
1

ECS 189
WEB PROGRAMMING

4/19

Weather App, 2017

Davis, CA

April 17

Rain
65

April 18

Rain
65

April 19

Sunny
68

April 20

Sunny
70

April 21

Cloudy
68

Zip code or place

Moving an element

!  CSS “position” properties allow you to change
where flexbox decided to put items.

!  Use as last resort for static designs
!  Very handy for allowing Javascript to move stuff!
!  I was going to use
position: absolute;
!  Which lets you specify the position of an element

within its parent’s box. But there is an easier way!

CSS position property

position: relative;

!  First, lets flexbox determine position of element;
then, we specify offsets (left, right, top, bottom)
from that position.

!  And, we can specify the offsets using Javascript!

Now we need to change it

!  For a change, “left” in CSS corresponds to “left” in
Javascript!

left = left+10;
steppy.style.left = left+"px”;
!  Marches off the right side – woops!
!  To make it disappear as it hits the edge of the box,

set the parent container (#range) to have:
overflow: hidden;

Stop before the end

!  Get the width of the parent box so we know when
we’re getting ready to hit the end.
 var container = steppy.parentElement;
 var width = container.clientWidth;

!  Test to see if near far right before moving.
 if (left < width-225) {
 left = left+10;
 }

2

Special characters

!  Use unicode encoding for characters that don’t
appear on the keyboard, eg:

<p> 63 ° </p>

…to get 63 degrees. Some people used

🔍 for the search magnifying glass in the
last assignment, but it is not supported in all fonts.

Organize code using objects

!  We want to organize collections of data and
functions that act on that data.

!  Organizing data is one way of forcing ourselves to
keep our code organized, which is part of the
eternal battle against bugs.

!  Since objects can contain methods (functions), we
can also use objects to organize the functions as
well.

!  In object-oriented programming, almost all the
code is inside objects.

A forecast object

var forecast = {
 “id”: 1,

 ”description": “sunny",
 “temp”: 66

};

!  We’re defining the object by giving a literal – a
text representation of its contents – and putting
those contents into a variable.

Literal

!  A literal in a computer language is the string used
for writing down a fixed value.
! “2” is a number literal
! “true” is a Boolean literal
!  ‘ “cow” ‘ is a string literal
!  {“cow”:2} is an object literal

A question object

var forecast = {
 “id”: 1,

 ”description": “sunny",
 “temp”: 66

};

!  We access the properties as usual, with the dot, eg.
 forecast.id == 1; /* this will be true */

A question object

var forecast = {
 “id”: 1,

 ”description": “sunny",
 “temp”: 66

};

!  We can also access the properties with brackets
 forecast[id] == 1; /* this will be true */

3

What are objects “really”?

!  A Javascript object is …
!  a Python dictionary!
!  In C, you’d use a hashtable (or some other

Dictionary data structure that lets you look up data
using a string).

!  How is this different from a struct?

What are objects “really”?

!  A Javascript object is …
!  a Python dictionary!
!  In C, you’d use a hashtable (or some other

Dictionary data structure that lets you look up data
using a string).

!  How is this different from a struct?
! A struct has a fixed set of properties, stored in an

array.
! You can put in and take out properties of a Javascript

object on the fly

For example…

var forecast = {

 “id”: 1,

 ”description": “sunny",
 “temp”: 66

};

forecast.low = 58;
!  We give the forecast a property “low”, and put the

number 58 into it.
!  We can now access “low” just like any other

property.

Better way to organize it

var forecast = {

 “id”: 1,

 ”description": “sunny",
 “temp”: {

 “high”: 66,

 “low”: 58

 }

};

!  An object one of whose properties is an object

Using a hierarchy of objects

forecast.temp.low == 58;
/* this would be true */

!  Javascript arrays can also be defined by giving a
literal.

var arr = [1,2,3]; /* array containing 1,2 and 3 */

Objects can contain arrays

var forecast = {
 “id”: 1,

 ”description": “sunny",
 “temp”: { “high”: 66, “low”: 58},
 “hourly”: {58, 59, 60, 62, 62, 66, 65}
 // temps noon through 6pm

};
!  How to access temperature at 2pm?

4

Objects can contain arrays

var forecast = {
 “id”: 1,

 ”description": “sunny",
 “temp”: { “high”: 66, “low”: 58},
 “hourly”: {58, 59, 60, 62, 62, 66, 65}
 // temps noon through 6pm

};

forecast.hourly[2] == 60; //true!

JSON = Object literals

!  Data is transmitted between the different computers
making up a Web application in a format called
JSON.

!  The JSON format is a Javascript object literal
!  You can use a JSON string to initialize an object

JSON.parse method to make objects

cattleJSON = ’ {"cow": "herford", \
"num": 2 }';

cattleObj = JSON.parse(cattleJSON);

!  JSON.parse() takes JSON as input. Produces the
corresponding object. What does “parse” mean?

JSON.parse method to make objects

cattleJSON = ’ {"cow": "herford", \
"num": 2 }';

cattleObj = JSON.parse(cattleJSON);

!  Note the “\” – lets a string extend over multiple
lines.

!  The “\” tells the Javascript interpreter to ignore the
newline.

JSON.stringify for obj->JSON

cattleObj = {"cow": "herford",
"num": 2 };

cattleJSON = JSON.stringify(cattleObj);

!  JSON.stringfy() takes object as input. Produces the
corresponding JSON string.

