal inside
cell labeling (dark blue cells)Center Two flow solver iterations: mass cells is represented byagsgale map. Cells determined to be inside
by the solver are colored dark bluRight Our final reconstruction.

embedded in 4D. We represent this 4D solid using its chaiacte
tic function on a 4D grid, from which we extract the actualeatj
surface at a final step (Section 4.3) .

For the sake of simplicity we describe our formulation forodmect

in one-dimensional space deforming through time. The dorisai
then an(n+ 1) x (m+ 1) space-time grid, and we ugg for space
indices and for time ones. The three- and four-dimensional for-
mulations we use later are straightforward generalizataitained
by replacing the spatial adjacency relationships used éndimen-
sion with those for higher dimensions (Figure 2). The charis:

tic function value9<} at each cell can be seen as representing the

amount of material in the cell. Using this representationdee
scribe the motion and deformation of the object over timeas 6if
material through space-time. The flow is represented byabkas
v}’j representing the amount of material moving from gp#t time

t to another celkt*® at timet + 1. Note that, in contrast to the the

simulation of fluid flows, material in our model moves throughe

at a constant rate, so that higher flow values on an edge mean mo
material moving through the edge. We formulate the recangtm

as a solution to a constrained minimization problem, basethe
following set of assumptions.

Flow incompressibility: We interpret flow incompressibility
as constraining the amount of material in any cell to be etmal
the amount of material flowing into the cell from the previdinse
frame, and also to the amount of material flowing out of thé cel
into the next time frame. Using the previous notation, this i
i=0...n, t=1...m

1)
)

= 3t

X = ZjV},j, i=0...n, t=0...m-1

Bounded speed: We expect the grid resolution in time to be
sufficiently dense with respect to the deformation speedeciip
cally, we assume that at each time step material can only rt@ove
temporally adjacent cells (shown in Figure 2). 1D & time this
means thav}’j is non-zero only if — 1 < j <i+ 1. This constraint

is handled implicitly by including in the formulation onlhe vari-
ables forv}’j that can potentially be non-zero. Note that the actual
sampling of the data in time could be at a lower resolutiom that

of the solution grid, or in other words we can have time-framvéh
no samples.

Spatial continuity: In the characteristic function, we expect
valuesx} in spatially adjacent cells to be identical everywhere, ex-
cept across the object boundaries. Because the scans giean
plete representation of the surface, however, we do not kniogre
some of the boundaries are and in addition we cannot be stine of
infout orientation at all known boundaries. We thereforpuree the
values ofx} to be constant everywhere except at a small number of
sharp discontinuities. Minimizing a functional such as

i) =3 3 (0 —%_1)% ©)

gives this effect. The sub-linear exponer@ th the norm penalizes
many small discontinuities more than a few large ones [Levial.
2007]. It would be easier, computationally, to use a legstses er-

ror functional, since the derivative would be linear. Buttivould
have exactly the wrong effect; with an exponent of 2 instddii&

the minimum would be achieved when the differences betwe#n c
valuesx are evenly distributed across all cells. We address this
computational issue, and also some refinements of thisiunadf

in Section 4.2.

Note thatF; only links cells adjacent to one another in the spatial
dimension. We use the flow to control the variation of the fiomc
in the time dimension.

Flow momentum: We expect the object deformation, and
hence the flow, to be smooth in time. This smoothness is aagbtur
by a momentum term that penalizes the flow for changing daect
from one time frame to the next:

Fm(Vi ;) = i,j,t:g.m—l(v}’j *thfji(j,i))z (4)

This term uses the discretized flow directions availablehergrid,
which is not correct at the object boundaries; there we ralyhe
spatial continuity term to enforce continuity of momentusweell.
We tried including a similar boundary-enforcement mecsiamnin
the momentum term, but we found that the slight improvement i
performance did not justify the additional cost.



Data fidelity: The values of the characteristic functionfor
some of the grid cells are known even before the optimizatiarts.
Specifically, we assign} =1 to cells containing scan points, and

we mark those as boundary cells. Values of zero and one are as-£

signed to additional cells, both at initialization and digrthe com-
putation, as discussed in Section 4. These values aredrasteard
constraints and handled implicitly by using back-substty re-
moving the corresponding variables from the system.

