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Figure 1: Reconstruction of a space-time surface.Left: A sequence of point clouds of a running man containing holesdue to self occlusions.
Middle: Renderings of two iterations of our flow solver. Cells confidently identified as being inside the surface are colored darkblue. As the
solver progresses, mass accumulates inside the surface.Right: The result of an implicit function reconstruction from theflow solution.

Abstract

We introduce a volumetric space-time technique for the reconstruc-
tion of moving and deforming objects from point data. The output
of our method is a four-dimensional space-time solid, made up of
spatial slices, each of which is a three-dimensional solid bounded
by a watertight manifold. The motion of the object is described
as an incompressible flow of material through time. We optimize
the flow so that the distance material moves from one time frame
to the next is bounded, the density of material remains constant,
and the object remains compact. This formulation overcomesdefi-
ciencies in the acquired data, such as persistent occlusions, errors,
and missing frames. We demonstrate the performance of our flow-
based technique by reconstructing coherent sequences of watertight
models from incomplete scanner data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
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1 Introduction

Recent advanced scanning technologies together with increas-
ing computational power allow the space-time capture of three-
dimensional objects as they move and deform. Systems such as
[Zhang et al. 2003; Fong and Buron 2005; Koninckx and van Gool
2006] produce dense point samples over large parts of the surface
of a moving object, at rates from ten to thirty frames per second.
As these technologies mature, they make it possible to capture and
reconstruct both the deforming model and its motion. Organizing
the data captured by these scanners into a coherent model of ade-
forming object is a challenging computational problem thatis just
beginning to be addressed [Mitra et al. 2007; Wand et al. 2007;
Pekelny and Gotsman 2008].

As pointed out in one of the first applications of real-time scan-
ning [Rusinkiewicz et al. 2002], the main challenge posed bythe
time component is to fill in missing data by accumulating informa-
tion over time. The input scans are typically collected by a small
set of synchronized cameras. Because of the small number of fixed
views, large parts of the surface are occluded in each frame,lead-
ing to gaping holes that often persist across many frames. Current
real-time systems also suffer from low resolution, insufficient frame
rate and noise. While it is reasonable to assume advances in real-
time scanning technology will improve the data quality, persistent
occlusions will always be an issue.

To complete the missing data in a principled way we take advan-
tage of space-time coherence and adopt a global approach, which
considers all frames simultaneously. Furthermore, to guide the re-
construction, we include as many reasonable physical assumptions
as we can into our computation. First, we directly reconstruct a de-
forming solid, that is, a four-dimensional space-time surface. By
explicitly modeling the mass field of the object, we leveragethe
knowledge that the boundary of the reconstructed object is awa-
tertight manifold. Most importantly, we explicitly model the flow
of this material through time. We constrain all of the material in



one time-frame to move to some nearby position in the next, ensur-
ing mass conservation, while preventing mass from concentrating
or dispersing, producing what we call anincompressible flow. We
also introduce a momentum term which ensures that material moves
smoothly through time. We use this flow terminology somewhat
loosely; as will be seen, our method does not produce a physically
accurate fluid flow; nor does it need to.

This incompressible flow prior puts a very strong constrainton the
shape of the four-dimensional solid and on how its 3D spatialslices
evolve over time. Using all the frames simultaneously to compute
the flow, data from arbitrarily distant frames is used to plausibly
complete missing data in occluded regions. We can also success-
fully reconstruct entirely missing frames by extrapolating informa-
tion from sampled ones, overcoming sparse frame rates (Figure 6).

Our formulation requires the fairly mild assumptions that the ob-
ject moves smoothly through time and that the speed of movement
between consecutive time frames is bounded. We do not need toas-
sume that the motion is globally or locally rigid, nor do we have any
assumptions on the topology or geometry of the object. In contrast
to many previous methods [Marschner et al. 2000; Guskov et al.
2003; White et al. 2007] we do not require additional space-time
coherence information such as marker correspondences.

Specifically, each three-dimensional frame is representedby its
characteristic function on a regular grid. We construct themass
field, i.e. the characteristic function, and its flow simultaneously
for all frames. To do so, we constrain all the material at timet to
move to some adjacent grid cell at timet

�
1. We set the material

in any cell identified as inside the object to be one and in any out-
side cell to be zero, avoiding compression or dilatation inside each
cell. The estimation of both distribution of material in space and its
flow is computed by iteratively updating and solving a linearsys-
tem, applying at each iteration a simple re-weighting step to enforce
incompressibility and enhance the object boundaries.

