OpenGL Programming Guide (Addison-Wesley Publishing Company)

be logically ORed together to save any combination of client attributes.
There are two client attribute groups, feedback and select, that cannot be saved or restored with the stack mechanism.

Table 2-7 : Client Attribute Groups

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT pixel-store

GL_CLIENT VERTEX ARRAY BIT | vertex-array

GL_ALL_CLIENT _ATTRIB BITS --

can't be pushed or popped feedback

can't be pushed or popped select

Some Hints for Building Polygonal Models of Surfaces

Following are some techniques that you might want to use as you build polygonal approximations of surfaces. You might want to review this
section after you've read Chapter S on lighting and Chapter 7 on display lists. The lighting conditions affect how models look once they're drawn,

and some of the following techniques are much more efficient when used in conjunction with display lists. As you read these techniques, keep in
mind that when lighting calculations are enabled, normal vectors must be specified to get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute for experience. This section, however, lists a few pointers that
might make it a bit easier to get started.

Keep polygon orientations consistent. Make sure that when viewed from the outside, all the polygons on the surface are oriented in the same
direction (all clockwise or all counterclockwise). Consistent orientation is important for polygon culling and two-sided lighting. Try to get
this right the first time, since it's excruciatingly painful to fix the problem later. (If you use glScale*() to reflect geometry around some axis of
symmetry, you might change the orientation with glFrontFace() to keep the orientations consistent.)

When you subdivide a surface, watch out for any nontriangular polygons. The three vertices of a triangle are guaranteed to lie on a plane; any
polygon with four or more vertices might not. Nonplanar polygons can be viewed from some orientation such that the edges cross each other,
and OpenGL might not render such polygons correctly.

There's always a trade-oft between the display speed and the quality of the image. If you subdivide a surface into a small number of polygons,
it renders quickly but might have a jagged appearance; if you subdivide it into millions of tiny polygons, it probably looks good but might
take a long time to render. Ideally, you can provide a parameter to the subdivision routines that indicates how fine a subdivision you want,
and if the object is farther from the eye, you can use a coarser subdivision. Also, when you subdivide, use large polygons where the surface is
relatively flat, and small polygons in regions of high curvature.

For high-quality images, it's a good idea to subdivide more on the silhouette edges than in the interior. If the surface is to be rotated relative to
the eye, this is tougher to do, since the silhouette edges keep moving. Silhouette edges occur where the normal vectors are perpendicular to
the vector from the surface to the viewpoint - that is, when their vector dot product is zero. Your subdivision algorithm might choose to
subdivide more if this dot product is near zero.

Try to avoid T-intersections in your models (see Figure 2-16). As shown, there's no guarantee that the line segments AB and BC lie on

exactly the same pixels as the segment AC. Sometimes they do, and sometimes they don't, depending on the transformations and orientation.
This can cause cracks to appear intermittently in the surface.

V@

Undesiralie OK

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (29 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Figure 2-16 : Modifying an Undesirable T-intersection

e Ifyou're constructing a closed surface, make sure to use exactly the same numbers for coordinates at the beginning and end of a closed loop,
or you can get gaps and cracks due to numerical round-oft. Here's a two-dimensional example of bad code:

/* don't use this code */
#define PI 3.14159265
#define EDGES 30

/* draw a circle */
glBegin (GL_LINE_STRIP);
for (i = 0; 1 <= EDGES; i++)
glVertex2f (cos ((2*PI*i) /EDGES), sin((2*PI*i)/EDGES)) ;
glEnd () ;

The edges meet exactly only if your machine manages to calculate the sine and cosine of 0 and of 2*PI*EDGES/EDGES) and gets exactly
the same values. If you trust the floating-point unit on your machine to do this right, the authors have a bridge they'd like to sell you.... To
correct the code, make sure that when 1 == EDGES, you use 0 for the sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler still, use
GL_LINE_LOOP instead of GI._LINE_STRIP, and change the loop termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let's look at some example code sequences. This code concerns the
vertices of a regular icosahedron (which is a Platonic solid composed of twenty faces that span twelve vertices, each face of which is an equilateral
triangle). An icosahedron can be considered a rough approximation for a sphere. Example 2-13 defines the vertices and triangles making up an

icosahedron and then draws the icosahedron.