Problem formulation: The solution to our space-time recon-
struction problem is computed by optimizing a weighted ciorab
tion of spatial continuity=; and flow momentuniy,, F = aF: +
(1— o)Fm, subject to the incompressibility constraints. We used
a = 2/3 for the 2Dxtime examples, and = 1/3 for the 3Dxtime
ones, giving higher weight to flow smoothness. This diffeeenf
weighting was necessary to compensate for the increasetierum
of spatially adjacent cells in each time frame. We obserted t
when there was a lot of missing data, putting more weight om flo
momentum filled in missing areas faster, accelerating cgeveee.

4 Solution Mechanism

4.1 Preprocessing and Initialization

The characteristic function values for some cells can biabigi
computed without the flow computation. Initializing as mayls
as possible drastically reduces the number of variabldseirfiunc-
tional to be optimized, significantly increasing solutiqresd. It
also improves the solution accuracy. Therefore we do as preeh
processing as we can before attempting the flow computation.

We begin by computing a low-resolution visual hull for eadnfe,
based on the scan planes and the scanner positions andboiest
This allows us to loosely label many outside cells. Cerginlthe
presence of noise and holes, estimation of the visual helirisr-
prone, nevertheless, at this pre-processing step higisfmeds not
required.

We select a small number of cells to loosely label as insidegbe
following heuristic. We compute for each frame a low-resiolu
unsigned distance field measuring the distance from scan alad
select cells that are both local maxima of the distance fonand
are inside the visual hull. The idea is that such cells siamgbusly
lie near the medial axis of the surface and inside the visuigldnd
as such are very likely to be inside the object itself.

This is followed by a low-resolution 4D surface reconstiort us-

ing the FEM reconstruction method of Sharf et al. [2007]. sTédi
gorithm takes as input both the data points and the aboveibledc
inside/outside labels. It computes a smooth function thateiga-
tive inside the object and positive outside. At such low hasan,
this computation is very efficient. We utilize the FEM sodutiin
two ways. First, we use it to improve our inside/outside laige

we label maxima of the FEM function as outside the object &d i
minima as inside. Second, we use it to assign normals to ttae da
points. We use these normals to modify the spatial contirfuitc-
tional F, as described below in Section 4.2. Examples of initial cell
labeling are shown in Figure 3.

4.2 Optimization

We now describe our optimization of the flow functional. We as
Iteratively Reweighted Least Squares [Holland and Wel€EH71
approach to handle the sub-linear exponerfinWe introduce a
weightw ; for every pair of spatially adjacent celfsandx|, which
is used to modify the spatial continuity functiori@l. The overall
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Figure 4: Graphs demonstrating mass incompressibility and spa-
tial continuity principles on the Elephant data set(vided)eft:

Our initial guess labels only few cells as inside mass pem&a
Right Spatial continuity term propagates the initial mass ttgbu

out the solid, while incompressibility term keeps total snasarly
level across frames.

computation requires iteratively solving a large lineasteyn, mod-
ifying thew{ ; at each iteration.

Initialization:  In our initial setting of weights we observe that
the discontinuities are expected to be at the boundarielseoblb-
ject. We use the data-point normals determined during thd FE
pre-processing to loosely estimate which faces of the baynd
cells point outwards, by comparing the face and data-panhals.
Then in the first iteration we optimize the spatial contipditnc-

tional:
Fe(X) = Z_Z w1 (4 —%_1)° Q)

where the initial value o*wfJ is zero if the facdi, j) is an outward
boundary face, and one everywhere else. Due to the subgequen
global optimization, local normal estimation errors haeesignifi-
cant impact on the final result. In figure 4 we show that masg-pro
agates from the small initial guess (left) to the actual n{agbt)
due to this continuity setting.

Iterations:  After the first step the resulting distribution x}fval-
ues provides some indication of where discontinuities i&edyl to
arise; the greater the discontinuity between two cells éncilrrent
solution, the more likely a boundary falls there in the firegult.
Iteratively Reweighted Least Squares [Holland and Wel€ER71
suggests a principled way to use this information: we setvtight

wt in Equation (5) to banj = (X, — x)%8=2, using the values of
x from the previous iteration. This effectively guarantewst if the
scheme converges, the solution we have is the minimum ofrtge o
inal functionalF.. To normalize the weights, we bound them from
above by 0001°8-2 and scale into the range (0, 10). As expected,
as the iteration proceeds the valuesdobecome concentrated at
zero and one as desired (Figure 6).

