
Shortest-paths – Proofs

I Weight of path p = v0 → v1 → · · · → vk:

w(p) =

k∑
i=1

w(vi−1, vi)

I Shortest-path weight u; v

δ(u, v) =

{
min{w(p) : u p

; v} if there exists a path u; v
∞ otherwise

I Shortest-path u; v

any path p such that w(p) = δ(u, v)

1 / 9

Shortest-paths – Proofs

Triangular inequality:

for all (u, v) ∈ E, δ(u, v) ≤ δ(u, x) + δ(x, v).

Proof: Note that

Weight of shortest path s; v ≤ weight of any path s; v

The path s; u→ v is a path s; v, and if we use a shortest
path s; u, its weight is δ(u, x) + δ(x, v).

2 / 9

Shortest-paths – Proofs

Upper-bound property:

Always have d[v] ≥ δ(s, v) for all v.
Once d[v] = δ(s, v), it never changes.

Proof. Initially true. Suppose there exists a vertex such that d[v] < δ(s, v).
Without loss of generality, v is first vertex for which this happens. Let u be
the vertex that causes d[v] change. Then d[v] = d[u] + w(u, v). So

d[v] < δ(s, v)

≤ δ(s, u) + w(u, v)

≤ d[u] + w(u, v)

which implies d[v] < d[u] + w(u, v). Contradicts d[v] = d[u] + w(u, v).
Once d[v] reaches δ(s, v), it never goes lower. It never goes up, since
relaxations only lower shortest-path weights.

3 / 9

Shortest-paths – Proofs

No-path property:

If δ(s, v) =∞, then d[v] =∞ always.

Proof. d[v] ≥ δ(s, v) =∞ implies that d[v] =∞.

4 / 9

Shortest-paths – Proofs

Convergence property:

If s; u→ v is a shortest-path, and d[u] = δ(s, u). Then after
“Relax u→ v”, d[v] = δ(s, v).

Proof. After relaxation

d[v] ≤ d[u] + w(u, v)

= δ(s, u) + w(u, v)

= δ(s, v)

On the other hand, we have d[v] ≥ δ(s, v). Therefore, it must have
d[v] = δ(s, v).

5 / 9

Shortest-paths – Proofs

Path relaxation property

Let p = v0 → v1 → · · · → vk be a shortest-path. If we relax in
order, (v0, v1), (v1, v2), . . . , (vk−1, vk), even intermixed with other
relaxations, then d[vk] = δ(v0, vk).

Proof. Induction to show d[vi] = δ(s, vi) after (vi−1, vi) is relaxed.

I Basis step: i = 0. Initially d[v0] = δ(s, v0) = δ(s, s)

I Inductive step: Assume d[vi−1] = δ(s, vi−1). Relax (vi−1, vi). By
convergence property, d[vi] = δ(s, vi) afterward and d[vi] never
changes.

6 / 9

Shortest-paths – Proofs

Correctness of the Bellman-Ford algorithm

It is guaranteed to converge after |V | − 1 passes, assuming no
negative-weight cycles.

Proof. Use path-relaxation property.
Let v be reachable from s, and let p = v0 → v1 → · · · → vk be the shortest
path from s to v, where v0 = s and vk = v.
Since p is acyclic, it has ≤ |V | − 1 edges, so that k ≤ |V | − 1 edges.
Each iteration of the for loop realxes all edges:

I First iteration relaxes (v0, v1)

I Second iteration relaxes (v1, v2)

I ...

I kth iteration relaxes (vk−1, vk)

By the path-relaxation property, d[v] = d[vk] = δ(s, vk) = δ(s, v).

7 / 9

Shortest-paths – Proofs

Correctness of Dijkstra’s algorithm

Show that d[u] = δ(s, u) when u is added to S in each iteration.

Proof:
I We prove by contradiction. Suppose there exists u such that
d[u] 6= δ(s, u). Without loss of generality, let u be the first vertex for
which d[u] 6= δ(s, u) when u is added to S in each iteration.

I Observation:
I u 6= s, since d[s] = δ(s, s) = 0.
I Therefore, s ∈ S and S 6= ∅
I There must have be some path s; u, since otherwise
d[u] = δ(s, u) = ∞ by no-path property.

So, there is a path s; u. Then there is a shortest path s
p
; u.

I Just before u is added to S, path p connects a vertex in S (i.e., s) to
a vertex in V − S (i.e., u). Let y be first vertex along p that’s in
V − S and and let x be y’s predecessor.

I Decompose p into

s
p1
; x→ y

p2
; u

(could have x = s or y = u, so that p1 or p2 may have no edges.)
8 / 9

Shortest-paths – Proofs

Correctness of Dijkstra’s algorithm, cont’d

I Claim:1 d[y] = δ(s, y) when u is added to S.

I Now we can get a contradiction to d[u] 6= δ(s, u):

y is on shortest path s; u, and all edge weights are nonnegative
⇓

δ(s, y) ≤ δ(s, u)
⇓

d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u] (upper bound property)

Also, both y and u were in Q when we chose u, so that

d[u] ≤ d[y]

Therefore, d[y] = δ(s, y) = δ(s, u) = d[u]. Contradicts assumption
that d[u] 6= δ(s, u).

I Hence, Dijkstra’s algorithm is correct.

1Proof. x ∈ S and u is the first vertex such that d[u] = δ(s, u) when u is added to S
⇒ d[x] = δ(s, x) when x is added to S. Relaxed (x, y) at that time, so by the
convergence property, d[y] = δ(s, y).

9 / 9