The obvious difficulty with our approach is that the entire volume
and its flow are explicitly represented, producing a very large lin-
ear system. We handle this by employing a preconditioned Krylov
subspace iterative solver that exploits the sparsity and the specific
spectral properties of the system.

2 Background

While numerous methods exist for reconstructing static 3D models,
none of them is directly applicable to the dynamic seting. The main
challenge faced by dynamic reconstruction is to properly define the
relationship between the temporal and spatial dimensions in order
to accumulate information over time to correctly complete locally
missing data [Grosso et al. 1989; Rusinkiewicz et al. 2002].Much
of the attention in 4D reconstruction has been paid to processing
specific shapes such as humans or garments where additional in-
formation is available to guide the reconstruction, e.g., marker cor-
respondences between scans [Marschner et al. 2000; Guskov et al.
2003; White et al. 2007] or between the scans and a template [Allen
et al. 2002; Anguelov et al. 2004; Zhang et al. 2004; Anguelovet al.
2005]. Unmarked data is much simpler to acquire making a mark-
erless approach like ours more general.

Arbitrary shape reconstruction from point cloud sequencesis usu-
ally treated as a surface deformation over time. Specifically,
Shinya [2004] extracts an initial surface from the first point cloud,
and evolves it towards the subsequent point clouds while minimiz-
ing a deformation energy computed over the surface triangulation.
Wang et al. [2005] further refine this energy using harmonic maps.
Anuar and Guskov [2004] use optical flow to estimate the deforma-
tion, switching from surface representation to volumetricflow inte-

Figure 2: Spatial and time adjacency in 1D, 2D and 3D space:
white cells are adjacent to the green cell in space; blue cells are
adjacent to the green cell in time. Only blue cells can have non-
zero incoming flow from the green cell.

gration. Recently, Pekelny and Gotsman [2008] introduce another
method to accumulate information for the specific case of articula-
tions of rigid parts. The input point cloud is manually segmented
and the parts are tracked over time assuming that each frame is a
good initial guess for an iterative closest point rigid motion regis-
tration with the next frame. These approaches are sensitiveto the
quality of the initial surface since they accumulate information only
forward in time.

To integrate time information for arbitrary shapes, Wandet
al. [2007] and Mitra et al. [2007] formulate the reconstruction prob-
lem directly in 4D, focusing on inter-frame registration. Wand
et al. [2007] optimize a 4D shape represented by a set of surfels.
They define the surface from statistical densities, imposing spatial
smoothness and rigid motion priors. Mitra et al. [2007] register
point clouds directly on a 4D hypersurface, assuming rigid inter-
frame motion. With dense temporal sampling, this allows estimat-
ing local deformations of the model. We approach the problemin
4D as well, but by operating on a volume, rather than a surfacelike
Wand et al. [2007] or Mitra et al. [2007]. In particular, we gener-
ate a sequence of watertight manifolds as output, and we model the
flow of mass in order to compensate for missing data. Unlike these
techniques our method does not require dense spatial sampling to
complete missing data.

Other approaches address the related problem of reconstructing
moving objects from video sequences [Magnor and Goldlücke
2004; Goldlücke and Magnor 2005; Goldlücke et al. 2007]. They
carve a 4D hypersurface and then optimize it by enforcing photo-
consistency with a 2D video sequence.

The ability to reconstruct a watertight object using the strong in-
compressible flow prior distinguishes our method from previous
techniques. This prior leads to more reliable reconstruction en-
abling us to obtain accurate, watertight reconstructions from poorly
sampled data.

As a last note, our solution to the 4D problem uses the conceptof
material flow. Similar techniques have been devised for 2D video
in the Computer Vision literature [Ullman 1979; Gupta and Kanal
1995; Vedula et al. 1999; Barron and Thacker 2004], to track mo-
tions through minimization of specific image similarity measures.

