
3/8/13

1

ECS 10
3/8

More on modules

  You know how to write programs sophisticated
enough to do real work.

  Lots of real work requires you to use modules.
  We know nodules contain new functions.

 from inputCheck import canBeInt
  Import new functions at top of program
  Use them like any other function or method
  How would you import function drawPlot ?

 from tkinter import *
  Imports all of the stuff in the module

Importing a module

  If the module has a main() function, it gets run
automatically when the module is imported.

  Sometimes this is a good idea.
  In this case, the main() function just demonstrates the

function on some bogus data; we don’t want to do
that every time the module is imported.

  These lines detect that it is being called when it is
imported, and returns.

 if __name__ != "__main__":
 return

Classes

  Modules also usually contain new data types!
  These are called classes.
  It’s important to know a little bit about classes to use

modules.

Example: the tkinter module

  Used to define Graphical User Interfaces (one of
many).

  GUI modules unfortunately always seem
complicated.

  Let’s make a window.

3/8/13

2

Classes

  A class is like a new data type.
  Classes are most often added by modules. The tkinter

module adds the Tk class (among others)
  An object in Python is any data item.

 root = tk.Tk()

  Creates an object which is an instance of class Tk, and
puts it into variable root.

  Kind of like an “object of type Tk” – but with different
jargon.

Data as objects

Instance

  There can be lots of objects of type string in a
program, and similarly lots of objects of type Tk.

  Each object is an instance of its class.

Factory Functions

  Create instances of the class.
  Often these are the only functions (as opposed to

methods) in the module.

 root = tk.Tk()

Methods

  Any function that works only with an object of a
particular class is given as a method.

  This is the difference between a function and a
method – methods are functions that belong to
specific kinds of objects.

 root.title("cute little window")
 root.geometry("200x100")

The tkinter main loop

 root.mainloop()

  Puts up the window
  Stays in this function until something happens to

the window.
  So far, this is just killing the window. But soon

we will have buttons!

3/8/13

3

The canvas object

  Put a “sketchpad” in our window, so we can draw
some graphics.

c = Canvas(root, width=600,height=400,bg ='white')
  A canvas object – one of the possible GUI features.
  Attached to the root window.

 canvas.grid(column=0, row=0)
  Where exactly it goes in root window (fills it up).

Some graphics

  Draw things like lines, rectangles, ovals.
canvas.create_rectangle(300,200,400,300)
canvas.create_oval(300,200,400,300,fill="darkRed")

0 600

0

400

Lines

 canvas.create_line(100,y,105,y, width=2)

  From (x,y) point to another (x,y) point

 dataList = [(20,40), (30, 50), (50, 100)]
 canvas.create_line(dataList, fill='black')

  Connects all of the point tuples in the input list

The drawPlot function

  Uses the canvas
  Draws the axes as lines

Object Oriented Programming

  A philosophy about how to organize programs.
  Keep data organized into objects, along with

methods to use or modify that data.
  Many languages, including Python, have a lot of

syntactic sugar to make object oriented
programming easier.

  Lots of modules are organized as collections of
classes.

The future

  If you go on to use Python, you’ll use a lot of
modules that have classes in them.