Example 2-13 : Drawing an Icosahedron

#define X .525731112119133606
#tdefine Z .850650808352039932

static GLfloat vdata[12] [3] = {
{-x, 0.0, 7z}, {x, 0.0, 2}, {-%X, 0.0, -2}, {X, 0.0, -2Z},
{o.0, z, x}, {o0.0, 2z, -x}, {0.0, -2, X}, {0.0, -Z, -X},
{z, x, 0.0}, {-2, X, 0.0}, {Z, -X, 0.0}, {-2, -X, 0.0}

bi

static GLuint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9.5.4}, {4,5,8}, {4,8,1},
{8,10,1}, {s8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7.2.,11} };

int i;

glBegin (GL_TRIANGLES) ;

for (1 = 0; i < 20; i++) {
/* color information here */
glVertex3fv(&vdata[tindices[1] [0]]1[0]) ;
glVertex3fv(&vdata[tindices[1] [1]1]1[01);
glVertex3fv(&vdata[tindices[1] [2]1]1[0]) ;

}

glEnd () ;

The strange numbers X and Z are chosen so that the distance from the origin to any of the vertices of the icosahedron is 1.0. The coordinates of the
twelve vertices are given in the array vdata[|[], where the zeroth vertex is {- &Xgr; , 0.0, &Zgr; }, the first is {X, 0.0, Z}, and so on. The array
tindices[][] tells how to link the vertices to make triangles. For example, the first triangle is made from the zeroth, fourth, and first vertex. If you
take the vertices for triangles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a command that sets the color of the ith face. If no code appears here, all faces are
drawn in the same color, and it'll be impossible to discern the three-dimensional quality of the object. An alternative to explicitly specifying colors
is to define surface normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only once, you should probably save the calculated vertex and
normal coordinates so that the calculations don't need to be repeated each time that the surface is drawn. This can be done using your own data

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (30 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
structures or by constructing display lists. (See Chapter 7.)

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating the normalized cross product of two vectors on that surface
provides normal vector. With the flat surfaces of an icosahedron, all three vertices defining a surface have the same normal vector. In this case, the
normal needs to be specified only once for each set of three vertices. The code in Example 2-14 can replace the "color information here" line in

Example 2-13 for drawing the icosahedron.

Example 2-14 : Generating Normal Vectors for a Surface
GLfloat d1[3], d2[3], norm[3];

for (3 = 0; J < 3; j++) {
1[j] = vdataltindices([i] [0]] [j] - vdata[tindices[i]1[1111[31;
2[j] = vdataltindices[i] [1]] [j] - vdataltindices[i] [2]]1[3];

}

normcrossprod (dl, d2, norm);
glNormal3fv(norm) ;

The function normerossprod() produces the normalized cross product of two vectors, as shown in Example 2-15.

Example 2-15 : Calculating the Normalized Cross Product of Two Vectors

void normalize (float vI[3]) {
GLfloat d = sqrt(v[0]*v[0]+vI[1]l*v[1l]l+vI[2]*vI[2]);

if (d == 0.0) {
error ("zero length vector");
return;

v([0] /= 4d; vI[1] /= d; vI2] /= d;

}

voild normcrossprod(fleoat v1[3], float v2[3], float out[3])
{

GLint 1, 7J;

GLfloat length;

out [0] = v1[1l]*v2([2] - v1([2]*v2([1l];
out [1] = v1[2]*v2[0] - v1[0]*v2([2];
out [2] = vl[O]*vZ[1 - vi[1]1*v2][0];
normallze(ut) ;

}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use normal vectors that are perpendicular to the true surface
of the sphere, rather than being perpendicular to the faces. For a sphere, the normal vectors are simple; each points in the same direction as the
vector from the origin to the corresponding vertex. Since the icosahedron vertex data is for an icosahedron of radius 1, the normal and vertex data is
identical. Here is the code that would draw an icosahedral approximation of a smoothly shaded sphere (assuming that lighting is enabled, as
described in Chapter 5):

glBegin (GL_TRIANGLES) ;

for (1 = 0; i < 20; i++) {
glNormal3fv (&vdata [tindices[i] [0]] [0])
glVertex3fv(&vdata [tindices[i] [0]] [0])
glNormal3fv(&vdata [tindices [i] [1]] [0]);
glVertex3fv(&vdata [tindices[i] [1]] [0])
glNormal3fv (&vdata [tindices[i] [2]] [0])
glVertex3fv (&vdata [i1 [2]]1 [0])

— e,

tindices

}

glEnd () ;
Improving the Model

A twenty-sided approximation to a sphere doesn't look good unless the image of the sphere on the screen is quite small, but there's an easy way to
increase the accuracy of the approximation. Imagine the icosahedron inscribed in a sphere, and subdivide the triangles as shown in Figure 2-17. The

newly introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing them (dividing them by a factor to make them
have length 1). This subdivision process can be repeated for arbitrary accuracy. The three objects shown in Figure 2-17 use 20, 80, and 320

approximating triangles, respectively.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (31 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 2-17 : Subdividing to Improve a Polygonal Approximation to a Surface

Example 2-16 performs a single subdivision, creating an 80-sided spherical approximation.