3 Problem Formulation

We consider the problem of reconstructing a moving and possibly
deforming object of arbitrary topology given a sequence of three-
dimensional frames. Each frame consists of a cloud of pointsin 3D
sampled over the object’s surface. Our goal is to reconstruct a wa-
tertight surface in space-time, that is, a three-dimensional surface



Figure 3: Reconstruction of a scanned moving hand puppet.Left: Input scan points to the flow solver (green points), with theinitial inside
cell labeling (dark blue cells).Center: Two flow solver iterations: mass cells is represented by a grayscale map. Cells determined to be inside
by the solver are colored dark blue.Right: Our final reconstruction.

embedded in 4D. We represent this 4D solid using its characteris-
tic function on a 4D grid, from which we extract the actual object
surface at a final step (Section 4.3) .

For the sake of simplicity we describe our formulation for anobject
in one-dimensional space deforming through time. The domain is
then an�n�

1� ��m�
1� space-time grid, and we usei � j for space

indices andt for time ones. The three- and four-dimensional for-
mulations we use later are straightforward generalizations obtained
by replacing the spatial adjacency relationships used in one dimen-
sion with those for higher dimensions (Figure 2). The characteris-
tic function valuesxt

i at each cell can be seen as representing the
amount of material in the cell. Using this representation wede-
scribe the motion and deformation of the object over time as flow of
material through space-time. The flow is represented by variables
vt

i � j representing the amount of material moving from cellxt
i at time

t to another cellxt�1
j at timet

�
1. Note that, in contrast to the the

simulation of fluid flows, material in our model moves throughtime
at a constant rate, so that higher flow values on an edge mean more
material moving through the edge. We formulate the reconstruction
as a solution to a constrained minimization problem, based on the
following set of assumptions.

Flow incompressibility: We interpret flow incompressibility
as constraining the amount of material in any cell to be equalto
the amount of material flowing into the cell from the previoustime
frame, and also to the amount of material flowing out of the cell
into the next time frame. Using the previous notation, this is:

xt
i � ∑ j vt�1

j �i � i �0 	 	 	n� t � 1 	 	 	m (1)

xt
i � ∑ j vt

i � j � i �0 	 	 	n� t � 0 	 	 	m
1 (2)

Bounded speed: We expect the grid resolution in time to be
sufficiently dense with respect to the deformation speed. Specifi-
cally, we assume that at each time step material can only moveto
temporally adjacent cells (shown in Figure 2). In 1D �time this
means thatvt

i � j is non-zero only ifi 
1 � j � i
�

1. This constraint
is handled implicitly by including in the formulation only the vari-
ables forvt

i � j that can potentially be non-zero. Note that the actual
sampling of the data in time could be at a lower resolution than that

of the solution grid, or in other words we can have time-frames with
no samples.

Spatial continuity: In the characteristic function, we expect
valuesxt

i in spatially adjacent cells to be identical everywhere, ex-
cept across the object boundaries. Because the scans give anincom-
plete representation of the surface, however, we do not knowwhere
some of the boundaries are and in addition we cannot be sure ofthe
in/out orientation at all known boundaries. We therefore require the
values ofxt

i to be constant everywhere except at a small number of
sharp discontinuities. Minimizing a functional such as

Fc�xt
i � �∑

t
∑

i�1


n �xt
i 
xt

i�1�0
8 (3)

gives this effect. The sub-linear exponent 0	8 in the norm penalizes
many small discontinuities more than a few large ones [Levinet al.
2007]. It would be easier, computationally, to use a least-squares er-
ror functional, since the derivative would be linear. But that would
have exactly the wrong effect; with an exponent of 2 instead of 0	8,
the minimum would be achieved when the differences between cell
valuesxt

i are evenly distributed across all cells. We address this
computational issue, and also some refinements of this functional,
in Section 4.2.

Note thatFc only links cells adjacent to one another in the spatial
dimension. We use the flow to control the variation of the function
in the time dimension.

Flow momentum: We expect the object deformation, and
hence the flow, to be smooth in time. This smoothness is captured
by a momentum term that penalizes the flow for changing direction
from one time frame to the next:

Fm�vi � j � � ∑
i � j �t�0


m�1

�vt
i � j 
vt�1

j � j�� j�i��2 (4)

This term uses the discretized flow directions available on the grid,
which is not correct at the object boundaries; there we rely on the
spatial continuity term to enforce continuity of momentum as well.
We tried including a similar boundary-enforcement mechanism in
the momentum term, but we found that the slight improvement in
performance did not justify the additional cost.



