
1

ECS 189
WEB PROGRAMMING

5/26

Photobooth

!  Part 1 was hard; well done!
!  Part 2:

! Tuesday: Add automatic Google Cloud Vision labels,
filtering by label.

! Favorites are 2 points extra credit (buttons can do
nothing otherwise).

! 25 points total, comprehensive.
! TAs will do interactive grading.
! Can be handed in late, by midnight 6/7, for 2 points

off.

Exams

!  Midterm 6/2; TAs will proctor it
!  I will email you random seat numbers the night

before, to your ucdavis.edu address
!  Will cover today’s material

!  If you are satisfied with your scores on the two
midterms, you can skip the final

!  As soon as your Photobooth and midterm are
graded, I can give you your course grade (so far)
so you can decide

Cloud Vision API – the magic

Google Web services

!  The Cloud Vision API is one of many Google Web
services

!  To use it, you need a paying developer account on
Google, and you’ll need to set that up with a credit
card

!  Instructions on Web site with Part 2 instructions

Lots of ways to use GCV API

!  We’ll use the very simplest
!  Google issues you an API key (a code that identifies

us)
!  You include the API key in the URL of every GET or

POST request you make:

url = 'https://vision.googleapis.com/v1/
images:annotate?key=??????????????????';

2

What are the security issues? What are the security issues?

!  Someone snooping on the internet can see the API
key, and make expensive GCV calls that get
charged to your card

!  Not clear it would be worth it to anyone…
!  Google has several other authentication mechanisms

that avoid this problem, which we will not use

Using the API

!  Follows the usual 4-step plan
! Make up request
! Set up callback
! Send off request
! Handle result in callback

!  But as usual has it’s quirks

The HTTP request

!  Use a POST request

!  JSON in body gives
information about
request, and URL of
image to analyze

{ "requests": [
{"image": {

"source": {"imageUri":
http://138.68.25.50:????/hula.jpg}

},
"features": [

{"type": "LABEL_DETECTION" }] }]}

HTTP POST
content-type: application/json
url: vision.googleapis.com/v1/

images:annotate?key=??????????????????';

Node request function

!  To build a server HTTP request using Node, the
usual way is to use the node request module
 npm request

!  This gives us the request function
!  The functionality here is exactly the same as using

the XMLHttpRequest object in the browser, but
because this is the Web everything looks
different…

Where are the four parts?

 request({
 url: url,
 method: "POST",
 headers: {"content-type": "application/json”}

 json: requestObject },
 // second operand is callback
 APIcallback);

3

Callback function

function APIcallback(err, APIresponse, body) {
 if ((err) || (APIresponse.statusCode != 200)) {
 console.log("Got API error");
 } else {
 APIresponseJSON = body.responses[0];

 console.log(APIresponseJSON);
}}

Example response

{ labelAnnotations: [

 { mid: '/m/026bk', description: 'dance', score: 0.8921945 },

 { mid: '/m/05qjc', description: 'performing arts', score:
0.87477195 },

 { mid: '/m/06ntj', description: 'sports', score: 0.7928343 },

 { mid: '/m/02jjt', description: 'entertainment', score:
0.7739482 },

 { mid: '/m/02_5v2', description: 'quinceañera', score:
0.70231736 }

] }

How should we use this? How should we use this?

 POST

JSON

Upload
Button
Function Upload

Handler

Browser
Callback

GCV
API

GCV
Callback

JSON

 POST 1

2

3

4

5

How should we use this?

!  Request to GCV goes in Step 3 of this sequence
!  Photo upload handler function in server (case 3 in

tripleThreatServer)
! Be sure to put it after the image is fully uploaded (in

the form.on(‘end’, function() { ….) function
! Why?

!  Callback for GCV goes where?

How should we use this?

!  Request to GCV goes in Step 3 of this sequence
!  Photo upload handler function in server (case 3 in

tripleThreatServer)
! Be sure to put it after the image is fully uploaded (in

the form.on(‘end’, function() { ….) function
! Why?

!  Callback for GCV goes where?
!  Also in the upload handler function, since it needs to

send a response back to browser; it needs the other
response object for the browser’s POST request!

4

Flow of operations

Browser Google
browser
POST

Server Upload Handler

Flow of operations

Browser Google

browser
POST

browser
response

Server Upload Handler

Flow of operations

Browser Google

browser
POST

browser
response

API
POST

Server Upload Handler

Flow of operations

Browser Google

browser
POST

browser
response

Server Upload Handler

API
response

Warning! TWO response objects

!  Make sure they have two different, descriptive
names, such as browserResponse and APIresponse

Browser Google

browser
POST

browser
response

Server Upload Handler

API
response

Flow of operations

Browser Google

Server Upload Handler

browser
response

5

What to do on the browser side? What to do on the browser side?

!  Get browser response, extract labels
!  Make image source be server URL, display un-

faded
!  Show labels
!  Add onclick function to hamburger, deletion x’s

Faking it when not needed

!  If you’re worried about racking up costs, we can
have the function calling the API fake it when not
needed

!  Make a global Booelan variable “LIVE”
!  When true, do real call with real callback

Fake call

if (LIVE) {
 …

} else {
 setTimeout(fakeAPIcallback, 2000);

}
!  setTimeout() sets a callback that will be called in

2000 ms (2 seconds)
!  fakeAPIcallback displays fake data in correct

format

It’s all downhill from there!

