
1

ECS 189
WEB PROGRAMMING

5/15

Photobooth

!  A photo storage site that knows something about
what the photos are of.

!  This week: upload photos, put into database, edit
tags interactively.

!  Work in groups of up to three; due Mon 22.

Photobooth

!  We looked on Friday at using the browser’s
XMLHttpRequest and formData objects to upload
image files.

!  Today we look at the server side, then creation of
database.

Our Server does 3 things

GET request, http://138.68.25.50 :???/pathname

!  gives a static file, pathname is based at /public, or 400
message if no such file exist

GET request, http://138.68.25.50.???/query?img=hula

!  returns labels associated with image named hula.jpg or
hula.jpeg, or 400 message if no such image on server

PUT request to http://138.68.25.50.???/

!  uploads an image to /public and responds with a 201
message if successful or 500 message if not

Pipeline so far

GET static file? GET /query? PUT?

success

failure

success bad query

no
query

success

!  May need to add some error handling

upload
problem

A server using express

!  Express gives us an alternative syntax for writing a
server:

var express = require('express');
var formidable = require('formidable');

 // for using forms
var app = express();

!  app is now an express server object

2

Static server in express

app.use(express.static('public'));

!  The 4 rather dense lines we had in Node are
encapsulated into one nice library function

!  “use” in express puts the function inside the parens
into a pipeline of functions that are called on the
(request, response) pair for a given HTTP request

!  Pipeline functions are called “middleware”
!  static exits if it finds the file, but not all middleware

functions do

Pipeline stage for queries

!  This is our own query handling bit. Also exits if it
succeeds. answer and sendCode are our functions.

app.get('/query', function (request, response)
{ console.log("query");
 query = request.url.split("?")[1]; // get query string
if (query) {
 answer(query, response); }
 else { sendCode(400, response,”bad query”); }});

Pipeline stage for PUT requests

app.post('/', function (request, response){
 var form = new formidable.IncomingForm();
form.parse(request); // get file handle, name
 // two anonymous callback functions
 form.on('fileBegin', function (name, file)

 { file.path = __dirname + '/public/' +
 file.name; }); // direct to file in /public

 form.on(’end', function ()
 { console.log(’success’);
 sendCode(201,response,'recieved file'); }); });

What to do with files?

!  Since we stored the files in /public, they are
available to the browser (and anyone else…)
already:
 http://138.68.25.50:???/hula.jpg

!  So photobooth can display any uploaded image
just by setting the “src” field on an image element of
the DOM

Faded image

!  When uploading and processing the image, which
will take a bit of time, Dani’s design calls for us to
display a faded version of the image.

!  But it’s not yet available at the URL on the server!
!  We have the file name on the client machine that is

running the browser. We can’t just set “src” to that
file name. Why not?

Faded image

!  We have the file name on the client machine that is
running the browser. We can’t just set “src” to that
file name. Why not?

!  In general, the browser does not have access to files
on a user’s machine.

!  For instance, I don’t want to give every Website I
look at access to your grades. This would be a huge
security hole.

!  So what to do?

3

Faded image

!  The user gave us access to a file handle for this
particular file.

!  File handles are what let us read data.
!  So let’s read in the data!
!  Again, access Javascript functionality via an object
!  Again, file reading is an asynchronous action (going

to disk takes time, although orders of magnitude
less than going over the internet), so we use a
callback function

See fader.html

var selectedFile =
document.getElementById('fileSelector').files[0];

var image = document.getElementById('theImage');
var fr = new FileReader();

// anonymous callback run when file load is complete
fr.onload = function ()

 { image.src = fr.result; };
fr.readAsDataURL(selectedFile); // begin reading

Photobooth once we have pictures

!  Once the user has uploaded some pictures,
Photobooth should remember that they are there

!  When it comes up, it should display all the photos it
has

!  Needs to remember a list of image files on server,
and ultimately also their labels and whether they
are favorites or not

!  Time for a database!

Databases

!  A database is
! A file, or collection of files, storing data, usually on a

server’s disks
! Software for interfacing to that data

!  Files are stored on disks and (when not in a
database) are read from beginning to end

!  Say we’re looking for something near the end, or in
the middle, even. This can take forever.

!  Databases generally have an in index to help you
find things quickly

A big database

Index server
memory

server
disk

Photo upload

Server

photobooth.db

/public

upload
photo

4

Photo upload

Server

photobooth.db

/public

name

image

Static Server

Startup

Server

photobooth.db

/public
Static Server

startup

Startup

When photobooth starts, needs a list of photos

Server

photobooth.db

/public
Static Server

list of
filenames

Startup

When photobooth starts, needs a list of photos

Server

photobooth.db

/public
Static Server

list
response

Photos requested as static files

Server

photobooth.db

/public
Static Server

image
request

image
request

Photos requested as static files

Server

photobooth.db

/public
Static Server

5

Photos requested as static files

Server

photobooth.db

/public
Static Server

Database

!  A database is made up of tables
!  A table is similar to a spreadsheet
!  Columns can contain arrays or strings as well as

numbers

imageFile labels favorite

hula.jpg Dance, Performing
Arts, Sports,
Entertainment

1

eagle.jpg Bird, Beak, Bird Of
Prey, Eagle

0

SQL

!  Most databases support SQL as the API for the
software interface between the user and the data

!  SQL is a declarative language – you specify what
you want, not what computations the database
should use to get it for you.

!  Let the clever database programmers figure out the
best way to get the data

!  Loose standard, many variants

sqlite3

!  sqlite3 is a node database module
!  It implements the database as a single file, although

it uses fancy file access techniques to be able to
pick out records in the middle, using an index

!  Node module for sqlite3 gives us an SQL interface
we can use in our Javascript code

!  We’ll only need to initialize the database once, so
we write a stand-alone node program to do this

!  Our server later will open the database and make
SQL queries to add photos, add labels, etc.

Connecting with sqlite

!  Install sqlite3 (npm install squlite3)
!  Require it at the top of the file
!  Open a database file:

 var dbFile = "photos.db”;
 var db = new sqlite3.Database(dbFile);
!  db is now a variable that has methods to run SQL

commands.
!  Stuff written to the database by our program will

be stored in the file “photos.db”

Making a table in the database

!  Our database will contain one table
!  SQL CREATE command makes a table, defines its

columns:

CREATE TABLE PhotoLabels (fileName TEXT , labels
TEXT, favorite INT)

6

Issuing SQL commands

!  In node.js, we put the command into a string, and we
pass the string to the db object:

 var cmdStr = "CREATE TABLE Photos (fileName TEXT ,
labels TEXT, favorite INT)";

db.run(cmdStr);

(Javascript is pink and SQL is green)

Primary key

!  Rows correspond to photos
!  This will be the primary way we look up data
!  Insist each row in this column has to be unique; we

don’t want two rows for same file
!  Insist it has to not be null (present in all records)
!  Define it as the primary key = easiest thing to

access via the index

fileName TEXT UNIQUE NOT NULL PRIMARY KEY

Wednesday: more database