Data fidelity: The values of the characteristic functionx for
some of the grid cells are known even before the optimizationstarts.
Specifically, we assignxt

i � 1 to cells containing scan points, and
we mark those as boundary cells. Values of zero and one are as-
signed to additional cells, both at initialization and during the com-
putation, as discussed in Section 4. These values are treated as hard
constraints and handled implicitly by using back-substitution, re-
moving the corresponding variables from the system.

Problem formulation: The solution to our space-time recon-
struction problem is computed by optimizing a weighted combina-
tion of spatial continuityFc and flow momentumFm, F � αFc

��1 
α �Fm, subject to the incompressibility constraints. We used
α �2�3 for the 2D�time examples, andα �1�3 for the 3D�time
ones, giving higher weight to flow smoothness. This difference of
weighting was necessary to compensate for the increased number
of spatially adjacent cells in each time frame. We observed that
when there was a lot of missing data, putting more weight on flow
momentum filled in missing areas faster, accelerating convergence.

4 Solution Mechanism

4.1 Preprocessing and Initialization

The characteristic function values for some cells can be reliably
computed without the flow computation. Initializing as manycells
as possible drastically reduces the number of variables in the func-
tional to be optimized, significantly increasing solution speed. It
also improves the solution accuracy. Therefore we do as muchpre-
processing as we can before attempting the flow computation.

We begin by computing a low-resolution visual hull for each frame,
based on the scan planes and the scanner positions and orientations.
This allows us to loosely label many outside cells. Certainly in the
presence of noise and holes, estimation of the visual hull iserror-
prone, nevertheless, at this pre-processing step high precision is not
required.

We select a small number of cells to loosely label as inside using the
following heuristic. We compute for each frame a low-resolution
unsigned distance field measuring the distance from scan data, and
select cells that are both local maxima of the distance function and
are inside the visual hull. The idea is that such cells simultaneously
lie near the medial axis of the surface and inside the visual hull, and
as such are very likely to be inside the object itself.

This is followed by a low-resolution 4D surface reconstruction, us-
ing the FEM reconstruction method of Sharf et al. [2007]. This al-
gorithm takes as input both the data points and the above described
inside/outside labels. It computes a smooth function that is nega-
tive inside the object and positive outside. At such low resolution,
this computation is very efficient. We utilize the FEM solution in
two ways. First, we use it to improve our inside/outside labeling;
we label maxima of the FEM function as outside the object and its
minima as inside. Second, we use it to assign normals to the data
points. We use these normals to modify the spatial continuity func-
tionalFc, as described below in Section 4.2. Examples of initial cell
labeling are shown in Figure 3.

4.2 Optimization

We now describe our optimization of the flow functional. We use an
Iteratively Reweighted Least Squares [Holland and Welsch 1977]
approach to handle the sub-linear exponent inFc. We introduce a
weightwt

i � j for every pair of spatially adjacent cellsxt
i andxt

j , which
is used to modify the spatial continuity functionalFc. The overall

Figure 4: Graphs demonstrating mass incompressibility and spa-
tial continuity principles on the Elephant data set(video). Left:
Our initial guess labels only few cells as inside mass per frame.
Right: Spatial continuity term propagates the initial mass through-
out the solid, while incompressibility term keeps total mass nearly
level across frames.

computation requires iteratively solving a large linear system, mod-
ifying thewt

i � j at each iteration.

Initialization: In our initial setting of weights we observe that
the discontinuities are expected to be at the boundaries of the ob-
ject. We use the data-point normals determined during the FEM
pre-processing to loosely estimate which faces of the boundary
cells point outwards, by comparing the face and data-point normals.
Then in the first iteration we optimize the spatial continuity func-
tional:

F �c �xt
i � �∑

t
∑

i�1


nwt
i �i�1�xt

i 
xt
i�1�2 (5)

where the initial value ofwt
i � j is zero if the face�i � j � is an outward

boundary face, and one everywhere else. Due to the subsequent
global optimization, local normal estimation errors have no signifi-
cant impact on the final result. In figure 4 we show that mass prop-
agates from the small initial guess (left) to the actual mass(right)
due to this continuity setting.

