
Huffman codes

I used for data compression, typically saving 20%–90%

I Basic idea:
represent often encountered characters by shorter (binary) codes

1 / 11



Huffman codes

I used for data compression, typically saving 20%–90%

I Basic idea:
represent often encountered characters by shorter (binary) codes

1 / 11



Huffman codes

Example

I Suppose we have the following data file with total 100 characters:

Char. a b c d e f
Freq. 45 13 12 16 9 5
3-bit fixed length code 000 001 010 011 100 101
variable length code 0 101 100 111 1101 1100

I Total number of bits required to encode the file:
I Fixed-length code:

100 × 3 = 300

I Variable-length code:

1·45 +3·13 + 3·12 + 3·16 + 4·9 + 4·5 = 225

I Variable-length code saves 25%.
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Huffman codes

Prefix(-free) codes:

1. No codeword is also a prefix1 of some other code.

2. A prefix code for Example:

Char. a b c d e f
Code 0 101 100 111 1101 1100

3. Encoding and decoding with a prefix code.

4. Example, cont’d.
I Encode:

I beef −→ 101110111011100
I face −→ 110001001101

I Decode:
I 101110111011100 −→ beef
I 110001001101 −→ face

1a word, letter or number placed before another
3 / 11
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Huffman codes

5. Representation of prefix code:

I full binary tree: every nonleaf node has two children.

I All legal codes are at the leaves, since no prefix is shared

6. Example, cont’d

(a) the (not-full-binary) tree corresponding to the fixed-legnth code,
(b) the (full-binary) tree corresponding to the prefix code:

7. Fact: an optimal code for a file is always represented by a full binary
tree.
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Huffman codes

Cost and optimality

Let C = alphabet (set of characters), then

I A code = a binary tree T

I For each character c ∈ C, define

f(c) = frequency of c in the file

dT (c) = length of the code for c

= number of bits

= depth of c’ leave in the tree T

Then the number of bits (“cost of the tree/code T”) required to
encode the file

B(T ) =
∑
c∈C

f(c) · dT (c),

I A code T is optimal if B(T ) is minimal.
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Huffman codes

Let C = alphabet (set of characters), basic idea of Huffman codes to
produce a prefix code for C:

represent often encountered characters by shorter (binary) codes

via

1. Building a full binary tree T in a bottom-up manner

2. Beginning with |C| leaves, performs a sequence of |C| − 1 “merging”
operations to create T

3. “Merging” operation is greedy: the two with lowest frequencies are
merged.
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Review: priority queue

I A priority queue is a data structure for maintaining a set S of
elements, each with an associated key.

I A min-priority queue supports the following operations:

I Insert(S,x): inserts the element x into the set S, i.e., S = S ∪ {x}.
I Minimum(S): returns the element of S with the smallest “key”.
I ExtractMin(S): removes and returns the element of S with the

smallest “key”.
I DecreaseKey(S,x,k): decreases the value of element x’s key to the new

value k, which is assumed to be at least as small as x’s current key
value.

I A max-priority queue supports the operations:
Insert(S, x), Maximum(S), ExtractMax(S), IncreaseKey(S, x, k).

I Section 6.5 describes a binary heap implementation.
I Cost: let n = |S|, then

I initialization building heap = O(n)
I each heap operation = O(lgn)
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Huffman codes

I Pseudocode:

Huffmancode(C)

n = |C|

Q = C // min-priority queue, keyed by freq attribute

for i = 1 to n-1

allocate a new node z

z_left = x = ExtractMin(Q)

z_right = y = ExtractMin(Q)

freq[z] = freq[x] + freq[y]

Insert(Q,z)

endfor

return ExtractMin(Q) // the root of the tree

I Running time:

T (n) = init. Heap + (n− 1) loop× each Heap op.

= O(n) +O(n lg n) = O(n lg n)
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Huffman codes

Example
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Huffman codes

Optimality: To prove the greedy algorithm Huffmancode producing an
optimal prefix code, we show that it exhibits the following two ingradients:

1. The greedy-choice property

If x, y ∈ C having the lowest frequencies, then there exists an optimal
code T such that

I dT (x) = dT (y)
I the codes for x and y differ only in the last bit

2. The optimal substructure property

If x, y ∈ C have the lowest frequencies, and let z be their parent.
Then the tree

T ′ = T − {x, y}

represents an optimal prefix code for the alphabet

C ′ = (C − {x, y}) ∪ {z}.
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Huffman codes

By the above two properties, after each greedy choice is made, we are left
with an optimization problem of the same form as the original. By
induction, we have

Theorem. Huffman code is an optimal prefix code.
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