
3/11/13

1

ECS 10
3/11

Plans

  Final is Wds Mar 20, 1-3pm, in this room.
  Will be very like midterm 2, but with more review

of midterm 1 material. Two small programs.
  Makeup program due tomorrow 10pm

 Lab hours today 11-1
 Lab hours tomorrow 12-2

  Prog 6 due Sunday Mar 17
  If your previous HW grades were good do not

hand in both. We will replace your lowest score
with the makeup, even if it lowers your grade.

Recap MT2 program

  Input:
Afghanistan: Islamic Republic of Afghanistan, Jamhuri-ye Islami-ye Afghanistan

Akrotiri:

Albania: Republic of Albania, Republika e Shqiperise, Shqiperia

Algeria: People's Democratic Republic of Algeria, Al Jaza'ir

American Samoa: Territory of American Samoa, AS

  Output:
 Country name: AS

 The standard name of AS is American Samoa

 Country name: American Samoa

 The standard name of American Samoa is American Samoa

Look at the output

  If user inputs alternative names, and it reports
standard names, then the keys are alternative
names and the values are standard names.

  You could use a tuple (sadly not a list…) of
alternative names as keys. What is wrong with this
idea?

  You could use standard names as keys and a list of
alternative names as values and then read the
whole dictionary to find every answer. What is
wrong with this idea?

What if…

  The output is a file containing cities and their
populations, largest to smallest, input is a file with
cities by country, including populations.

 Tokyo–Yokohama 37,126,000

 Jakarta 26,063,000

 Seoul–Incheon 22,547,000

 Delhi 22,242,000

 Shanghai 20,860,000
 Manila 20,767,000

 Karachi 20,711,000

 New York 20,464,000

Data structure: list of tuples

[(22242000, Delhi), (66000, Davis)…)]

  Each tuple is (integer, string)
  Put population first so you can sort by

population.
  Write population second to file.

3/11/13

2

Last time: Using Objects

  All data in Python is some kind of object.
  Built-in data types are integer, string, dictionary…
  Classes are “new” data types defined by programs.
  Lots of modules are organized entirely as collections

of classes.
  Factory functions create instances of the new classes,

that is, objects belonging to the new classes.
  Methods for the new classes are defined in the

module, do most of the work.

More tkinter: Label class

  Put text into your window.
 label = Label(root, text="Yowza!")

  Objects store data as well as methods.
  tkinter lets the user have access to some (but not all)

of the data stored in an object.
  These are the attributes.

 print(label.cget("text"))

Keyword parameters

  A function or method can have a lot of parameters.
  A label can have text, but also lots of other

parameters (colors, behavior when window is active,
images, border styles…)

  Rather than have to specify all parameters every
time you make a label, specify only the ones you
want and use default values for the rest.

  Specify parameters by variable name rather than
position – these are called keyword arguments.

  Tkinter uses keyword arguments for most attributes.

Example: changing the font

  Need to include the font part of tkinter

 from tkinter.font include Font

  Then define the font you want

bigFont = Font(family='Times', size=20)
label = Label(root, text="Yowza!", font=bigFont)

Images

  Can also put pictures into labels.
 flower = PhotoImage(file="Rhododendrum.gif")
 pic = Label(root, image=flower)

  Only guaranteed to handle certain image formats
(gif, ppm, pnm), sadly.

Making a button

  Buttons are like labels, but they ought to do
something.

 like = Button(root, text="Like!", font=big, \
 command=whatButtonDoes)

  The command should be the name of a function in
your program.

  That function gets run when the button is pushed.

3/11/13

3

Grid layout

  Basic idea: arrange things in rows and columns.
  This is the visual design; start with a plan. How big

are your components, how many rows or columns
does each one need?

Frame

  Gives you more options than root window

frame = Frame(root)
frame.grid()

  Frame goes into root window
  Put the buttons, pictures, labels inside the frame

Spanning columns

  Add a background picture spanning the whole
frame.

  Add it first so buttons end up on top.

 pic.grid(column=0, row=0, columnspan=3,
rowspan=3)

Place widgets

 label.grid(column=0,row=0,columnspan=3)
…
 like.grid(column=0,row=4)
  Places the label in middle of whole top row.
  Places like button on lower left