Iterations: After the first step the resulting distribution ofxt
i val-

ues provides some indication of where discontinuities are likely to
arise; the greater the discontinuity between two cells in the current
solution, the more likely a boundary falls there in the final result.
Iteratively Reweighted Least Squares [Holland and Welsch 1977]
suggests a principled way to use this information: we set theweight
wt

i in Equation (5) to bewt
i � �xt

i�1 
xt
i �0
8�2, using the values of

x from the previous iteration. This effectively guarantees that if the
scheme converges, the solution we have is the minimum of the orig-
inal functionalFc. To normalize the weights, we bound them from
above by 0	0010
8�2 and scale into the range (0, 10). As expected,
as the iteration proceeds the values ofxt

i become concentrated at
zero and one as desired (Figure 6).

Regularization: The matrix in the linear system we solve at
each iteration is of the form of a discrete Laplacian, and as such can
be ill-conditioned, causing numerical instability. We usea standard
regularization technique [Hansen 1998] adding the following term
to our functional:

Fr �∑�xt
i �2 �∑�vt

i � j �2 	
Fr is assigned a fairly small weight of 0	0025, since while we want
the regularization to stabilize the system, it should have little effect
on the final result.

Bootstrapping and clamping: As the flow solution is com-
puted iteratively, many of the values obtained forxt

i approach the
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Figure 5: A rotating 2D boomerang sweeps out the space-time sur-
face (a); green points show where the surface was sampled. A hori-
zontal slice represents the state of the boomerang at one time frame.
Comparing 3D RBF reconstruction (b), direct FEM reconstruction
(c), our flow reconstruction (d), we note how our flow overcomes
the unsampled frames and preserves the boomerang’s concavity.

extrema of zero and one; in fact, the linear system may also pro-
duce values ofxt

i which are negative or greater than one. In our
experiments only slight deviations occurred from the�0
1� range.
We use these extreme values ofxt

i to classify the corresponding cells
as inside or outside. In subsequent iterations we clamp the values
at these cells to be exactly one or zero, and use them as additional
data fidelity constraints, using back-substitution.

Clamping introduces some rounding error to our mass conservation,
but the error is essentially random and does not lead to a serious bias
(around 2%, as seen in Figure 4). It also enforces incompressibility;
anxt

i greater than one would represent a concentration of material
in a cell, which is not allowed in our flow formulation.

Our formulation also allows us to enforce some flow constraints via
back-substitution, further reducing the number of variables in the
system. Specifically, given a cell with value zero, we can trivially
constrain all flow incoming into the cell or outgoing from it to zero.
Similarly, if the incoming or outgoing flow for a cell sums to zero,
the cell value is set to zero.

The algorithm effectively converges when the values for allthe cells
are set by the bootstrapping. In practice, to speed up the process, we
typically stop once 90% to 95% of the cell values are set, withthe
final step of the algorithm (Section 4.3) resolving the classification
for those based on smoothness considerations.

4.3 Postprocessing

In the postprocessing step, we refine the optimal flow solution to
generate the final high resolution output surfaces. This step serves
two purposes; first, it improves the flow resolution if necessary,
and second, it replaces the characteristic function with anestimated
signed distance function, which is easier to contour. The refinement
is done on ahexadeca-tree(4D octree) so that we can increase res-
olution near the surface to account for fine details in the input data.

We use a standard least squares solver for a Laplace operatoron
the hexadeca-tree, which maximizes local space-time smoothness.
The in/out voxel labels of the flow solution are used as boundary
conditions in the Laplace system. We assign signed distancevalues
from the surface to cells in this tree based on both the flow solution
and distance to the input data points. Cells deep within the object
and cells containing data points are weighted more heavily than
cells near the surface but with no data. Thus, the space closeto the

Figure 6: Flow solution for several frames of the boomerang rota-
tion (Figure 5). Points on the 2D outline are represented by green
circles, while mass is represented by a grayscale map. Cellsdeter-
mined to be inside (resp. outside) by the solver are colored dark
blue (resp. cream). Mass concentrates on the boomerang’s shape
as the iterations progress (from left to right) even for frames with
few or no data-points (bottom row).

surface, is initialized as unknown.

The Laplace solution defines a 4D implicit function whose zero set
represents the desired 3D surface across time. To extract polygonal
surfaces, a standard marching cubes surface extraction is applied at
each temporal cross-section of the implicit field independently.

