
3/14/13

1

ECS 10
3/13

Announcements

  Final is Wds Mar 20, 1-3pm, in this room.
  Prog 6 due Sunday Mar 17
  Practice final on SmartSite under resources, a few

more programming examples to follow soon.

Functions review

  Style: only line of code outside a function is main()
  Variables defined in each function are local to that

function.
  Information is passed explicitly using arguments/

parameters and return values.
  Flow of information is visible.

  Buttons use callback functions to do something in
your program.

Problem

  Callback functions might want to have input and
output.

  Not obvious how to do that with tkinter.

 # a button that runs function whatButtonDoes
 like = Button(frame,text="Like!",font=big,\
 command=whatButtonDoes)

Solution: Global variables

  Shared by all
functions in the
program

  Here x is
declared to
be global in
setsX()

def usesX():
 print(x)

def createsX():
 global x
 x = 5

def main():
 createsX()
 usesX()

main()

Global variables

  All functions
can see the
value of a
global
variable.

  Only the ones
that declare it
global can
change its
value .

def usesX():
 print(x)

def createsX():
 global x
 x = 5

def main():
 createsX()
 usesX()

main()

3/14/13

2

Function can see globals, but not change
them (unless it declares them).

Metaphor – one-way glass

Style tips

  When using global variables, the flow of
information might not be clear.

  Keep global variables to a minimum.

Button callbacks

  Have no parameters or return values, so no way to
get data in and out.

  But need to be able to change variables in the
program in order to do anything!

  Use global variables.

Tricky bit #1

  A variable defined in a function, not declared to be
global, is local.

def f():
 x = 3
 # x is local

def f():
 global x
 x = 3
 # x is global

Tricky bit #1

  This is true even if
there is a global
variable of the same
name.

  Watch out for this!

def localX():
 x = 2
 print(x)

def seesX():
 print(x)

def createX():
 global x
 x = 5

def main():
 createX()
 localX()
 seesX()

Tricky bit #2

  Variables outside a function are always global. It’s
easy to forget this and get confused.

  Since we want be very aware of all global
variables,
  don’t put code outside functions. (except imports and

the call to main()),
 watch out for assignments with global variables on the

left; they have to be declared global in that function.

3/14/13

3

Style review

  Order of stuff in your program:
1.  Imports. Import everything in the first lines.
2.  All function definitions, with main() last. Functions

get run only when they are called.
3.  One statement outside of function definitions:

main()
  Declare all global variables explicitly.

Another time globals are handy

  A function needs to remember info from last time it
was called.

  Could remember the info in main(), but this defeats
the purpose of separating conceptually different
parts of the program from each other.