Regularization:  The matrix in the linear system we solve at
each iteration is of the form of a discrete Laplacian, andiak san
be ill-conditioned, causing numerical instability. We @asstandard
regularization technique [Hansen 1998] adding the follgtierm
to our functional:

Fo=3 002+ 5 ()%

Fr is assigned a fairly small weight of@?25, since while we want
the regularization to stabilize the system, it should hitle kffect
on the final result.

Bootstrapping and clamping: As the flow solution is com-
puted iteratively, many of the values obtained ibrapproach the



a, b,
Figure5: Arotating 2D boomerang sweeps out the space-time sur-
face (a); green points show where the surface was sampledriA h
zontal slice represents the state of the boomerang at oreftame.
Comparing 3D RBF reconstruction (b), direct FEM reconstion

(c), our flow reconstruction (d), we note how our flow overceme
the unsampled frames and preserves the boomerang’s coycavi

extrema of zero and one; in fact, the linear system may algo pr
duce values ok} which are negative or greater than one. In our
experiments only slight deviations occurred from e 1] range.
We use these extreme values<bfo classify the corresponding cells
as inside or outside. In subsequent iterations we clampahes

at these cells to be exactly one or zero, and use them ascadditi
data fidelity constraints, using back-substitution.

Clamping introduces some rounding error to our mass coaseny

but the error is essentially random and does not lead to@.sdias
(around 2%, as seen in Figure 4). It also enforces incomipitiss

an x} greater than one would represent a concentration of mhteria
in a cell, which is not allowed in our flow formulation.

Our formulation also allows us to enforce some flow constsaiia
back-substitution, further reducing the number of vagakih the
system. Specifically, given a cell with value zero, we cavialiy

constrain all flow incoming into the cell or outgoing fromatzero.
Similarly, if the incoming or outgoing flow for a cell sums terp,
the cell value is set to zero.

The algorithm effectively converges when the values fothedicells
are set by the bootstrapping. In practice, to speed up tleegsowe
typically stop once 90% to 95% of the cell values are set, tith
final step of the algorithm (Section 4.3) resolving the dfasstion

for those based on smoothness considerations.

4.3 Postprocessing

In the postprocessing step, we refine the optimal flow saiutio
generate the final high resolution output surfaces. This steves
two purposes; first, it improves the flow resolution if neeegs
and second, it replaces the characteristic function withstimated
signed distance function, which is easier to contour. Tfirement
is done on dexadeca-tre4D octree) so that we can increase res-
olution near the surface to account for fine details in theticiata.

We use a standard least squares solver for a Laplace operator
the hexadeca-tree, which maximizes local space-time $mess.
The in/out voxel labels of the flow solution are used as bonnda
conditions in the Laplace system. We assign signed distealoes
from the surface to cells in this tree based on both the flowtiml
and distance to the input data points. Cells deep within tjecd
and cells containing data points are weighted more heakidy t
cells near the surface but with no data. Thus, the space tdke

Figure 6: Flow solution for several frames of the boomerang rota-
tion (Figure 5). Points on the 2D outline are represented seg
circles, while mass is represented by a grayscale map. Getks-
mined to be inside (resp. outside) by the solver are coloatt d
blue (resp. cream). Mass concentrates on the boomerangjsesh

as the iterations progress (from left to right) even for fesrwith
few or no data-points (bottom row).

surface, is initialized as unknown.

The Laplace solution defines a 4D implicit function whoseozssat
represents the desired 3D surface across time. To extriyciqual
surfaces, a standard marching cubes surface extractipplied at
each temporal cross-section of the implicit field indepetigte

5 Solving the Linear System

To utilize the presented formulation we must efficiently dlerthe
large linear systems that arise during the computationhigec-
tion we show how we exploit the matrix block structure to conep

a solution quickly and with a minimal overhead in terms of mem
ory. To accomplish this, we use an augmentation approachufGo
and Greif 2003].