5 Solving the Linear System

To utilize the presented formulation we must efficiently handle the
large linear systems that arise during the computation. In this sec-
tion we show how we exploit the matrix block structure to compute
a solution quickly and with a minimal overhead in terms of mem-
ory. To accomplish this, we use an augmentation approach [Golub
and Greif 2003].

At each iteration our formulation yields linear systems of the form�
A BT

B 0 � �
x
v� � �

f
g�

whereA arises from the optimized functional andB reflects the con-
straints (Section 3). The matrix is large, sparse and indefinite, and
standard direct techniques based on forming theLDLT decompo-
sition with symmetric pivoting result in significant loss ofsparsity.
This in turn would lead to unreasonably large memory requirements
and prohibitive computational cost. Therefore, we use the MINRES
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Figure 7: The 2D space-time surface of a single rounded box split-
ting into two distinct round objects (see Figure 8). Sampledspace-
time surface (a). Implicit surface reconstruction using RBF (b) and
using FEM without using flow (c). Results using our incompressible
flow (d).

iterative method with a symmetric positive-definite block diagonal
preconditioner which is well suited to the problem and requires a
minimal overhead.

We set the preconditioner to be

M � �
A
�γ�1BTB 0

0 γ I��
whereγ is a scalar andI is the identity matrix. Denote the matrix
of the system byK. The matrixA

�γ�1BTB, which is a stabilized
primal Schur complement ofK, is sparse and symmetric positive-
definite. It can be shown that the preconditioned matrixM�1K has
an eigenvalue 1 of algebraic multiplicity equal to the dimension
of A. Furthermore, the negative eigenvalues of the preconditioned
matrix are all strictly between
1 and 0, and in our setting most
of them are located near
1, since nearly zero eigenvalues ofA
are mapped into eigenvalues of the preconditioned matrix that are
nearly
1 [Greif and Schötzau 2006].

This high algebraic multiplicity is crucial, since the speed of con-
vergence of MINRES (and in fact any preconditioned Krylov sub-
space method) primarily depends on how well the eigenvaluesof
the preconditioned matrix are clustered; in this case we will be able
to obtain convergence within a number of iterations which issig-
nificantly smaller than the dimensions of the linear system,and in
fact also smaller than the number of constraints.

Our numerical solution is based on inner/outer iterations.In solving
for A

�γ�1BTB (the inner iteration) we apply a conjugate gradient
solver, preconditioned with an incomplete Cholesky factorization
with a drop tolerance of 0	01. Since the discrete operatorsA and
BTB have spectral norms of approximately the same order, we set
γ � 1 throughout the computation. We solve the inner iterations
with a convergence tolerance of 10�6. The outer MINRES itera-
tions are solved with a convergence tolerance of 0	001 to 0	00001.

The use of a high drop tolerance for the incomplete factorization
and a loose outer convergence tolerance make the solver computa-
tionally inexpensive, with small iteration counts and modest mem-
ory requirements. Even in four dimensions the solver effectively
converges within fewer than a hundred outer iterations. Oursolver
implementation combines the TAUCS library [Toledo 2003] with
our own specialized MINRES solver. We can solve the system ei-
ther on a standard workstation (2GB RAM 2.4 GHz CPU), or very
quickly on a small 40-cores cluster, as described in Section6. As
a comparison, a direct parallelLDLT solver for the same problem
takes more than a day to compute the solution on the same cluster.

Figure 8: Flow iterations for the splitting object of Figure 7. De-
spite the poor sampling of the round areas, the estimation ofthe
mass is able to separate and accumulate where the round objects
are expected to be for each time step.

6 Results

We have tested our method on several real and synthetic examples,
in both 2D�time and 3D�time. In all cases our method produced
watertight surfaces with good quality completion of missing data.

2D�time results. To illustrate the merits of the flow solution,
we use some 2D�time examples. In Figures 5 and 6, we show a
two-dimensional “boomerang shaped” object moving throughtime.
We leave large portions of the moving object un-sampled in many
frames, mimicking the effects of occlusion. Furthermore, in or-
der to explore our method’s limits and robustness, we leave some
frames completely empty (Figure 6 bottom row). Observe at the
center of Figure 5 that the reconstructions generated by usual sur-
face reconstruction, such as RBF [Ohtake et al. 2003] or direct
FEM [Sharf et al. 2007], introduce large cavities where significant
data is missing. We note that while these might be valid recon-
structions of a 3D solid, they are inconsistent under our mass in-
compressibility assumption. Figure 6 illustrates the flow solution
across several frames for the boomerang example. The areas of the
final 2D cross sections are roughly equal across all frames; they
are not perfectly identical since the clamping of material values to
either zero or one at most voxels leads to rounding errors.

