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ECS 189 
WEB PROGRAMMING 

5/26 

Photobooth 

!  Part 1 was hard; well done! 
!  Part 2:  

! Tuesday: Add automatic Google Cloud Vision labels, 
filtering by label.   

! Favorites are 2 points extra credit (buttons can do 
nothing otherwise).   

! 25 points total, comprehensive.   
! TAs will do interactive grading.  
! Can be handed in late, by midnight 6/7, for 2 points 

off.  

Exams 

!  Midterm 6/2; TAs will proctor it 
!  I will email you random seat numbers the night 

before, to your ucdavis.edu address 
!  Will cover today’s material 

!  If you are satisfied with your scores on the two 
midterms, you can skip the final 

!  As soon as your Photobooth and midterm are 
graded, I can give you your course grade (so far) 
so you can decide 

Cloud Vision API – the magic 

Google Web services 

!  The Cloud Vision API is one of many Google Web 
services 

!  To use it, you need a paying developer account on 
Google, and you’ll need to set that up with a credit 
card 

!  Instructions on Web site with Part 2 instructions 

Lots of ways to use GCV API 

!  We’ll use the very simplest 
!  Google issues you an API key (a code that identifies 

us) 
!  You include the API key in the URL of every GET or 

POST request you make: 

url = 'https://vision.googleapis.com/v1/
images:annotate?key=??????????????????'; 
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What are the security issues? What are the security issues? 

!  Someone snooping on the internet can see the API 
key, and make expensive GCV calls that get 
charged to your card 

!  Not clear it would be worth it to anyone… 
!  Google has several other authentication mechanisms 

that avoid this problem, which we will not use 

Using the API 

!  Follows the usual 4-step plan 
! Make up request  
! Set up callback 
! Send off request 
! Handle result in callback 

!  But as usual has it’s quirks 

The HTTP request 

!  Use a POST request 

!  JSON in body gives 
information about 
request, and URL of 
image to analyze 

{  "requests": [     
{"image": {   

"source": {"imageUri":  
http://138.68.25.50:????/hula.jpg} 

},       
"features":  [ 

{"type": "LABEL_DETECTION" }]    }  ]} 

HTTP  POST 
content-type:  application/json 
url:  vision.googleapis.com/v1/

images:annotate?key=??????????????????'; 

Node request function  

!  To build a server HTTP request using Node, the 
usual way is to use the node request module 
 npm request 

!  This gives us the request function 
!  The functionality here is exactly the same as using 

the XMLHttpRequest object in the browser, but 
because this is the Web everything looks 
different… 

Where are the four parts?  

 request( { 
 url: url, 
 method: "POST",  
 headers: {"content-type": "application/json”} 

   json: requestObject },             
  // second operand is callback  
 APIcallback ); 
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Callback function 

function APIcallback(err, APIresponse, body) {     
 if ((err) || (APIresponse.statusCode != 200)) { 
  console.log("Got API error");     
 } else {         
  APIresponseJSON = body.responses[0];        

 console.log(APIresponseJSON);     
}} 

Example response 

{ labelAnnotations:    [  

 { mid: '/m/026bk', description: 'dance', score: 0.8921945 },      

 { mid: '/m/05qjc',       description: 'performing arts',       score: 
0.87477195 },      

 { mid: '/m/06ntj', description: 'sports', score: 0.7928343 },      

 { mid: '/m/02jjt',       description: 'entertainment',       score: 
0.7739482 },      

 { mid: '/m/02_5v2',       description: 'quinceañera',       score: 
0.70231736 }  

] } 

How should we use this?  How should we use this?  
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How should we use this?  

!  Request to GCV goes in Step 3 of this sequence 
!  Photo upload handler function in server (case 3 in 

tripleThreatServer) 
! Be sure to put it after the image is fully uploaded (in 

the form.on(‘end’, function() { ….) function 
! Why?  

!  Callback for GCV goes where?  

How should we use this?  

!  Request to GCV goes in Step 3 of this sequence 
!  Photo upload handler function in server (case 3 in 

tripleThreatServer) 
! Be sure to put it after the image is fully uploaded (in 

the form.on(‘end’, function() { ….) function 
! Why?  

!  Callback for GCV goes where? 
!  Also in the upload handler function, since it needs to 

send a response back to browser; it needs the other 
response object for the browser’s POST request!  
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Flow of operations 
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Warning! TWO response objects 

!  Make sure they have two different, descriptive 
names, such as browserResponse and APIresponse 
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What to do on the browser side?  What to do on the browser side?  

!  Get browser response, extract labels 
!  Make image source be server URL, display un-

faded 
!  Show labels 
!  Add onclick function to hamburger, deletion x’s 

Faking it when not needed 

!  If you’re worried about racking up costs, we can 
have the function calling the API fake it when not 
needed 

!  Make a global Booelan variable “LIVE” 
!  When true, do real call with real callback 

Fake call 

if (LIVE) {  
 … 

} else {  
 setTimeout(fakeAPIcallback, 2000);     

} 
!  setTimeout() sets a callback that will be called in 

2000 ms (2 seconds) 
!  fakeAPIcallback displays fake data in correct 

format 

It’s all downhill from there! 


