ECS 189
WEB PROGRAMMING

Photobooth

H5/15

O A photo storage site that knows something about
what the photos are of.

O This week: upload photos, put into database, edit
tags interactively.

o0 Work in groups of up to three; due Mon 22.

Photobooth

Our Server does 3 things

O We looked on Friday at using the browser’s
XMLHttpRequest and formData objects to upload
image files.

o0 Today we look at the server side, then creation of
database.

GET request, http://138.68.25.50 :222/pathname

O gives a static file, pathname is based at /public, or 400
message if no such file exist

GET request, http://138.68.25.50.222 /query?img=hula

O returns labels associated with image named hula.jpg or
hula.jpeg, or 400 message if no such image on server

PUT request to http://138.68.25.50.222/

o uploads an image to /public and responds with a 201
message if successful or 500 message if not

Pipeline so far

A server using express

GET static file? GET /query? pUT?

U Il ¢y

upload
problem

[success J[bad query } [success }

|

0 May need to add some error handling

O Express gives us an alternative syntax for writing a
server:

var express = require('express');
var formidable = require('formidable');
// for using forms

var app = express();

O app is now an express server object

Static server in express

Pipeline stage for queries

app.use(express.static('public'));

O The 4 rather dense lines we had in Node are
encapsulated into one nice library function

O “use” in express puts the function inside the parens
into a pipeline of functions that are called on the
(request, response) pair for a given HTTP request

O Pipeline functions are called “middleware”

O static exits if it finds the file, but not all middleware
functions do

o This is our own query handling bit. Also exits if it
succeeds. answer and sendCode are our functions.

dpp.gef('/query', function (request, response)
{ console.log("query");
query = request.url.split("2")[1]; // get query string
if (query) {
answer(query, response); }
else { sendCode(400, response,”bad query”); }});

Pipeline stage for PUT requests

What to do with files2

app.post('/', function (request, response){
var form = new formidable.IncomingForm();
form.parse(request); // get file handle, name
// two anonymous callback functions
form.on('fileBegin', function (name, file)
{ file.path = __dirname + '/public/' +
file.name; }); // direct to file in /public
form.on(’end’, function ()
{ console.log(success’);

sendCode(201,response,'recieved file'); }); });

o Since we stored the files in /public, they are
available to the browser (and anyone else...)
already:

http://138.68.25.50:222/hula.jpg

o So photobooth can display any uploaded image
just by setting the “src” field on an image element of
the DOM

Faded image

Faded image

0 When uploading and processing the image, which
will take a bit of time, Dani’s design calls for us to
display a faded version of the image.

O But it’s not yet available at the URL on the server!

o0 We have the file name on the client machine that is
running the browser. We can't just set “src” to that
file name. Why not?

0 We have the file name on the client machine that is
running the browser. We can’t just set “src” to that
file name. Why not?

o In general, the browser does not have access to files
on a user’s machine.

o For instance, | don’t want to give every Website |
look at access to your grades. This would be a huge
security hole.

o So what to do?

Faded image

See fader.html

0 The user gave us access to a file handle for this
particular file.

O File handles are what let us read data.
o So let’s read in the datal
O Again, access Javascript functionality via an object

O Again, file reading is an asynchronous action (going
to disk takes time, although orders of magnitude
less than going over the internet), so we use a
callback function

var selectedFile =
document.getElementByld('fileSelector').files[0];

var image = document.getElementByld('thelmage');

var fr = new FileReader();

// anonymous callback run when file load is complete
fr.onload = function ()

{ image.src = fr.result; };
frreadAsDataURL(selectedFile); // begin reading

Photobooth once we have pictures

Databases

0 Once the user has uploaded some pictures,
Photobooth should remember that they are there

0 When it comes up, it should display all the photos it
has

0 Needs to remember a list of image files on server,
and ultimately also their labels and whether they
are favorites or not

o Time for a database!

o A database is

O A file, or collection of files, storing data, usually on a
server’s disks

o Software for interfacing to that data

O Files are stored on disks and (when not in a
database) are read from beginning to end

o Say we're looking for something near the end, or in
the middle, even. This can take forever.

O Databases generally have an in index to help you
find things quickly

A big database

Photo upload

server Index
memory

server I
disk I .

/\
upload e~

photo
photobooth.db

~N N -

e
4

/public

N~

Server

Photo upload

o
oo A

photobooth.db

~N N

Server A

"

4 &

o
o A

photobooth.db

N N

Server A

"

Startup

Startup

When photobooth starts, needs a list of photos

list of

filenames photobooth.db

Server

Static Server

/public

When photobooth starts, needs a list of photos

list
response

o
oo A

photobooth.db
~ N -

Server /\

-

Photos requested as static files

Photos requested as static files

image
request

o
oo A

photobooth.db

S~ -

Server

Static Server

N

/public

~N_ S

photobooth.db

Server

Static Server

/public

Photos requested as static files

Database

T
~— 3

photobooth.db

v

Server T

<:’ "

O A database is made up of tables
O A table is similar to a spreadsheet

o Columns can contain arrays or strings as well as

numbers
imageFile labels favorite
hula.jpg Dance, Performing 1
Arts, Sports,
Entertainment
eagle.jpg Bird, Beak, Bird Of |0
Prey, Eagle

SQL

sqlite3

O Most databases support SQL as the API for the
software interface between the user and the data

o SQL is a declarative language — you specify what
you want, not what computations the database
should use to get it for you.

O Let the clever database programmers figure out the
best way to get the data

O Loose standard, many variants

O sqlite3 is a node database module

o It implements the database as a single file, although
it uses fancy file access techniques to be able to
pick out records in the middle, using an index

o Node module for sqlite3 gives us an SQL interface
we can use in our Javascript code

o We'll only need to initialize the database once, so
we write a stand-alone node program to do this

o Our server later will open the database and make
SQL queries to add photos, add labels, etc.

Connecting with sqlite

Making a table in the database

O Install sqlite3 (npm install squlite3)

O Require it at the top of the file

o Open a database file:
var dbFile = "photos.db”;
var db = new sqlite3.Database(dbFile);

o db is now a variable that has methods to run SQL
commands.

O Stuff written to the database by our program will
be stored in the file “photos.db”

o Our database will contain one table

0 SQL CREATE command makes a table, defines its
columns:

CREATE TABLE PhotolLabels (fileName TEXT , labels
TEXT, favorite INT)

Issuing SQL commands

Primary key

O In node.s, we put the command into a string, and we
pass the string to the db object:

var cmdStr = "CREATE TABLE Photos (fileName TEXT,
labels TEXT, favorite INT)";

db.run(cmdStr);

(Javascript is pink and SQL is green)

O Rows correspond to photos
o This will be the primary way we look up data

O Insist each row in this column has to be unique; we
don’t want two rows for same file

O Insist it has to not be null (present in all records)

O Define it as the primary key = easiest thing to
access via the index

fileName TEXT UNIQUE NOT NULL PRIMARY KEY

Wednesday: more database

