

## Midterm 1

$\square$ Midterm is Monday Jan 28, in class.

- Bring a Scantron 2000 form
- 10-12 multiple choice questions -65 pts?
- Short (8 lines?) program - 35 pts?
$\square$ Open book, open notes.
- Please contact me beforehand if you have to miss it; only illness counts as a reason.
$\square$ Mon Feb 4 is the drop deadline.

Preparation the weekend

- SmartSite:
- Sample test - in Resources
- Sample solutions to programs 2 and 3 - in Resources
$\square$ Course Web page:
- Lecture sildes and program examples
- Textbook:
- Chapters 2 and 3
- Try the examples
$\square$ Review your programs.

Data types and operators

$$
\begin{aligned}
& x=10 \\
& y=x / 3
\end{aligned}
$$

$\square$ What types are these variables?
print("Mary"+"!")
$\square$ What does this print?

| Data types and operators |
| :---: |
| $\mathrm{x}=10$ <br> $y=x / 3$ |
| $\square \mathrm{x}$ is integer; y is floating point |
| print("Mary"+"!") |
| $\square$ Prints "Mary!" - string concatenation |




| Boolean value |
| :---: |
| What does this print? <br> ready = True <br> if not ready: <br> else: <br> print("waiting") <br> print("going") |

= or == question

The lines:

$$
x=0
$$

$x=1$
a) Will result in $x$ containing the value 0 .
b) Will result in $x$ containing the value 1 .
c) Will result in x containing the value False.
d) Will cause the program to crash.
= or == question

The lines:

$$
x=0
$$

$$
x==1
$$

a) Will result in $x$ containing the value 0 .
b) Will result in $x$ containing the value 1 .
c) Will result in x containing the value False.
d) Will cause an error.

## Complicated Booleans

if not ((reply $==$ ' $r$ ') or (reply $==$ ' $p$ ') or (reply $==$ ' $s$ ')):
$\square$ True when reply is NOT ' $r$ ', ' $p$ ', or ' $s$ '
if (user $==$ ' $r$ ') and (user $==$ ' $p$ '):
$\square$ Always False, so the block under if never done.
if (reply != ' Y ') and (reply != ' N '):

- True when reply is not (' $Y$ ' or ' $N$ ')

| randrange function |
| :---: |
| randrange $(0,10)$ |
| $\square$ Produces a random number between 0 and 9. |
|  |
|  |




## If-elif-else exercise

- Write a program that gets a random number between 1 and 4, prints it out, and then correctly identifies it with the sentence "It is four", "It is three", "It is two", or "It is one", using if-elif-elif-else.

| def main() program style |
| :--- |
| from random import randrange <br> def main(): <br> $x=$ randrange(0,4) <br> if $x==3:$ <br> return <br> $\operatorname{print}(x)$ <br> main() |

## Common error

What does this three-line program print?

$$
\text { interest }=3.4
$$

balance $=$ balance + interest
print(balance)

| Common error |
| :--- |
| What does this three-line program print? <br> interest $=3.4$ <br> balance $=$ balance + interest <br> print(balance) |
| ם Crashes! <br> $\square$ <br> The variable balance is used on the right-hand side <br> before it has something in it. |


| How many times? |
| :---: |
| How many lines will this program print? <br> $n=16$ <br> while $n>1:$ <br> $n=n / 2$ <br> $\operatorname{print}(n)$ |

## How many times?

How many lines will this program print?
$\mathrm{n}=16$
while $n>1$ :
$n=n / 2$
print $n$
$\square$ Pretend to be the program, and write out what the program will print, on scratch paper.

## Programming Problem

Question 16 (Programming Problem - Write your program below and not on the Scantron form!)
Write a program that simulates a mass decay by a given percentage every year, until less than $1 \%$
of the original mass is left. Here is an example output (user input is underlined):
Enter initial mass (grams): $\underline{100}$
Enter yearly decay rate in percent $(0-100)$ : $\underline{50}$
after year 1 the mass is 50.0 grams
after year 2 the mass is 25.0 grams
after year 3 the mass is 12.5 grams
after year 4 the mass is 6.25 grams
after year 5 the mass is 3.125 grams
after year 6 the mass is 1.5625 grams
Years needed to drop below 18 of initial mass $=7$
Please use comments; in particular, declare inputs and outputs.

| Approach |
| :--- |
| $\square$ First understand what the program is supposed to |
| do. |
| $\square$ Here, the program is supposed to |
| 1. Get user input - initial mass, rate of decay |
| 2. Reduce mass by (rate of decay) percent |
| 3. Unitl mass is reduced to < $1 \%$ of its initial mass |
| $\square$ Heart of the program will be a while loop. |
| $\square$ Start in the middle... on scratch paper. |


| While loop |
| :---: |
|  |
| - The program will require a while loop. You really have to understand how it works. |
| while Boolean is True: <br> do block |
| - while the Boolean test is True, the block under the while statement repeats. |
| - Somehow the code in the block has to eventually make the Boolean False, otherwise it will be an infinite loop. |

## Step 1: Choose variables

$\square$ initialMass - The mass the user inputs at the beginning. Float.
$\square$ mass - The mass that decreases every year. Float.

- rate - The percent decay every year. Float.
$\square$ year - The number of years so far. Integer.


## Step 2: Block under the while

while__ | mass = mass - mass*rate/100.0 |
| :--- |
| year year + 1 |
| print 'After year', year, |
| print 'The mass is', mass |

Q What should the Boolean condition in the while
statement be?

## Step 3: The Boolean condition

while mass > initialMass*0.01:
mass $=$ mass - mass*rate/100.0
year = year + 1
print 'After year', year,
print 'The mass is', mass
$\square$ Make sure that something that is changing in the loop will end up making the condition False eventually (and that it starts off True....)

## Step 4: Getting user input

reply = input("Enter initial mass (grams):")
initialMass = float(reply)
reply = input("Enter decay rate in percent: "):
rate $=$ float(reply)
$\square$ Midterm question does not say that input has to be checked to avoid crashes; but this is required in real life and homework!

## Step 5: Beginning values for loop

 variablesmass $=$ initialMass
year $=0$
while mass > initialMass/100:
mass $=$ mass - mass * rate $/ 100$
year = year+1
print "After year", year,
print "the mass is", mass

## Step 6: After the loop

print "Years needed to drop below 1\% of initial\} mass is", year

- Comments! Comments! Comments!
- If you make mistakes in the code, but the comments show what you were trying to do, you might get partial credit.


## Prepare for program

$\square$ Try to re-write this program, following the steps, without looking at the answer.
$\square$ Do the program on the sample midterm. Try it on paper, and then on a computer; does it work? If you can't do it on the computer, seek help immediately (in section or lab hours).