A similar behavior can be observed in Figures 7 and 8, which show
a two-dimensional rounded box that splits from one connected com-
ponent into two. Although there are very large chucks of missing
data, our method faithfully reconstructs the geometry. In Figure 9,
we again compare the results of our method on three other moving
and deforming 2D objects to a straightforward 3D reconstruction.
Without the mass conservation effects of the flow solution, the di-
rect reconstruction is incorrect. The input data in these examples vi-
sually demonstrate the type of problems that also occur in 3D�time
setting.

3D�time setting. We tested our method on several synthetic
and real 3D space-time data-sets, whose statistics are reported in
Table 1. For the flow computation, the spatial resolution of all of
our frames is 643. For the surface extraction, the final resolution of
the hexadeca-tree varies from 644 to 2564 depending on the model
smoothness. While this resolution is not particularly fine,it was
sufficient for the purpose of identifying inside/outside cells in our
tests.



Figure 9: Various examples of 2D shapes moving over time, sam-
pled so that large holes exist near the objects borders.Left: The
original space-time surfaces with point samples.Middle: direct
FEM surface reconstructions.Right: Reconstructions using our
incompressible flow method.

In our computations we are staying within the limit of 20 frames
at constant resolution for the flow solver which converges inabout
100 iterations. Using this framework we achieve an average compu-
tational time of one minute per-frame, roughly split into 20sec per
flow solver and 40sec post-processing on a workstation with 16GB
RAM 3.73 GHz CPU. We note that these times are an order of mag-
nitude faster than those reported by Wand et al. [2007] and about
twice as fast as those of the recent marker-based method of White
et. al. [2007]. The memory requirements of our method are up to
4.5GB for the flow-solver and up to 2GB for the post-processing.

To generate the synthetic inputs in our experiments, we use avir-
tual multi-camera that simulates a real-time laser scanner. For each
camera it shoots rays, registering the closest visible surface points
from the virtual camera position. We record only position informa-
tion for each scan point and not surface orientation.

3D�time results. Figure 1 shows the virtual scan of a running
man, using four cameras. The large holes due to occlusions are
completed in a natural manner with the space-time model.

Figure 11 shows a scan of a wooden doll, this time using only two
virtual cameras. The larger occluded regions are again completed
in a manner consistent with other frames, although this timethe
smooth completions in occluded regions are somewhat noticeable.
As demonstrated, using an implicit FEM reconstruction alone (at
1283 resolution) produces significantly inferior results.

Figure 10: Graphs showing the total mass variation across iter-
ations of the solution procedure.Top: 2D+time data. Bottom:
3D+time data.

Figure 3 shows a reconstruction of a moving hand puppet, captured
by a low resolution structured light scanner from only two view
points. The point data is noisy and has a persistent wide strip of
missing data on the sides of the head. The front-facing arm some-
times occludes the face, and the back arm is sometimes occluded.
The topology of the head and both arms is correctly reconstructed
with the flow solution, and the geometry is fairly consistent. The
thin palms of the puppet are too small to be recovered well given
the flow grid resolution.

We also tested our method on inputs for which our incompressibil-
ity assumption is only approximately satisfied, such as the garment
scans in Figures 12 and 13. Leveraging our iterative solver’s ability
to solve the system inexactly, even in the case of singularities, our
method succeeds in reconstructing these inputs and filling holes due
to occlusion. In Figure 12, we use an animation of a jumping pair
of pants [White et al. 2007] to create a simulated scan using three
cameras. The pants rotate, so that almost every part of theirsurface
is visible at some time. The flow solution accurately integrates the
data from different times.

Figure 13 shows the results of applying our method to real scans
of moving garments. The data was captured using a set of sixteen
high-definition video cameras combined with a multiview stereo
registration step [Bradley et al. 2008]. Although the scanscon-
tain holes due to occlusions, irregular sampling and noise,our flow
system successfully generates a coherent 4D volume that smoothly
varies across time and fills the missing data. Furthermore, due to
the volumetric nature of our solution, the reconstructed shapes are
always watertight manifold polygonal surfaces.

