
HW 3 Dr. Nina Amenta
Due Friday, March 11 ECS 222A, Winter 2005

Problem 1:

Markov processes with an infinite number of states arise in queuing theory. For instance, imagine we have
a queue (of jobs, of messages arriving at a node of the internet, whatever...). At each time step, a new item
arrives in the queue with probability p, and an item is removed from the queue with probability q. No more
than one item arrives or is removed from the queue in each time step. We model the queue as a Markov
process in which the state si is the state in which there are i elements in the queue. Thus, there are an
infinite number of states, s0, s1, s2, . . ..

a. For a state si, i ≥ 1, draw the directed edges going into and out of si, and the states to which they go,
labelled with the appropriate transition probability.

Solution: Rather than a nice drawing, we show a state matrix for si. Since this is a matrix for si, we
show only the transitions that involve si, either in or out:

si−1 si si+1

si−1 p(q − 1)
si q(p− 1) pq + (1− q)(1− p) p(1− q)

si+1 q(p− 1)

b. Assume p < q. Let

r =
p(1− q)
q(1− p)

(1)

Verify arithmetically that the probability distribution in which the probability of si is (1 − r)ri is a
stationary distribution for this Markov process.
Solution: We must show that u(1) = uP = u, where u is the initial probability distribution vector,
and P is the transition matrix, defined as follows:

u = {. . . , (1− r)ri−1, (1− r)ri, (1− r)ri+1, . . .} (2)

P =



. . . 0 · · ·
...

... · · ·
· · · p(1− q) · · ·
· · · pq + (1− p)(1− q) · · ·
· · · q(1− p) · · ·
· · · 0 · · ·
...

...
. . .


(3)

Therefore, by the row times column rules of vector-matrix multiplication, si of uP is as follows:

si = (1− r)ri−1 · p(1− q) + (1− r)ri · (pq + (1− p)(1− q)) + (1− r)ri+1 · q(1− p) (4)

= (1− r)ri

(
1
r
· p(1− q) + pq + (1− p)(1− q) + r · q(1− p)

)
(5)

= (1− r)ri

(
q(1− p)
p(1− q)

· p(1− q) + pq + (1− p)(1− q) +
p(1− q)
q(1− p)

· q(1− p)
)

(6)

= (1− r)ri
(
q(1− p) + pq + (1− p)(1− q) + p(1− q)

)
(7)

= (1− r)ri(q − pq + pq + 1− p− q + pq + p− pq) (8)

= (1− r)ri (9)

Thus, we can see that u(1) = u, which means that this is a stationary distribution for this Markov
process.

1



c. If p > q, does there exist any stationary probability distribution?

Solution: Let u = {P0, P1, . . .} represent a stationary probability distribution. Thus, it must satisfy
the following equation:

Pi = Pi−1 · p(1− q) + Pi · (pq + (1− p)(1− q)) + Pi+1 · q(1− p) (10)
Pi+1 · q(1− p) = Pi − Pi−1 · p(1− q)− Pi · (pq + (1− p)(1− q)) (11)
Pi+1 · q(1− p) = Pi · (1− (1− p− q + 2pq))− Pi−1 · p(1− q) (12)
Pi+1 · q(1− p) = Pi · (p− pq + q − pq))− Pi−1 · p(1− q) (13)

Pi+1 = Pi ·
(

p(1− q)
q(1− p)

+
q(1− p)
q(1− p)

)
−Pi−1 ·

p(1− q)
q(1− p)

(14)

Pi+1 = Pi(r + 1)− Pi−1r (15)

Now, we guess that this recurrence relation for Pi+1 can be satisfied if Pi is of the form Pi = c1α
i +c2,

and we will verify that that is in fact the case, and then solve for α:

c1α
i+1 + c2 = (c1α

i + c2)(r + 1)− (c1α
i−1 + c2)r (16)

c1α
i+1 + c2 = c1α

ir + c2r + c1α
i + c2 − c1α

i−1r − c2r (17)

c1α
i+1 = c1α

ir + c1α
i − c1α

i−1r (18)