Example 2-16 : Single Subdivision

voild drawtriangle (float *vl, float *v2, float *v3)
{
glBegin (GL_TRIANGLES) ;
glNormal3fv(vl); vlVertex3fv(vl);
glNormal3fv(v2); vlVertex3fv(v2);
glNormal3fv(v3); vlVertex3fv(v3);
glEnd () ;

}

voild subdivide (float *vl, float *v2, float *v3)

{

GLfloat v12([3], v23[3], v31[3];

GLint 1;

for (1 = 0; i < 3; i++) {
v12[i] = v1[i]+v2([di];
v23[1i] = v2[1i]+v3[1i];
v31[i] v3[i]+vl[i];

normalize (v12) ;
normalize (v23) ;
normalize (v31)
drawtriangle (vl, v12, v31);
drawtriangle (v2, v23, v12);
drawtriangle (v3, v31, v23);
drawtriangle (v12, v23, v31l);

I

}

for (1 = 0; i < 20; i++) {
subdivide (&vdata[tindices [1] [0]] [0],
&vdata[tindices[i] [1]] [O],
&vdata[tindices[i] [2]] [0]) ;

}

Example 2-17 is a slight modification of Example 2-16 which recursively subdivides the triangles to the proper depth. If the depth value is 0, no
subdivisions are performed, and the triangle is drawn as is. If the depth is 1, a single subdivision is performed, and so on.

Example 2-17 : Recursive Subdivision
void subdivide(float *vl, float *v2, float *v3, long depth)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (32 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GLfloat v12([3], v23[3], v31[3];

GLint 1;

if (depth == 0) {
drawtriangle (vl, v2, v3);
return;

for (1 = 0; i < 3; i++) {

v12[i] = vi[il+v2[i];

v23[i] = v2[i1+v3[i];

v31[i] = v3[il+vl[i];
}
normalize (v12) ;
normalize (v23) ;
normalize(vBl)
subdivide (v v12, v31, depth-1);
subdivide (v v23, v12, depth-1);
subdivide (v v31l, v23, depth-1);
subdivide(le v23, v31l, depth-1);

}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-17 can be used for other types of surfaces. Typically, the recursion ends

either if a certain depth is reached or if some condition on the curvature is satisfied (highly curved parts of surfaces look better with more
subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary surface parameterized by two variables u[0] and u[1].
Suppose that two routines are provided:

void surf (GLfloat ul[2], GLfleoat vertex[3], GLfloat normal [3]) ;
float curv(GLfleat ul2]) ;

If surf() is passed u[], the corresponding three-dimensional vertex and normal vectors (of length 1) are returned. If u[] is passed to curv(), the
curvature of the surface at that point is calculated and returned. (See an introductory textbook on differential geometry for more information about
measuring surface curvature.)

Example 2-18 shows the recursive routine that subdivides a triangle either until the maximum depth is reached or until the maximum curvature at
the three vertices is less than some cutoff.

Example 2-18 : Generalized Subdivision

voild subdivide (float ul[2], fleocat u2[2], float u3[2],
float cutoff, long depth)
{

GLfloat v1([3], v2([3], v3[3], nl[3], n2[3], n3[3];
GLfloat ul2([2], u23[2], u32(2];
GLint 1;

if (depth == maxdepth || (curv(ul) < cutoff &&
curv(u2) < cutoff && curv(u3) < cutoff)) {
gsurf(ul, vl, nl); surf(u2, v2, n2); surf(uid, v3, n3);
glBegin (GL_POLYGON) ;
glNormal3fv(nl); glVertex3fv(vl);
glNormal3fv(n2); glVertex3fv(v2);
glNormal3fv(n3); glVertex3fv(v3);

glEnd () ;
return;

}

for (1 = 0; i < 2; i++) |
ul2[i] = (ul[i] + u2[il)/2.0;
u23[i] = (u2[i] + u3[il)/2.0;
u3l[i] = (u3[i] + ullil)/2.0;

subdivide (ul, ul2, u3l, cutoff, depth+l);
subdivide (u2, u23, ul2, cutoff, depth+l);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (33 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

subdivide (u3, u3l, u23, cutoff, depth+l);
subdivide (ul2, u23, u3l, cutoff, depth+l);

+ OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (34 of 34) [4/28/2000 9:44:40 PM]