At each iteration our formulation yields linear systemshsf form

A BT\ /x\ _ [f

B O v) \g
whereA arises from the optimized functional aBdeflects the con-
straints (Section 3). The matrix is large, sparse and iniiefiand
standard direct techniques based on formingltbéT decompo-
sition with symmetric pivoting result in significant loss sgarsity.

This in turn would lead to unreasonably large memory requénets
and prohibitive computational cost. Therefore, we use tHeRES
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Figure7: The 2D space-time surface of a single rounded box split- @

ting into two distinct round objects (see Figure 8). Samppdce- W
time surface (a). Implicit surface reconstruction usingfRB) and Q50 %
using FEM without using flow (c). Results using our incomgitde

flow (d). @

Figure 8: Flow iterations for the splitting object of Figure 7. De-
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iterative method with a symmetric positive-definite blodagbnal spite the poor sampling of the round areas, the estimatiothef
preconditioner which is well suited to the problem and reggia  mass is able to separate and accumulate where the roundtebjec
minimal overhead. are expected to be for each time step.

We set the preconditioner to be
6 Results

M — A+ y BB 0
0 V)’ We have tested our method on several real and synthetic éaamp
in both 2Dxtime and 3D«time. In all cases our method produced

wherey is a scalar andl is the identity matrix. Denote the matrix watertight surfaces with good quality completion of migsitata.

of the system by<. The matrixA-+ y~1BT B, which is a stabilized

primal Schur complement df, is sparse and symmetric positive- 2D xtime results.  To illustrate the merits of the flow solution,
definite. It can be shown that the pl’econdltloned deRlK has we use some 2Btime examp|es_ In Figures 5 and 6, we show a
an eigenvalue 1 of algebraic multiplicity equal to the disien two-dimensional “boomerang shaped” object moving thrdtimgle.

of A. Furthermore, the negative eigenvalues of the precomditio e leave large portions of the moving object un-sampled inyna
matrix are all strictly between-1 and 0, and in our setting most  frames, mimicking the effects of occlusion. Furthermorepi-

of them are located near1, since nearly zero eigenvalues &f  der to explore our method's limits and robustness, we leaees

are mapped into eigenvalues of the preconditioned matekare  frames completely empty (Figure 6 bottom row). Observe at th

nearly—1 [Greif and Schotzau 2006]. center of Figure 5 that the reconstructions generated bgl ssu-
face reconstruction, such as RBF [Ohtake et al. 2003] orctlire

This high algebraic multiplicity is crucial, since the sgesf con- FEM [Sharf et al. 2007], introduce large cavities where gigant

vergence of MINRES (and in fact any preconditioned Krylobsu  data is missing. We note that while these might be valid recon
space method) primarily depends on how well the eigenvadfies  structions of a 3D solid, they are inconsistent under oursniias

the preconditioned matrix are clustered; in this case wibsihble compressibility assumption. Figure 6 illustrates the fl@lugon
to obtain convergence within a number of iterations whichigs across several frames for the boomerang example. The drées o
nificantly smaller than the dimensions of the linear systand in final 2D cross sections are roughly equal across all franfes; t
fact also smaller than the number of constraints. are not perfectly identical since the clamping of materaues to

either zero or one at most voxels leads to rounding errors.

Our numerical solution is based on inner/outer iteratibmsolving

for A+ y~1BTB (the inner iteration) we apply a conjugate gradient
solver, preconditioned with an incomplete Cholesky fazairon
with a drop tolerance of.01. Since the discrete operatdgksand
BB have spectral norms of approximately the same order, we se
y = 1 throughout the computation. We solve the inner iterations
with a convergence tolerance of 0 The outer MINRES itera-
tions are solved with a convergence tolerance.000 to 000001.

