
3/17/13

1

ECS 10
3/15

Announcements

  Course evaluations today. Need people to
handle them, I am supposed to be out of the
room.

  Review for final on Monday.
  Final Wds 1-3 PM. Bring a Scantron. Open

notes.
  Program 6 due Sunday night.
  Practice final, extra programming problem in

Resources on SmartSite.

Programming problems

  Build a program out of parts:
 Read a file and build a dictionary, possibly combining

items.
 Read a file and build a list (or list of lists)
 Get user input and look up item in a dictionary
 Put dictionary items into a list
 Sort a list
 Write an output file, or write dictionary contents out to

a file.

Yelp - find best restaurants

The input

  Input is file of 100,000 user rankings
 Each line has restaurant, number of stars
 Same restaurant shows up many times
 Arbitrary order

 Burgers and Brew 3
 Thai Kitchen 4
 Taqueria Davis 4
 Burgers and Brew 5
 Hunan 4
 Thai Kitchen 2

The output

  Get average number of stars per restaurant
  Output list of restaurants ordered from best to

worst.
  Average number of stars

  (total stars) / (number of ratings)
 Example: ***, **, ****, ** = (3+2+4+2) / 4 = 2.75

 Burgers and Brew 4.3328
 Sam’s Mediterannean Cuisine 4.2876
 Taqueria Davis 4.2463

3/17/13

2

Look at the output first!

  What is the output?
  What data structure produces that output?
  How can I get that data?
  Is this the most efficient way to get that output? That

data?

An algorithm

  Read file, store in dictionary using restaurant name
as key.

  Values are [total stars, number of ratings]
  When we get a new rating for restaurant,

 Create new dictionary entry if necessary
 Add to total stars, number of ratings for the restaurant

  For loop on dictionary
 Compute average for each restaurant
 Put [avg, restaurant name] into a list

  Sort the list

Program structure

  Four functions:
 Loop1 (file read, build dictionary),
 Loop 2 (for loop on dictionary, write list),
 Loop 3 (sort list, loop to to produce output),
 Main.

 def main():
 rDict = makeDictionary()
 rList = makeList(rDict)
 rList.sort()
 rOutputt(rList)

Classes

  Modules often define new kinds of objects - classes.
  If you want to understand the code in some existing

module, or maybe change it, it will help to
understand how classes are made.

  Let’s look at some object-oriented programming
from the inside…

Card class

class Card:
 def __init__(self, suit, num):
 self.suit = suit
 self.num = num

  Class code goes into block under class statement.
  __init__ method makes a new instance
  Looks like three inputs, but really two: suit and

number; here, these become attributes.

Attributes

  Begin with “self”, like
 self.suit

  Global within the module.
  Invisible outside it (local to the module).

3/17/13

3

Make it print out pretty

  __str__ function determines what the class will look
like when converted to string.

  Used by the print statement.

 def __str__(self):
 return self.suit+str(self.num)

Deck of cards class

  Attribute will be a list of cards
  Make one card for every suit and number.

 # factory function; always called __init__
 def __init__(self):
 self.cards = []
 for num in range(1, 13):
 for suit in ["H","C","S","D"]:
 # append a card
 self.cards.append(Card(suit,num))

Methods

  Other function definitions inside the class definition.
  Things you can do with a deck of cards…

 # a method!
 def shuffle(self):
 shuffle(self.cards)

Dealing a hand

 def deal(self, numToDeal):
 handL = []
 for i in range(0,numToDeal):
 # pop takes the last card off the list
 card = self.cards.pop()
 handL.append(card)
 return Hand(handL)

