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Overview

I. Introduction and getting started

II. Growth of functions and asymptotic notations

III. Divide-and-conquer recurrences and the master theorem

IV. Divide-and-conquer algorithms

V. Greedy algorithms

VI. Dynamic programming

VII. Graph algorithms

VIII. NP-completeness

Based on Chapters 1-4, 15-16, 22-25 and 34-35 of the textbook.
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I. Introduction and Getting Started
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Introduction

I Algorithm is a tool for solving a well-specified computational problem

I An algorithm is a well-defined procedure for transforming some input
into a desired output

I A poem by D. Berlinski in “Advent of the Algorithm”

In the logician’s voice:

an algorithm is
a finite procedure,
written in a fixed symbolic vocabulary
governed by precise instructions,
moving in discrete steps, 1, 2, 3, ...
whose execution requires no insight, cleverness,
intuition, intelligence, or perspicuity
and that sooner or later comes to an end.

I Algorithms as a technology
How Algorithms Shape Our World, a TED talk by Kevin Slavin
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Introduction

I Basic questions about an algorithm

1. Does it halt?
2. Is it correct?
3. Is it fast? (Can it be faster?)
4. How much memory does it use?
5. How does data communicate?
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Getting started: example 1

I Fibonacci numbers:

F0 = 0,
F1 = 1,
Fn = Fn−1 + Fn−2 for n ≥ 2

I Fibonacci numbers grow almost as fast as the power of 2:

Fn ≈ 20.694n

I Problem statement:
computing the n-th Fibonacci number Fn

I Algorithms for computing the n-th Fibonacci number Fn:

1. Recursion (“top-down”)
2. Iteration (“bottom-up”, memoization)
3. Divide-and-conquer
4. Approximation
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Getting started: example 2

I Problem statment:

Input: a sequence of n numbers 〈a1, a2, . . . , an〉
Output: a permutation (reordering) 〈a′1, a′2, . . . , a′n〉 of the

a-sequence such that a′1 ≤ a′2 ≤ · · · ≤ a′n
In short, sorting

I Algorithms:

1. Insertion sort
2. Merge sort
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Getting started: example 2

Insert sort algorithm

I Idea: incremental approach

I Pseudocode

InsertionSort(A)

1 n = length(A)

2 for j = 2 to n

3 key = A[j]

4 // insert ‘‘key’’ into sorted array A[1...j-1]

5 i = j-1

6 while i > 0 and A[i] > key do

7 A[i+1] = A[i]

8 i = i-1

9 end while

10 A[i+1] = key

11 end for

12 return A
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Getting started: example 2

Remarks:

I Correctness: argued by “loop-invariant” (a kind of induction)

I Complexity analysis: let T (n) be the number of operations for sorting
an array of length n, and tj be the number of while-loop executed for
j, then

T (n) =

n∑
j=2

(1 + 1 + tj + 1) = 3(n− 1) +

n∑
j=2

tj

I best-case: tj = 1 and T (n) = 4(n− 1) = O(n)
I worst-case: tj = j and T (n) = 3(n− 1) +

∑n
j=2 j = O(n2)

I average-case: tj = j
2
and T (n) = 3(n− 1) +

∑n
j=2

j
2
= O(n2)

I Insertion sort is a “sort-in-place”, no extra memory necessary

I Importance of writing a good pseudocode = “expressing algorithm to
human”

I There is a recurisve version of insertion sort, see Homework 1.
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Getting started: example 2

Merge sort algorithm

I Idea: divide-and-conquer approach

I Pseudocode

MergeSort(A,p,r) // Merge-sort of array A[p..r]

1 if p < r then // check for base case

2 q = flooring( (p+r)/2 ) // divide

3 MergeSort(A,p,q) // conquer

4 MergeSort(A,q+1,r) // conquer

5 Merge(A,p,q,r) // combine

6 end if
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Getting started: example 2

I Pseudocode, cont’d

Merge(A,p,q,r)

n1 = q-p+1; n2 = r-q

for i = 1 to n1 // create arrays L[1...n1+1] and R[1...n2+1]

L[i] = A[p+i-1]

end for

for j = 1 to n2

R[j] = A[q+j]

end for

L[n1+1] = infty; R[n2+1] = infty // mark the end of arrays L and R

i = 1; j = 1

for k = p to r // Merge arrays L and R to A

if L[i] <= R[j] then

A[k] = L[i]

i = i+1

else

A[k] = R[j]

j = j+1

end if

end for
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Getting started: example 2

I Merge sort is a divide-and-conquer algorithm consisting of three steps:
divide, conquer and combine

I To sort the entire sequence A[1...n], we make the initial call

MergeSort(A,1,n)

where n = length(A).

I Complexity analysis:

T (n) = 2 · T
(n
2

)
+ n− 1 = O(n lg(n))
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