
3/11/13

1

ECS 10
3/11

Plans

  Final is Wds Mar 20, 1-3pm, in this room.
  Will be very like midterm 2, but with more review

of midterm 1 material. Two small programs.
  Makeup program due tomorrow 10pm

 Lab hours today 11-1
 Lab hours tomorrow 12-2

  Prog 6 due Sunday Mar 17
  If your previous HW grades were good do not

hand in both. We will replace your lowest score
with the makeup, even if it lowers your grade.

Recap MT2 program

  Input:
Afghanistan: Islamic Republic of Afghanistan, Jamhuri-ye Islami-ye Afghanistan

Akrotiri:

Albania: Republic of Albania, Republika e Shqiperise, Shqiperia

Algeria: People's Democratic Republic of Algeria, Al Jaza'ir

American Samoa: Territory of American Samoa, AS

  Output:
 Country name: AS

 The standard name of AS is American Samoa

 Country name: American Samoa

 The standard name of American Samoa is American Samoa

Look at the output

  If user inputs alternative names, and it reports
standard names, then the keys are alternative
names and the values are standard names.

  You could use a tuple (sadly not a list…) of
alternative names as keys. What is wrong with this
idea?

  You could use standard names as keys and a list of
alternative names as values and then read the
whole dictionary to find every answer. What is
wrong with this idea?

What if…

  The output is a file containing cities and their
populations, largest to smallest, input is a file with
cities by country, including populations.

 Tokyo–Yokohama 37,126,000

 Jakarta 26,063,000

 Seoul–Incheon 22,547,000

 Delhi 22,242,000

 Shanghai 20,860,000
 Manila 20,767,000

 Karachi 20,711,000

 New York 20,464,000

Data structure: list of tuples

[(22242000, Delhi), (66000, Davis)…)]

  Each tuple is (integer, string)
  Put population first so you can sort by

population.
  Write population second to file.

3/11/13

2

Last time: Using Objects

  All data in Python is some kind of object.
  Built-in data types are integer, string, dictionary…
  Classes are “new” data types defined by programs.
  Lots of modules are organized entirely as collections

of classes.
  Factory functions create instances of the new classes,

that is, objects belonging to the new classes.
  Methods for the new classes are defined in the

module, do most of the work.

More tkinter: Label class

  Put text into your window.
 label = Label(root, text="Yowza!")

  Objects store data as well as methods.
  tkinter lets the user have access to some (but not all)

of the data stored in an object.
  These are the attributes.

 print(label.cget("text"))

Keyword parameters

  A function or method can have a lot of parameters.
  A label can have text, but also lots of other

parameters (colors, behavior when window is active,
images, border styles…)

  Rather than have to specify all parameters every
time you make a label, specify only the ones you
want and use default values for the rest.

  Specify parameters by variable name rather than
position – these are called keyword arguments.

  Tkinter uses keyword arguments for most attributes.

Example: changing the font

  Need to include the font part of tkinter

 from tkinter.font include Font

  Then define the font you want

bigFont = Font(family='Times', size=20)
label = Label(root, text="Yowza!", font=bigFont)

Images

  Can also put pictures into labels.
 flower = PhotoImage(file="Rhododendrum.gif")
 pic = Label(root, image=flower)

  Only guaranteed to handle certain image formats
(gif, ppm, pnm), sadly.

Making a button

  Buttons are like labels, but they ought to do
something.

 like = Button(root, text="Like!", font=big, \
 command=whatButtonDoes)

  The command should be the name of a function in
your program.

  That function gets run when the button is pushed.

3/11/13

3

Grid layout

  Basic idea: arrange things in rows and columns.
  This is the visual design; start with a plan. How big

are your components, how many rows or columns
does each one need?

Frame

  Gives you more options than root window

frame = Frame(root)
frame.grid()

  Frame goes into root window
  Put the buttons, pictures, labels inside the frame

Spanning columns

  Add a background picture spanning the whole
frame.

  Add it first so buttons end up on top.

 pic.grid(column=0, row=0, columnspan=3,
rowspan=3)

Place widgets

 label.grid(column=0,row=0,columnspan=3)
…
 like.grid(column=0,row=4)
  Places the label in middle of whole top row.
  Places like button on lower left

