ECS10

B

String methods

|

o Google “Python string methods”

separator, the separator itself, and the part after the separator. If the separator is not found, retum a
3-tuple containing the string ttself, followed by two empty strings. New in version 2.5.

replace(old, new [, coant])
Retum a copy of the string with all occurrences of substring old replaced by zew. If the optional
argument count is given, only the first count occurrences are replaced

rfind(sub [start [end]])
Retum the highest index in the string where substring sub is found, such that sub is contained within
o There are lots of them!

o Check here for things you can use.

Announcements
|
O | have some midterms with no section time, nonsense
section time, etc. See me after class.
0 We will not grade checkpoint but we will check that
you submitted it. Final program due next week.
The replace method
|

inString = “2,407,018”
popString = inString.replace(",”, *”)

population = int(popString)

O Replaces all copies of the first argument with the
second.

O Here, replaces all commas with the empty string;
that is, eliminates commas.

s = ‘Flinch’

s = s.replace(“FI”, “Gr”)

The strip() method, revisited

|

O Removes all whitespace from the beginning and
end of a string.

0 Whitespace is any character that prints as space
rather than ink; space, tab, newline.

The split() method, revisited

|

o Splits on whitespace

O Removes tabs and newlines as well as spaces

Loop over a string

|

strin = “5,236,320”
i=0
strOut = “”
while i < len(strIn):
char = strin[i]
if char 1=4":
strOut = strOut+char
i=it+1

for loop over a string

|

strln = “5,342,750”
strOut = “”
for char in strin:
if char 1= ":
strOut = strOut+char

0 Exactly the same effect as version using while.
O Prettier, shorter.

o char takes on values “5”, then “,”, then “3".....
o Each character in turn.

for vs while

|

o0 Anything you can do with a for loop, you could
also do with a while.

o for loops can only be used when you know how

list...), or with break statement.

0 while loops are more versatile, since you don’t
need to know how many times it will loop.

o for loops are a shorter and tidier.

many times they will run before you start (length of

for over a list

|

s = "Double bacon cheeseburger (Hamburgers) 900"
words = s.split()
for w in words:
if w == "(Hamburgers)":
break

print(w,end="")

0 Variable w contains each word in turn; first
“Double”, then “bacon”....

for over different things

|

for x in thing:

type of x depends on type of thing

o If thing is a string, x is a character
o If thing is a list, x is an element of the list
o And....

Loop on integers

|

count = 0
while count < 5:
print count

count = count+1

Count is the index variable.

Loop over integers

|

for count in [0,1,2,3,4]:

print(count)

Shorter with a for loop. But we might need to
make a very long list.

Loop over integers

|

for count in range(5):

print count

Prettier with the range function.

Range function

for count in range(5):

print count

o Prints 0-4
o range(5) is a built-in Python function
o range(1,6) prints 1-5

Range function

string =
for count in range(5):

string = string + ‘ha’

o Standard way to do something a fixed number of
times.

lterator

|

o range() produces a data object of type “range”,
which is a specific kind of iterator.

O To see the values that will be produced by the
iterator, try

list(range(5))
or

tuple(range(5))

range() vs randrange()

|

o Two different functions.

O The value produced by range() is an iterator.

x = range(10)

0 The value produced by randrange() is a single
random integer.

randNum = randrange(10)

|

while version

|

for version

balance = 100.0

annualRate = 7.0

monthlyRate = annualRate/12.0
month = 0

while month < 12:

balance=balance+monthlyRate/100.0*balance
month = month+1

balance = 100.0
annualRate = 7.0
monthlyRate = annualRate/12.0
for month in range (12):
balance = balance+monthlyRate/100.0*balance

O Two lines shorter than while version....
O There is no such thing as an infinite for loop!
O Most common way to do it.

|

for on a file

")

inFile = open(“menu.txt”,”r
for line in inFile:

print(line)

O Here line is a string

0 Each time through the loop, it contains the next line

of the file.

