
Discussion 1 Dr. Nina Amenta
Thursday, January 12 ECS 222A, Winter 2005

Asymptotic Notation

We begin by stating a few useful definitions.

1. If f(n) = Θ(g(n)), then ∃ positive constants c1, c2, n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for all
n ≥ n0.

2. If f(n) = O(g(n)), then ∃ positive constants c, n0 such that 0 ≤ f(n) ≤ cg(n), for all n ≥ n0.

3. If f(n) = Ω(g(n)), then ∃ positive constants c, n0 such that 0 ≤ cg(n) ≤ f(n), for all n ≥ n0.

4. If f(n) = o(g(n)), then ∃ positive constants c, n0 such that 0 ≤ f(n) < cg(n), for all n ≥ n0.

5. If f(n) = Ω(g(n)), then ∃ positive constants c, n0 such that 0 ≤ cg(n) < f(n), for all n ≥ n0.

Proof by Substitution

It is easy to complete a proof by substitution, and a bit harder to ascertain if you have found the best
possible upper bound. For example, we will show that T(n)≤ an + T (9/10n) is O(n log n) (which is not the
best bound). In order to prove this, we will apply the substitution method, which is basically induction. We
will assume that the asymptotic running time bound holds for small n, assume it is true for all n ≤ n′, and
then show that it is true for all n > n′. Thus, in this case, we assume T (n) ≤ cn log n.

T (n) = an + T (9/10n) (1)
≤ an + c(9n/10) log (9n/10) (2)
= an + c(9n/10)(log (9/10) + log n) (3)
≤ an + c(9n/10) log n (4)
≤ an log n + c(9n/10) log n (5)
≤ n log n(a + 9/10c) (6)

But what we want is to show that T (n) ≤ cn log n. Thus, we want:

a + 9/10c ≤ c (7)
a ≤ c/10 (8)

10a ≤ c (9)

Thus, we have bounded c... as long as c ≥ 10a, then T (n) = O(n log n). But this is not the sharpest
upper bound. Now, using the same methodology, we show that T (n) = O(n).

T (n) = an + T (9/10n) (10)
≤ an + c(9n/10) (11)

n(a + 9/10c) ≤ cn (12)
a + 9/10c ≤ c (13)

a ≤ c/10 (14)
10a ≤ c (15)

Thus, again we have bound T (n). By choosing c ≥ 10a, then T (n) = O(n). Note: when doing proofs by
substitution, it is always important to remember the precise goal. For example, consider this INCORRECT
PROOF that T (n) = an + 2T (n/2) is O(n).

1



T (n) = an + 2T (n/2) (16)
≤ an + 2(cn/2) (17)
≤ (a + c)n = O(n) (18)

This is an absolutely true statement. (a + c)n = O(n). However, what we needed to show was that
(a + c)n ≤ cn for some choice of c. This will never be true. When we assume that T (n) = O(n log n), the
correct proof is as follows.

T (n) = an + 2T (n/2) (19)
≤ an + 2(cn/2 log n/2) (20)
= an + cn(log n− log 2) (21)
= an + cn(log n− 1) (22)

an + cn(log n− 1) ≤ cn log n (23)
a + c(log n− 1) ≤ c log n (24)

a− c + c log n ≤ c log n (25)
a ≤ c (26)

Thus, this equation is true for all c ≥ a. Thus T (n) = an + 2T (n/2) is O(n log n).

Random Search

The purpose of this example is to dervive some classic results in a very simple and clear way. In Random-
Search, we always have an array of size n, and we are looking for a particular element x in that array, or
an index i such that A[i] = x.

a. For this analysis, let us assume that we choose and replace. In other words, we choose a number i at
random from between 1 and n each time (we toss the elements into a bag and pluck them out one by
1, returning them each time). If A[i] = x, we return, else we continue to choose and replace elements.
In order to analyze the expected running time of our algorithm, let Z be a random variable such that
Z equals the number of indices picked before x is found. Since we allow indices to be choosen more
than once, E[Z] can be calculated as follows:

E[Z] =
∑
z=1

∞
z · Pr[Z = z] (27)

E[Z] = 1 · Pr[Z = 1] + 2 · Pr[Z = 2] + 3 · Pr[Z = 3] + · · · (28)

E[Z] = 1 · 1
n

+ 2 · n− 1
n

· 1
n

+ 3 ·
(

n− 1
n

)2

· 1
n

+ · · · (29)

E[Z] =
1
n

(1 + 2 · n− 1
n

+ 3 ·
(

n− 1
n

)2

+ · · · ) (30)

E[Z] =
1
n

∞∑
j=0

(j + 1)
(

n− 1
n

)j

(31)