αi+1 = αir + αi − αi−1r (19)

α2 = α(r + 1)− r (20)

α2 − α(r + 1) + r = 0 (21)

We can simply use the quadratic equation to solve the last equation:

α2 − α(r + 1) + r = 0 (22)

α =
(r + 1)±

√
(r + 1)2 − 4r

2
(23)

α =
(r + 1)±

√
r2 + 2r + 1− 4r

2
(24)

α =
(r + 1)±

√
r2 − 2r + 1

2
(25)

α =
(r + 1)±

√
(r − 1)2

2
(26)

α =
(r + 1)± (r − 1)

2
(27)

Thus, taking both the positive and negative solutions, we see:

α =
(r + 1)± (r − 1)

2
(28)

α = r (29)
α = 1 (30)

But, r > 1 because p > q. Thus, because any probability distribution must sum to 1, neither of these
solutions to the recurrence relation can be a probability distribution, because

∑∞
i=0 (c1α

i + c2) diverges
to infinity for both values of α. Thus, there is no stationary distribution possible if p > q.

2



Problem 2:

• Definition: An independent set is a set I ⊆ V of vertices such that for all u, v ∈ I, (u, v) /∈ E.

• Definition: The independent set decision problem is as follows: Given a graph G, is there an inde-
pendent set I of vertices of size at most k?

a. Show that Independent Set is NP-Complete.
Solution: Our solution consists of two parts. We first show that Independent Set (IS) is in NP
and then we show that IS is NP-Hard.

– NP: In order to show that IS ∈ NP, we must show that there exists a polynomial time witness
algorithm that takes an instance of the problem and a certificate as parameters, and verifies
that the certificate is a yes instance of the particular inputed problem. Thus, our instance is an
unweighted graph G, and our certificate is a set of vertices. Our algorithm performs 2 steps:

1. Checks that the all vertices in the certificate are vertices in the graph.
2. Checks that there are no edges between any two vertices in the certificate.

This algorithm runs in O(V + E), and is thus clearly polynomial time. Thus, IS ∈ NP.

– NP-Hard: In order to show that IS ∈ NP-Hard, we will reduce from Clique to IS. Our
reduction consists of demonstrating a polynomial time conversion of an instance of Clique to an
instance of IS, and an if-and-only-if proof that a yes instance of Clique maps to a yes instance
of IS and vice versa.

1. We will convert an instance of Clique to an instance of IS in the following manner. An
instance of Clique is a graph G and an integer k. We will construct Gc, the complement of
G, and pass Gc, k to IS.

2. Now we will show that a yes instance of Clique maps to a yes instance of IS and vice versa.
· =⇒ Assume G is a yes instance of Clique, or assume that there exists a clique C of size

k in G. Thus, for any u, v ∈ C, (u, v) ∈ E. Thus, (u, v) /∈ Ec. Thus, the vertices in C
form an indepedent set in Gc. Thus, Gc is a yes instance of IS.

· ⇐= Assume Gc is a yes instance of IS, or assume that there exists an independent set I
of size k in Gc. Thus, for any u, v ∈ I, (u, v) /∈ Ec. Thus, (u, v) ∈ E. Thus, the vertices
in I form a clique in G. Thus, G is a yes instance of Clique.

Thus, since we have shown that IS is in both NP and NP-Hard, we have shown that IS ∈ NP-Complete.

b. When G is a tree (not necessarily binary), is this problem still NP-Complete?
Solution: No.
We will store two values with every vertex, maxin and maxout, referring to the size of the largest indepe-
dent set possible if that particular vertex is either in or out of the independent set. Our polynomial-time
algorithm to find a maximum-cardinality independent set is thus constructed as follows.

1. DFS down to a leaf. Let maxin = 1 and maxout = 0.

2. Begin to recurse back out of tree. For each interior node, maxin and maxout are defined as follows:

maxin = 1 +
∑

children

maxout (31)

maxout =
∑

children

maxin (32)

3. Thus, to determine the largest independent set, we simply take the max(maxin,maxout) of the
root.

This algorithm clearly runs in O(V + E) time because we are only augmenting DFS with a few
arithmetic operations per step.