Finally, in Figure 10 we graph the mass convergence over the
course of the flow iterations. The large jump in the first iteration
arises from our initialization procedure, which marks cells known
to be either inside or lying on the boundary as having a mass of
1. After the first iteration, we have a better guess of the amount of
mass actually contained in the system. Therefore, as the iterations
progress, the total amount of mass levels out. Similarly, Figure 4
shows the mass propagation from an initial guess to the actual mass
in the last iteration. The measurements were carried on the Elephant
data set [Wand et al. 2007] shown in the accompanying video. We
note that while on this example both methods correctly reconstruct
the watertight surface, an important feature of our method is that
it allways guarantees a watertight output which is not the case for
Wand et al. [2007].



Data set Frames Avg. ppf initialized
Running man 30 21600 24	8%
Wooden doll 30 8000 20	7%

Pants 280 10100 29	8%
Puppet 200 34000 28	5%
Dress 130 31000 30	1%
T-shirt 160 35000 27	1%

Sweater 70 48000 27	3%
Elephant 20 40000 22	4%

Table 1: Number of frames, average number of boundary points
per frame (ppf), and number of cells initialized over the whole vol-
ume for the 3D�time data sets presented.

Discussion and Limitations We observed above that volume
is not perfectly preserved by our reconstruction. There aresev-
eral reasons for this. The bounded speed assumption (Section 3),
which might appear to be strictly enforced by our formulation, is
not perfectly satisfied by several of the inputs we generated, with
data moving more than one-cell distance between frames. Also,
for computational reasons and to guarantee a valid characteristic
function, we clamp material values to zero and one, potentially vi-
olating the incompressibility constraints in the process.Finally, as
described in Section 5, the convergence tolerance, chosen to pro-
vide a sensible balance between accuracy and computationalcost,
is significantly larger than the machine roundoff error.

While these considerations do mean that our solution does not pre-
cisely satisfy the assumptions of the model, this flexibility in fact
proves to be extremely useful. We can handle inputs that do not
strictly meet the speed assumption or for which the volume does
vary. Thus, when the constraints cannot be satisfied exactly, they
are satisfied in a least squares sense. Nevertheless, in all our tests
the iterative solver reached a tolerance that maintains several dec-
imal digits of accuracy. Indeed, in all our experiments we have
found that the mass conservation error, measured as the square root
of mass variance across the frames, was always less than 7% for the
2D examples and less than 2% for the 3D examples. The worst ex-
ample in 2D is shown in Figure 7, in which the object does indeed
experience a small change in mass when it splits.

While our post-processing step produces a generally smooth4D
solid, the final 3D meshes representing the time-slices of the solid
are computed independently. Thus the connectivity can change be-
tween consecutive frames. In low resolution, this can causesome
visual flickering. However, as the volume is refined, this flicker-
ing becomes less noticeable, and it eventually disappears in high
resolution. Algorithms for temporally coherent meshing are an in-
teresting research direction.

7 Conclusions

We have presented a novel volumetric approach for space-time sur-
face reconstruction that leverages the knowledge of objectbehavior
across time, to plausibly reconstruct the deforming surface despite
persistent occlusions. Based on reasonable physical assumptions
we formulate the reconstruction problem as a solution to a space-
time formulation linking together mass and flow across the entire
data sequence. We provide an efficient mechanism to solve there-
sulting optimization problem and demonstrate the viability of our
approach on a set of complex examples. We compare our recon-
struction results to those generated by extending two 3D reconstruc-
tion techniques to 2D�time (RBF and FEM) and 3D�time (FEM).
A key idea in our work is to handle the time dimension very differ-
ently than the spatial dimensions using several flow priors.Hence,
our method correctly completes gaping holes in the data which per-

sist across multiple frames.

Despite the use of a specifically tailored solver, our methodis still
not suitable for tackling very large scale problems. One avenue
for future work which will make it possible to solve problemswith
much higher resolution would be to consider a hierarchical or do-
main decomposition approach for optimizing the flow formulation.
Specific applications such as modeling moving humans [Carranza
et al. 2003; de Aguiar et al. 2007] could be enhanced by incorpo-
rating additional assumptions, such as skeletal structureor rigidity,
within the framework of material flow.
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