A similar behavior can be observed in Figures 7 and 8, whiclwsh
atwo-dimensional rounded box that splits from one conrkeoten-
ponent into two. Although there are very large chucks of mgss
data, our method faithfully reconstructs the geometry. igufe 9,
we again compare the results of our method on three othemmovi
and deforming 2D objects to a straightforward 3D reconsimnc
Without the mass conservation effects of the flow solutibe, di-
rect reconstruction is incorrect. The input data in thesergtes vi-

) i . sually demonstrate the type of problems that also occur int8Be
The use of a high drop tolerance for the incomplete facttidma setting.

and a loose outer convergence tolerance make the solverutamp

tionally inexpensive, with small iteration counts and mstdaem-

ory requirements. Even in four dimensions the solver eiffelst 3Dxtime setting. We tested our method on several synthetic
converges within fewer than a hundred outer iterations. Soluer and real 3D space-time data-sets, whose statistics aretedpa
implementation combines the TAUCS library [Toledo 2003thwi Table 1. For the flow computation, the spatial resolutionlbbf
our own specialized MINRES solver. We can solve the system ei our frames is 62 For the surface extraction, the final resolution of
ther on a standard workstation (2GB RAM 2.4 GHz CPU), or very the hexadeca-tree varies from*@4 256' depending on the model
quickly on a small 40-cores cluster, as described in Se&ioAs smoothness. While this resolution is not particularly fiieyvas

a comparison, a direct paralleDLT solver for the same problem  sufficient for the purpose of identifying inside/outsiddlsén our
takes more than a day to compute the solution on the sameirclust tests.



Figure 9: Various examples of 2D shapes moving over time, sam-
pled so that large holes exist near the objects bordémstt: The
original space-time surfaces with point samplediddle: direct
FEM surface reconstructionsRight Reconstructions using our
incompressible flow method.

In our computations we are staying within the limit of 20 fresn

at constant resolution for the flow solver which convergeahiout

100 iterations. Using this framework we achieve an averagga-
tational time of one minute per-frame, roughly split intas20 per
flow solver and 40sec post-processing on a workstation vaBL
RAM 3.73 GHz CPU. We note that these times are an order of mag-
nitude faster than those reported by Wand et al. [2007] aodtab
twice as fast as those of the recent marker-based method ibé Wh
et. al. [2007]. The memory requirements of our method areoup t
4.5GB for the flow-solver and up to 2GB for the post-procegsin

To generate the synthetic inputs in our experiments, we wse a
tual multi-camera that simulates a real-time laser scarffwareach
camera it shoots rays, registering the closest visibleasarpoints
from the virtual camera position. We record only positiofoima-
tion for each scan point and not surface orientation.

3Dxtime results.  Figure 1 shows the virtual scan of a running
man, using four cameras. The large holes due to occlusians ar
completed in a natural manner with the space-time model.

Figure 11 shows a scan of a wooden doll, this time using ondy tw
virtual cameras. The larger occluded regions are again lsteth
in a manner consistent with other frames, although this tinee
smooth completions in occluded regions are somewhat radtiee
As demonstrated, using an implicit FEM reconstruction alat
128 resolution) produces significantly inferior results.
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Figure 10: Graphs showing the total mass variation across iter-
ations of the solution procedureTop: 2D+time data. Bottom
3D+time data.

Figure 3 shows a reconstruction of a moving hand puppetuoagt
by a low resolution structured light scanner from only twewi
points. The point data is noisy and has a persistent wide sfri
missing data on the sides of the head. The front-facing ameso
times occludes the face, and the back arm is sometimes ectlud
The topology of the head and both arms is correctly recocistdu
with the flow solution, and the geometry is fairly consistefihe
thin palms of the puppet are too small to be recovered wedrgiv
the flow grid resolution.

We also tested our method on inputs for which our incompléssi
ity assumption is only approximately satisfied, such as drengnt
scans in Figures 12 and 13. Leveraging our iterative sahadaility

to solve the system inexactly, even in the case of singigaribur
method succeeds in reconstructing these inputs and filbfesldue
to occlusion. In Figure 12, we use an animation of a jumping pa
of pants [White et al. 2007] to create a simulated scan usiregt
cameras. The pants rotate, so that almost every part ofsindace

is visible at some time. The flow solution accurately intéggahe
data from different times.

Figure 13 shows the results of applying our method to realsca
of moving garments. The data was captured using a set oksixte
high-definition video cameras combined with a multiviewrste
registration step [Bradley et al. 2008]. Although the sceos-
tain holes due to occlusions, irregular sampling and noiseflow
system successfully generates a coherent 4D volume thattblyio
varies across time and fills the missing data. Furthermare,td
the volumetric nature of our solution, the reconstructeapsis are
always watertight manifold polygonal surfaces.

