ECS 189
WEB PROGRAMMING

Announcements

s

o Today:

O Server and node.js
0 Remainder of class organized around larger project
o Do it in several steps

o This week: first server, static Web pages

Server

_— = Server =
Database Huffington Post

Broswer

O We write server and browser code

0 Database can be running on same machine as
server, but the interface to it is something like an API
call

o The HTML, CSS an Javascript that run on the
browser are usually downloaded from a server,
over the internet.

O A typical Web page generates queries that are
sent to the browser, similar to the APl calls we made
in the the Weather App.

o So the server has to generate JSON responses and
send them to the browser. These are called AJAX
queries (Asynchronous JavaScript and XML...but
we'll use JSON instead of XML).

Our server

Node.js

0 We're using a cloud server from a company called
Digital Ocean
o Our server has the elegant name:
138.68.25.50
o Getting it a real name would have cost us more
money....soon this name will be very familiar to
you.

o Our server is a Unix machine, like most (but not all)
servers

o Our server code will be written using node.js.

o Node.js is a way to run Javascript programs from
the Unix command line:

node index.js

...runs the Javascript program in the file index.js.

Node.js

Life before Node.js

o Node.js runs on several OS’s

O It uses V8, Google’s Javascript compiler (the
compiling is going on under the hood, you
never see it, unlike C which you have to
compile yourself)

O The classic Web browser runs on what was called
the LAMP stack:

Linux, Apache (Web server), MongoDB (database),
PHP (scripting language).

o Node.js kind of replaces Apache+PHP. A server
still needs an OS and, usually, a database.

Server modules in node.js

Modules

O Node.js also includes a set of Javascript modules
that help us deal with problems like:
O serving Web pages,
O responding to AJAX queries,
O querying APIs
a

and interacting with a database.

o A module is a file containing Javascript code.

o0 Obijects, data and functions that programs in other
files can see are labeled external.

O Modules provide another level of encapsulation and
data hiding (in addition to functions and obijects).

o They are something like C or C++ libraries.

o0 Node.js has modules, browsers do not! (even though

they can use imported scripts such as JQuery or
Angular).

Ports

Server code at a lower level

O Many processes on the server are connecting to
other machines over the internet

o To direct incoming traffic to the right process, each
process uses a unique port number

O At the operating system/TCP level, a message
comes in off the internet, and the system uses the
port number to create an interrupt for the
appropriate process

0 We will each have our own permanent port number
so we don't interfere with each other

O Mostly hidden by node.js

O A Web server gets http requests and produces http
responses.

O Http is a protocol for sending and receiving
messages over the internet.

O Http requests and responses have:
Header

Body (sometimes)

HTTP request (browser->server)

HTTP response (server->browser)

GET /simple.html HTTP /1.1
Host: 45.55.29.158:8081

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:37.0) Gecko/
20100101 Firefox/37.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,* /*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cache-Control: max-age=0

Body is empty.

HTTP/1.1 200 OK

Content-Type: text/html

Date: Thu, 30 Apr 2015 15:55:44 GMT
Connection: keep-alive

Transfer-Encoding: chunked

Body contains html file.

Some popular response codes

Accessing the server

0 200 - OK *“here’s what you wanted”

o 301 — Moved Permanently “look over there”

o 304 — Not Modified “same as last time you asked
so | am not sending the body again”

0 404 — Not Found “what the heck?”

ssh 138.68.25.50

O You should be able to login using your Kerberos
account credentials

o To get your port number, run:

get-my-cs18%h-port

...and it should type the port number you should use.

Simple Web server

Handler function

From Eloquent Javascript, Chapter 20

var hitp = require(*http');

O Brings in the http module.

0 To keep the namespaces of modules distinct, all
objects and functions from http have to be prefaced
by “http.”

O This is the same as object syntax

function handler (request, response) {...

0 All node.js servers use a handler function, which is a
new kind of event handler — for incoming requests to
the server.

O A node.js handler function takes two object arguments

o The request object contains information about the http
request.

0 We use the response object to build our response.

Typical handler structure

Fill in the response header

var url = request.url;

o0 Get whatever data we need out of request object

response.writeHead(200, {"Content-Type": "text/html"});

o Builds an http response

0 Head contains return code 200 (“Here’s what you
wanted”)

Fill in the response body

Sending the response

response.write("<h1>Hellol</h1>");
response.write("<p>You asked for <code>" + url +
"</code></p>");

O The response object might contain HTML, Javascript,
CSS or JSON, depending on what was requested

O In this case, we are constructing some HTML and
putting it in the body

response.end();

o Calling response.end() tells node.js that we have
finished filling in the response object, and it is OK to
send the response back to the browser.

O Remember: “ending is sending” for these http
responses.

createServer

listen

var server = http.createServer(handler);

o Calling function createServer from the http module
O The function createServer creates a server object
o It takes the handler function as input

o The handler function will be called when the server
gets an http request

o It’s like a callback function!

server.listen(8082);

O This starts the server and tells node.js, Unix and TCP
that requests to port 8082 should go to my server

o | cannot emphasize too much that your server should
listen to YOUR PORT NUMBER, not mine

Running and using the server

Summary

O On the server (Digital Ocean), run the simple server
program:

node simple.js

O From any browser, anywhere, request the URL
http://138.68.25.50/anyPageNameYoulike

o Should get response:

Hello! You asked for anyPageNameYoulike

o Typical overall handler structure
1. Make a handler function
a) Init, get data out of request object
b) Then construct response header
¢) Then construct response body
d) Call response.end() when response is completed

2. Create a server object using the handler
3. Start it listening to YOUR PORT

