Shape Analysis with the Delaunay Triangulation

Nina Amenta
University of California at Davis

Shape of a Point Set

Surface Reconstruction

Input: Samples from object surface.

Output: Polygonal model.

Point Set Capture

Cyberware model 15

Point Grey Bumblebee

Power Diagram

Weighted Voronoi diagram. Input: balls.

 $Dist(x, ball) = dist^2(x, center) - radius^2$

Polyhedral cells, same algorithm as regular Voronoi diagram (lift to convex hull)

Alpha-shapes

Overlay Voronoi diagram of balls on union of input balls. Discard features outside of the union.

Alpha-shapes

Alpha shape is the set of weighted Delaunay features dual to the weighted Voronoi features intersecting union of balls.

Alpha-shapes

Edelsbrunner, Kirkpatrick, Seidel, 83

Edelsbrunner, 93: Alpha shape is homotopy equivalent to union of balls, close correspondence with union structure.

Edelsbrunner & Muecke, 94: 3D surface reconstruction.

Alpha-shape reconstruction

Put small ball around each sample, compute alpha-shape.

Maximal ball avoiding surface is a medial ball.

Every solid is a union of balls!

Relation to Voronoi

Ogniewicz, 92

Voronoi balls approximate medial balls.

For dense surface samples in 2D, all Voronoi vertices lie near medial axis.

2D Curve Reconstruction

Blue Delaunay edges reconstruct the curve, pink triangulate interior/exterior.

Many algorithms, with proofs, for coloring edges.

2D Medial Reconstruction

Pink approximate medial axis.

By nerve theorem, approximation is homotopy equivalent to object and its complement.

3D Voronoi/Delaunay

Voronoi cells are convex polyhedra.

Voronoi balls pass through 4 samples.

Delaunay tetrahedra.

Sliver tetrahedra

Interior Voronoi balls

.... even when samples are arbitrarily dense.

Poles

Interior polar balls

Subset of Voronoi vertices, the poles, approximate medial axis.

Amenta & Bern, 98 "Crust" papers

Poles

For dense surface samples, Voronoi cells are:

- · long and skinny,
- perpendicular to surface,
- with ends near the medial axis.

Poles

Poles are Voronoi vertices at opposite ends.

To find: farthest Voronoi vertex from sample, farthest on opposite side.

Sampling Requirement

E-sample: distance from any surface point to nearest sample is at most small constant ε times distance to medial axis.

Note: surface has to be smooth.

Sampling Requirement

Intuition: dense sampling where curvature is high or near features.

Large balls tangent

Any large ball (with respect to distance to medial axis) touching sample s has to be nearly tangent to the surface at s.

Specifically

Given an ϵ -sample from a surface F:

Angle between normal to F at sample s and vector from s to either pole = $O(\epsilon)$

Results

Look for algorithms where....

Input: ϵ -sample from surface G

Output: PL-surface,

- · near G, converges
- · normals near G, converge
- · PL manifold
- · homeomorphic to G

Formal Algorithms

Amenta and Bern, crust
Amenta, Choi, Dey and Leekha, co-cone
Boissonnat and Cazals, natural neighbor
Amenta, Choi and Kolluri, power crust

Co-cone

Estimate normals, choose candidate triangles with good normals at each vertex.

Extract manifold from candidates.

Co-cone

Amenta, Choi, Dey, Leekha 2000 Works well on clean data from a closed surface.

Co-cone extensions

Dey & Giesen, undersampling errors.

Dey & Goswami, hole-filling.

Dey, Giesen & Hudson, divide and conquer for large data.

Power Crust

Amenta, Choi and Kolluri, 01

Idea: Approximate object as union of balls, compute polygonal surface from balls.

Label power diagram cells inside or outside object (skipping details).

Inside cells form polyhedral solid.

Power Crust

Boundary of solid gives output surface.

Connect inner poles with adjacent power diagram cells for approximate medial axis.

Medial axis approximation

Medial axis of union of balls = lower dimensional parts of alpha shape + intersection with Voronoi diagram of union vertices.

Attali & Montanvert, 97, A & Kolluri, 01

Distance function

Giesen and John, 01,02

Distance from nearest sample.

Distance function

Consdier uphill flow Idea: interior is part that flows to interior maxima.

Distance function

Max and (some) saddle points.

Compute flow combinatorially using Delaunay/Voronoi

Critical points where dual Delaunay and Voronoi faces intersect.

Distance function structure

Critical points where dual Delaunay and Voronoi faces intersect.

Running time

All O(n²) in theory because of complexity of 3D Delaunay triangulation. Practically, Delaunay is bottleneck.

But not in practice?

Delaunay complexity lower bound

Arrange points
on two skew
line segments O(n²) Delaunay
triangulation

Tangent spheres

Infinite number of tangent spheres touch an infinite number of

surface points.

All but a finite number of tangent spheres touch a finite number of surface points

All tangent spheres touch a finite number of surface points

Polyhedral (d-1) in Rd

Delauany triangulation of points on d-1 dimensional polyhedral surfaces:

simplices per sample:

4D - 3

5D - 20

6D - 100

Generic (d-1) in Rd

Delauany of points on cubic polynomial

simplices per sample:

4D - 5

5D - 30

6D - 130

Upper bound, polyhedral

[A,Attali&Devillers] Number of Delaunay simplicies for n points nearly uniformly sampling all faces of a p-dimensional polyhedral surface (not nec. connected or convex) in R^d is:

 $O(n^{(d+1-k)/p}), k = ceiling((d+1)/(p+1))$

Next week...

...maybe we'll get a chance to improve this.