Simplified Master Theorem

A recurrence relation of the following form:

$$
\begin{aligned}
T(n) & =c n<c_{1} \\
& =a T(n / b)+\Theta\left(n^{i}\right), \quad n \geq c_{1}
\end{aligned}
$$

Has as its solution:

1) If $a>b^{i} \quad$ then $\quad T(n)=\Theta\left(n^{\log _{b} a}\right)$ (Work is increasing as we go down the tree, so this is the number of leaves in the recursion tree).
2) If $a=b^{i} \quad$ then $\quad T(n)=\Theta\left(n^{i} \log _{b} n\right) \quad$ (Work is the same at each level of the tree, so the work is the height, $\log _{b} n$, times work/level).
3) If $a<b^{i} \quad$ then $\quad T(n)=\Theta\left(n^{i}\right) \quad$ (Work is going down as we go down the tree, so dominated by the initial work at the root).