Finally, in Figure 10 we graph the mass convergence over the
course of the flow iterations. The large jump in the first item
arises from our initialization procedure, which marks sdthown

to be either inside or lying on the boundary as having a mass of
1. After the first iteration, we have a better guess of the arhofi
mass actually contained in the system. Therefore, as tragidas
progress, the total amount of mass levels out. Similarigufé 4
shows the mass propagation from an initial guess to the lavtass
in the last iteration. The measurements were carried onldphBnt
data set [Wand et al. 2007] shown in the accompanying vides.
note that while on this example both methods correctly rstrant
the watertight surface, an important feature of our metfsothat
it allways guarantees a watertight output which is not treedar
Wand et al. [2007].
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Data set Frames| Avg. ppf | initialized
Running man 30 21600 24.8%
Wooden doll 30 8000 20.7%

Pants 280 10100 29.8%

Puppet 200 34000 285%

Dress 130 31000 30.1%

T-shirt 160 35000 27.1%

Sweater 70 48000 27.3%

Elephant 20 40000 224%

Table 1: Number of frames, average number of boundary points
per frame (ppf), and number of cells initialized over the {ehml-
ume for the 3Dxtime data sets presented.

Discussion and Limitations We observed above that volume
is not perfectly preserved by our reconstruction. Theresase
eral reasons for this. The bounded speed assumption (8&jtio
which might appear to be strictly enforced by our formulafits
not perfectly satisfied by several of the inputs we generatgéth
data moving more than one-cell distance between frameso, Als
for computational reasons and to guarantee a valid chaistate
function, we clamp material values to zero and one, potiniia
olating the incompressibility constraints in the procdsnally, as
described in Section 5, the convergence tolerance, chasprot
vide a sensible balance between accuracy and computatiosgl
is significantly larger than the machine roundoff error.

While these considerations do mean that our solution doegree
cisely satisfy the assumptions of the model, this flexipiiit fact
proves to be extremely useful. We can handle inputs that do no
strictly meet the speed assumption or for which the volumesdo
vary. Thus, when the constraints cannot be satisfied exabty

are satisfied in a least squares sense. Nevertheless, ur aésis
the iterative solver reached a tolerance that maintainsrabdec-
imal digits of accuracy. Indeed, in all our experiments weeha
found that the mass conservation error, measured as theesgua

of mass variance across the frames, was always less tharr T8& fo
2D examples and less than 2% for the 3D examples. The worst ex-
ample in 2D is shown in Figure 7, in which the object does iddee
experience a small change in mass when it splits.

While our post-processing step produces a generally smgibth
solid, the final 3D meshes representing the time-slicesetuiid
are computed independently. Thus the connectivity cangshae-
tween consecutive frames. In low resolution, this can caosee
visual flickering. However, as the volume is refined, thiskic
ing becomes less noticeable, and it eventually disappeahggh
resolution. Algorithms for temporally coherent meshing an in-
teresting research direction.

7 Conclusions

We have presented a novel volumetric approach for spacegim
face reconstruction that leverages the knowledge of obgtavior
across time, to plausibly reconstruct the deforming serfaespite
persistent occlusions. Based on reasonable physical atisns
we formulate the reconstruction problem as a solution toszep
time formulation linking together mass and flow across thigren
data sequence. We provide an efficient mechanism to solwethe
sulting optimization problem and demonstrate the viabibit our
approach on a set of complex examples. We compare our recon-
struction results to those generated by extending two 3@nscuc-
tion techniques to 2Rtime (RBF and FEM) and 3Rtime (FEM).

A key idea in our work is to handle the time dimension veryaetiff
ently than the spatial dimensions using several flow pribience,
our method correctly completes gaping holes in the datalwéc-

sist across multiple frames.

Despite the use of a specifically tailored solver, our metisaill
not suitable for tackling very large scale problems. Onenage
for future work which will make it possible to solve problemih
much higher resolution would be to consider a hierarchicalam
main decomposition approach for optimizing the flow forntioka
Specific applications such as modeling moving humans [Gaara
et al. 2003; de Aguiar et al. 2007] could be enhanced by ireorp
rating additional assumptions, such as skeletal structurigidity,
within the framework of material flow.
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