

1. Huffman encoding

We consider a text of length m on an alphabet C , with probabilities for $p(c_i)$ for each character $c_i \in C$, so that the number of times c_i appears in the text is $p(c_i)m$. Let's assume the easy special case in which the probabilities are all powers of two, for instance $p(c_i) = 2^{-2} = 1/4$, or $p(c_i) = 2^{-3} = 1/8$, and so on. Prove that in this case the average number of bits per character in the Huffman encoding is $-\sum_{c_i} p(c_i) \lg p(c_i)$, achieving the Shannon entropy lower bound.

Hint: Recall that at each iteration the Huffman encoding algorithm joins the two items of minimum frequency to form a new pseudo-character. I would begin by proving that the two items each have the same frequency 2^j . Then prove that the number of pseudo-characters on the path in the final tree of to a character with frequency 2^j is j .

2. Interrelatedness of NP-complete problems

Let's assume for the purpose of "almost-contradiction" that you discover an polynomial-time algorithm for Vertex Cover. Looking at Figure 34.13, we see that Clique is reducible to Vertex Cover; so your algorithm gives us a polynomial-time algorithm for Clique as well. We know, in fact, that finding a polynomial-time algorithm for one NP-complete problem gives a polynomial-time algorithm for all NP-complete problems. Describe, using the existence of the reductions pictured in Figure 34.13 and whatever other relevant information you need about NP-completeness, how your algorithm would give a polynomial-time algorithm for Subset Sum. You do not have to describe any of the reductions, just use the fact that they exist.

3. NP-completeness reduction

Do problem 34.5-2, on the 0-1 integer programming problem.