
1

ECS 189
WEB PROGRAMMING

5/8

Project idea

!  Photo sorter
!  User uploads photos
!  Server uses Google Cloud Vision API to generate

tags for images
!  Server stores images and tags in a database
!  Server gives user menu of tags, allows them to

retrieve photos from database by tag

Simple server from last time

function handler (request, response) {

 var url = request.url;

 response.writeHead(200, {"Content-Type": "text/html"});
response.write("<h1>Hello!</h1>");
response.write("<p>You asked for <code>" + url +

 “<code></p>");

 response.end();

}
var server = http.createServer(handler);

server.listen(*your*port*number*);

Request and response objects

!  Like a Netflix envelope you
get in the mail

!  The request object is the
disk; it has the data in it

!  The response object is the
envelope itself; you put
what you’re sending back
into it

!  response.end() “drops it in
the mailbox”

Handling different urls

!  Our server will need to do different things given
different URLs

!  Recognize dynamic URLs (eg. add something to
database), send them to dynamic handler to do
something on server, make up an AJAX response,
etc.

!  Or, recognize static Web pages that match the URL
!  Or, respond with “404 not found” in the header
!  The idea of sending different urls to different sub-

handlers is called routing.

Static URLs

!  Include just a pathname, eg:

www.cs.ucdavis.edu/~amenta/s17/ecs189h.html

!  There is an actual file on the server called
ecs189h.html, which gets sent in the body of the
response object (server code “puts it into the
envelope”)

!  CSS and Javascript files typically come from the
static server as well

2

Dynamic URLS

!  Recall the complex URL we used to request data
from the Yahoo weather API

!  What was the Yahoo server doing with this?

https://query.yahooapis.com/v1/public/yql?q=
 select * from weather.forecast where

 woeid =2389646 & format=json &
 callback=callbackFunction

Dynamic URLS

https://query.yahooapis.com/v1/public/yql?q=
 select * from weather.forecast where

 woeid =2389646 & format=json &
 callback=callbackFunction

!  There’s no file named this. There is not even a file
named yql.

!  The server code deciphers the URL, figures out what
the database call ought to be, gets the data, turns it
into a callback-function call, and finally stuffs that
into the response “envelope”

Dynamic URLS

https://query.yahooapis.com/v1/public/yql?q=
 select * from weather.forecast where

 woeid =2389646 & format=json &
 callback=callbackFunction

!  Typical format:
! name of server operation or API function
! ? separating API name and specific request
! parts of request, separated by &
! Not required – servers can accept whatever format

they care to - but this is very common

Where is the URL?

!  Where do we find the URL?

Where is the URL?

!  Where do we find the URL?
!  In the “request” object, specifically “request.url”

!  Node.js has a url module we can use to parse the
URL (break it up into its parts, using this “?” and “&”
format)

Parsing the URL

 var urlStr = request.url; // a string
 var urlList= urlStr.split(“?”);
 var pathname = urlList[0];
 var query = urlList[1];

!  For instance, if urlStr is “/photoSorter/sorter.css”,
then urlObj.pathname will also be “/photoSorter/
sorter.css”.

!  query would be undefined

3

More interesting with dynamic URL

!  So say
 urlStr contains “hello.html?dog=rover&cat=max”

!  Then
 pathname contains “hello.html”
 query contains “dog=rover&cat=max”

Handler idea

!  If there is a query string, we’ll need to collect data
and/or create a Web page and pass it back in the
response

!  If no query string, assume it is a static request, pass
back a file

!  Fortunately, there are a bunch of static server
modules out there that handle that part; we’ll use
one

!  But we need to understand some tricky stuff before
we can use these modules

NPM

Node Package Manager (despite the joke in upper
left)

!  Repository for many, many node modules that other
people wrote

!  Varying quality
!  The “require” (Javascript include) won’t work until

we install the modules in our account
!  Do this on the Unix command line, eg:

 npm install node-static

From the documentation

var static = require('node-static');
//
// Create a node-static server instance
// to serve the './public' folder
//
var file = new static.Server('./public');
!  This creates an object that serves static files, from a

subdirectory called /public.
!  We need to embed this in a Web server.

