Homework 3 ECS 122A, W 2010

1. Permute by sorting, again.

Do problem 5.3-5.

2. No collisions.

Find the largest value of n that you can, such that if n items are stored independently in random locations
in a hash table of size m,
Pr[there are no collisions | > 1/2

3. Duplicate messages.

A series of n messages are broadcast on a communications channel. Your job is to determine if any of them
are duplicates. With a very small probability - 1/n1° - you may incorrectly report that two different messages
are duplicates, but you should never miss a duplicate if it occurs.

The messages are far to long to store, but you have a flexible-size hash function h(x,b) which takes a
message = and number of bits b as input, and produces an integer in the range 0...2° — 1. We’ll assume
(unrealistically) that the integers produced by h(z,b) are uniformly random and all independent of each
other.

How few bits of memory can you use to solve this problem? Note that making a hash table of size m,
with k-bit entries, counts as mk bits, even if most of the entries are empty.

4. Exponential backoff.

This problem is related to the idea of exponential backoff, which is part of the ethernet protocol.

We have a large number of computers sharing a communications channel, and n of them have a packet of
data to send. Time is divided into intervals tg,%1,.... Any one packet can be sent in a single time interval,
but if two or more packets are sent during the same interval ¢; the packets collide, and none of them is
successfully transmitted. The computers can only detect whether their packet is successfully transmitted or
not; they do not otherwise communicate with any of the other computers, and they do not know n or the
total number of computers on the channel.

The computers use the following protocol. They all try to transmit at ¢1; assuming n > 1 there will be
a collision. We call this round zero. In round 1, each computer then chooses randomly whether to transmit
during either ¢4 or t3. If it fails again to transmit, it continues to round 2. In general, if a computer fails at
time ¢;, 2% < < 2+ for some integer k, it picks a new time ¢; at random, from the range 21 < j < 2k+2,
and tries again at ¢;. The process continues until all of the n computers succeed in transmitting their packets.

Give the best upper bound you can on the number of rounds which will be required for every computer
to transmit its message.