3



Problem 3:

a. Formulate the optimization version of Independent Set as a Zero-One Integer program.

Solution:

Maximize: ∑
v∈V

xv (33)

Subject to:

xu + xv ≤ 1 ∀(u, v) ∈ E (34)
xv ≥ 0 ∀v ∈ V (35)
xv ∈ {0, 1} ∀v ∈ V (36)

Thus, the xv variables are either 1 or 0, depending on whether or not the vertex in or out of the
independent set, and no two adjacent vertices can both be in the set.

b. Ignoring the constraint that the solution must be an integer, this problem becomes a linear program.
Write down the dual of this linear program.

Solution:

Minimize: ∑
(u,v)∈E

yuv (37)

Subject to: ∑
v∈V :(u,v)∈E

yuv ≥ 1 ∀u ∈ V : ∃v ∈ V with (u, v) ∈ E (38)

yuv ≥ 0 ∀(u, v) ∈ E (39)
(40)

c. Now constrain the solution to the dual problem to be an integer, producing another special case of
Integer Programming. In terms of the graph G, this integer program is asking for a subset of some
elements of G, which is optimal in some sense. What is the subset and how is it optimal?

Solution: This linear program is asking us to minimize a set of edges such that every vertex with
outgoing edges is incident in at least one edge in the set. This is an edge cover, similar to a vertex
cover.

Problem 4:

• Bin-Packing: The optimization version of Bin-Packing is defined as follows:

– Input: An integer T and a list of integers X = (x1, x2, . . . , xn) where xi ∈ [0, T ].

– Output: A partition of X into a minimum number of sublists, such that each sublist sums to at
most T .

• Bin-Packing: The decision version of Bin-Packing is defined as follows:

– Input: An integer T , an integer k, and a list of integers X = (x1, x2, . . . , xn) where xi ∈ [0, T ].

– Output: Yes if there exists a partition of X into at most k sublists, such that each sublist sums
to at most T , and no otherwise.

4



• Partition: The decision version of Partition is defined as follows:

– Input: A list of integers X = (x1, x2, . . . , xn)

– Output: Yes if there exists a partition of X into two lists which sum to the same value, and no
otherwise.

Show that there cannot exist any polynomial-time approximation algorithm for Bin-Packing with approx-
imation ratio less than 3/2 (unless P = NP).

Solution: Consider the following proof. Assume there exists a polynomial-time approximation algorithm
A with an approximation ratio less then 3/2. This implies that if L∗ is the optimal number of lists, than A
will return a number of lists L such that L ≤ 3/2L∗. We will show that A can be used to solve Partition ∈
NP-Complete in polynomial time, thus implying that P = NP. Our proof is as follows:

1. We will convert an instance of Partition to an instance of the decision version of Bin-Packing as
follows. For X = (x1, x2, . . . , xn), let T =

∑n
i=1 xi. Let (bT/2c, 2, X) be the corresponding instance of

Bin-Packing.

2. If there exists a partition in X, then clearly X can be packed into two bins of size bT/2c = T/2 because
T is even. But if X is a no instance of Partition, then the smallest number of bins required to pack
X would be 3, because at least one element would not fit in one of the bins of size bT/2c. Note that
2 · 3/2 = 3.

3. Thus, given an instance of Partition, we convert it to an instance of Bin-Packing as above, and
then pass that instance to A, our assumed less-than 3/2-approximation algorithm. If a partition exists,
A must return that partition because the next best solution possible is exactly 3/2L∗. Since A runs in
polynomial-time, we will have solved Partition in polynomial-time, which implies that P = NP.

Thus, we have shown that if a less-than 3/2-approximation algorithm exists, then P = NP. Notice that
we have not shown that it is impossible for such an approximation algorithm to exist– just that a very
surprising complexity result would occur if it does.

5


