
Maximum Level in a Skip List

Say we construct a skip list by inserting n elements in arbitrary order, choosing the level of
each element using the randomLevel function described in the paper (first setting MaxLevel
to infinity, so that newLevel is always output).

The probability that a particular element reaches level at least k is pk, and the probability
that any of the n elements reach level at least k is at most npk.

Let M be the maximum level of any element in the skip list. We want to bound E[M ] given
that Pr[M ≥ k] ≤ npk. Using our usual technique of partitioning the possible experiments
up using some group of mutually exclusive events, we have:

E[M ] =
∞∑

k=0

kPr[M = k] ≤
∞∑

k=0

kPr[M ≥ k]

Unfortunately using this in a totally straighforward way leads to a ridiculously high upper
bound. We get:

E[M ] ≤
∞∑

k=0

knpk = n
∞∑

k=0

kpk

This last sum seems simple enough to look up, and we find that it is p/(1−p)2, for 0 ≤ p < 1,
a constant. So we have shown that E[M ] = O(n), not very helpful.

What went wrong? The low terms in the sum are huge over-estimates. For instance, if
p = 1/2 we have

Pr[M ≥ 1] ≤ n/2

which is true, but not a very good upper bound for a probability. When does it start getting
to be a useful bound? Around when k = lg n:

Pr[M ≥ lg n] ≤ n/n = 1

To get a tighter bound, we break the sum into two parts (this is a handy technique! especially
for Homework problem 5!). We’ll choose a number L which will be the boundary between
small values of k and large values of k. Then we’ll break the sum at L:

E[M ] ≤
L−1∑
k=0

kPr[M = k] +
∞∑

k=L

kPr[M = k]

On the part with large k, we’ll use the upper bound, and we’ll find some other way to handle
the small k.

So how do we choose L? When is k large enough? We’ll choose L so that

knpk = O(1/k2), ∀k ≥ L

Why 1/k2? Because another of the essential sums one ought to know is that

∞∑
i=0

1/i2 ≤ 2

1



so that ∞∑
k=L

knpk ≤
∞∑

k=L

O(1/k2) = O(1)

So what exactly is L? We want
LnpL ≤ 1/L2

for large enough values of n; so we want to choose L, as a function of n and p, so that

L3pL = o(1/n)

Solving directly for L is difficult. Instead, we just plug in some values and find one that
works, preferably the smallest one possible that works. A good choice ends up being

L = 2 lg1/p n

(plug it in and check that LnpL = o(1/L2) !).

Now we just need to figure out what to do with the small-k terms. Fortunately there are
very few of these (O(lg n), because of our choice of L) so we can make some generous over-
estimates;

L−1∑
k=0

kPr[M = k] ≤
L−1∑
k=0

LPr[M = k] = L
L−1∑
k=0

Pr[M = k] = LPr[M < L] ≤ L

So we end up with

E[M ] =
L−1∑
k=0

kPr[M = k] +
∞∑

k=L

kPr[M = k] ≤ L + O = O(lg n)

2