2



We can simplify the expression for E[Z] by using the following result:

∞∑
j=0

xj+1 = x
∞∑

j=0

xj (32)

=
x

1− x
(33)

d

dx

( ∞∑
j=0

xj+1

)
=

∞∑
j=0

(j + 1)xj (34)

=
1

(1− x)2
(35)

Therefore, the E[Z] can be written in the following way:

E[Z] =
1
n

1

(1− n−1
n )2

(36)

E[Z] =
1
n

1(
n−(n−1)

n

)2 (37)

E[Z] =
1
n

1
( 1

n2 )
(38)

E[Z] = n (39)

This ia a bit surprising. Searching an array of size n deterministically takes O(n) time of course. But
now we see that searching at random takes expected time O(n) as well.

b. Now, find the expected number of indices picked when each indice is inspected only once. In other
words, we toss our elements into a bag, choose them 1 by 1, and discard each time if A[i] 6= x. Let Z
be a random variable such that Z equals the number of indices picked before x is found. E[Z] can be
calculated as follows:

E[Z] = 1 · Pr[Z = 1] + 2 · Pr[Z = 2] + 3 · Pr[Z = 3] + · · ·+ n · Pr[Z = n] (40)

E[Z] = 1 · 1
n

+ 2 · n− 1
n

· 1
n− 1

+ 3 · n− 1
n

· n− 2
n− 1

· 1
n− 2

+ · · ·+ n · n− 1
n

· n− 2
n− 1

· · · 1
n− (n− 1)

(41)

E[Z] = 1 · 1
n

+ 2 · 1
n

+ 3 · 1
n

+ · · ·+ n · 1
n

(42)

E[Z] =
1
n

(1 + 2 + · · ·+ n) (43)

E[Z] =
1
n
· n(n + 1)

2
(44)

E[Z] =
n + 1

2
(45)

This is to be expected. In order to find the desired element, we have to look at about half.

c. For this analysis, we assume that x is not unique in the array. In fact, we assume that the array A
contains k x’s. As in part a, we choose and replace. Again, let Z be a random variable such that Z
equals the number of indices picked before x is found. Since there can now be multiple elements k in
the array that equal x, we modify the expression for E[Z] in the following way and use the result from

3



part a to simplify:

E[Z] = 1 · Pr[Z = 1] + 2 · Pr[Z = 2] + 3 · Pr[Z = 3] + · · · (46)

E[Z] = 1 · k

n
+ 2 · n− k

n
· k

n
+ 3 ·

(
n− k

n

)2

· k

n
+ · · · (47)

E[Z] =
k

n
(1 + 2 · n− k

n
+ 3 ·

(
n− k

n

)2

+ · · · ) (48)

E[Z] =
k

n

∞∑
j=0

(j + 1)
(

n− k

n

)j

(49)

E[Z] =
k

n

1

(1− n−k
n )

2 (50)

E[Z] =
k

n

1

( k
n )

2 (51)

E[Z] =
n

k
(52)

Again, this is to be expected.

d. In order to determine the expected number of indices picked until the entire array has been searched,
define the following variables. Let Z be a random variable such that Z equals the number of indices
picked until the entire array has been searched. Let Yi equal the number of indices picked since the
i-th indice was found and until the (i + 1)-th indice is found. Therefore,

Z = Y0 + Y1 + Y2 + · · ·+ Yn−1 (53)
E[Z] = E[Y0 + Y1 + Y2 + · · ·+ Yn−1] (54)
E[Z] = E[Y0] + E[Y1] + E[Y2] + · · ·+ E[Yn−1] (55)

We can calculate the E[Yi] directly. Remember that Yi is the number of tries to find the (i + 1)-th
indice after we have already found i indices:

E[Yi] = 1 · Pr[Yi = 1] + 2 · Pr[Yi = 2] + 3 · Pr[Yi = 3] + · · · (56)

E[Yi] = 1 · n− i

n
+ 2 · i

n
· n− i

n
+ 3 ·

(
i

n

)2

· n− i

n
+ · · · (57)

E[Yi] =
n− i

n
(1 + 2 · i

n
+ 3 ·

(
i

n

)2

+ · · · ) (58)

E[Yi] =
n− i

n

∞∑
j=0

(j + 1)
(

i

n

)j

(59)

E[Yi] =
n− i

n

1

(1− i
n )

2 (60)

E[Yi] =
n− i

n

1

(n−i
n )

2 (61)

E[Yi] =
n

n− i
(62)

Now we can calculate the E[Z]. However, a closed form of this particular solution is not known to me
at this time and so I will leave it in the unsimplified form:

E[Z] =
n−1∑
i=1

n

n− i
(63)

4