Copy to blackboard!!!!!

require('http').createServer(function (request, response
) {
 request.addListener('end', function () {
 // Serve files!
 file.serve(request, response);
 }).resume();
}).listen(8080);

!  Not much here we have not seen before but
combined in a tricky way.

4

Using an object

require('http').createServer(….

!  What’s going on here? Usually we see “require” at
the top of the file, like an include statement in C:

var http = require('http');

Using an object not in a variable

require('http').createServer(….

!  What’s going on here?

!  require(‘http’) returns an object containing the data
and methods of the http module. Without putting it
into a variable, we call its createServer method.

!  We could call this an anonymous object.

The end

…createServer(….).listen(8080);

!  Similar situation. The http method createServer()
returns a server object, which has a listen method to
listen to a port.

!  Again, we use this object anonymously
!  In this case the port number is 8080, but you’d use

your own

Anonymous functions

!  A Javascript language feature we have not used
yet.

!  Often found in situations where we want to use a
function as a parameter, ie. from our simple Web
server:

function handler (request, response) {
 …
 response.end(); }

var server = http.createServer(handler);

Anonymous function

…createServer(function (request, response) {
 …}).listen(8080);
!  Here we’re not bothering to give the request

handler a name; we’re just defining it inside the
parentheses.

!  Recall the alternative function def syntax:

var f = function(x,y) { return x+y; }
!  Right-hand side is an expression that returns a

function

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response);
 }).resume();
!  Recall that file was our static file server object, and

it seems to have a handy method serve, that takes
the request and response and…does what?

5

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response);
 }).resume();
!  Recall that file was our static file server object, and

it seems to have a handy method serve, that takes
the request and response and…does what?

!  Puts the file from /public that was requested into
the body of the response, hopefully, and then calls
 response.end();

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response);
 }).resume();
!  But when is file.serve() getting called? A bit

complex, but understanding this will be handy later.
!  Turns out a request object is a data stream,

meaning a source from which a whole bunch of
data can be read, for instance like a file, or stdin in
C.

Data stream

!  Why would we want to read a lot of data from an
HTTP request?

!  Recall the request is any message coming from client
to server. In our photo sorter, we’ll be sending
photos. These are big files.

!  If asked to, HTTP chunks big files into a series of
smaller messages that traverse the internet (aka
packets).

Data stream

"  Client sends chunks of big
image, each in it’s own HTTP
message, but they all form
part of the same same
request object, whose body
data arrives over time.

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response);
 }).resume();

!  request.addListener returns the request object
again; this is common in Node.

!  Calling request.resume(), a the end, starts getting
data from the data stream.

Event listeners

!  Data streams in Node use callback functions, just
like everything else. Here, we specify a callback
function for when the data stream gets to its end
and all the data is here:
 addEventListener('end', function () {
 // Serve files!
 file.serve(request, response); })
!  What is the callback function named?

6

Event listeners

!  Data streams in Node use callback functions, just
like everything else. Here, we specify a callback
function for when the data stream gets to its end
and all the data is here:
 addEventListener('end', function () {
 // Serve files!
 file.serve(request, response); })
!  What is the callback function named?
!  Trick question! It is an anonymous function again.

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response); }).resume();
!  So file.serve(), which actually serves the static file,

gets called when the request data stream receives
its end event, by the anonymous end callback.

!  This is well after request.addListener, and the
anonymous handler function, have exited.

!  But the values of request and response are still
correct. Why?

Inside handler function

request.addListener('end', function () {
 // Serve files!
 file.serve(request, response); }).resume();
!  The closure of file.serve() is the anonymous function

inside request.addListener
!  And the closure of that function is the anonymous

handler function inside createServer
!  So file.serve has permanent access to the values of

their local variables when file.serve was created.

Homework

!  Write a server that combines the easy query server
we wrote with the static query handler defined by
node-static.

!  Recall “undefined” means there is no such property
in the urlObj – eg. if query is undefined, try static.

!  Add a “404 not found” message; see the
documentation for node-static to see how to do that.

