
2/12/13

1

ECS 10
2/11

for loop

  On list
 for animal in [“cow”, “goat”, “mule”]:
 print(animal)

  On string
 for char in “3,497”:
 if char != “,”:
 print(char, end=“”)

for loop

  On range
 for count in range(1,6):
 print(count)

  On file
 inFile = open(“obesity.tsv”,”r”)
 for line in inFile:
 print(line)

Behavior depends on data type

  Example: for loop
 for x in M:
 …

  If M is a list, x is an element
  If M is a string, x is a character
  If M is a file, x is a string (a line of the file)
  If M is a range object (iterator), x is an integer

Behavior depends on data type

  Example: indexing
 M[2]

  If M is a list, this is the third element
  If M is a string, this is the third character

Let user pick file to run on

  But.. program has no way of checking whether the
user typed the name of a file in same folder except
by trying to open it.

  It will crash if the file is not there!
  But programs should not crash!
  Similar to problem we had with getting numbers

from the user.

2/12/13

2

Exceptions

  Python mechanism for handling user input that might
crash the program:

try:
 inFile = open(inFileName, "r")
except:
 # Gets here if we cannot open the file
 print("Cannot find file",inFileName)

Exceptions

try:
 # Command that might cause a crash
except:
 # Executes this block if a crash would have

 # happened!

The value None

 x = None

  None is the value you put into a variable to indicate
that the variable exists, but it is empty.

  All we can do is test it for equality other values.
  Here we test to see if it is equal to “a” or “b”

When to Use Exceptions

  Use exceptions to handle input you cannot control.
  We have seen the most common scenarios: file

names, and converting user-input strings to numbers.
You may not use exceptions for anything else in this
course.

  Most crashes are because there is a something
wrong with your program. Fix the bug, don’t put it
inside an exception.

Converting Strings

popStr = input(‘Enter the population: ‘)
try:
 pop = float(popStr) # Try conversion
except:

 # Conversion failed!
 print (‘Not a number.’)
 pop = None

Getting input to functions

 def canBeFloat(s):

  s is the parameter of canBeFloat; what the input is
called inside the function.

  Might be called anything outside the function, when
it is called:

 if not canBeFloat(reply):
  reply is the argument of the function canBeFloat in

this particular line of a program using the function.

2/12/13

3

Getting output from functions

 return False
  The value produced by the function follows the

return command.
  If there is nothing following the return command,

then the value is None!

canBeInt

def canBeInt(s):
 try:
 int(s)
 except:
 return False
 return True

import

 from inputCheck import canBeInt

  Import tells Python to put the function canBeInt into
your program, from file inputCheck.

