
ECS122A Extra Reading Money Changing Problem

1. The money changing problem starts with a given set of positive integers called
denominations d1, d2, . . . , dn (think of them as the integers 1, 5, 10, and 25) and an
integer A, we want to find nonnegative integers a1, . . . , an ≥ 0 such that

A =
n∑

i=1

aidi.

2. First, we note that A can be expressed as a linear combination of the di if and only if
di = 1 for some i. Here is a proof.

If one of your denominations di is 1, you will certainly be able to express every integer
A as

∑n
i=1 aidi for some nonnegative integers a1, · · · , an. Conversely, in order to express

A = 1 as a linear combination, you must have di = 1 for some i.

3. In general a necessary condition that A =
∑n

i=1 aidi is that g = gcd(d1, ..., dn) divides
A. In fact, g|A turns out to be both necessary and sufficient for A ≥ X for some (large)
X. Here is a proof.

From the extended Euclidean algorithm we know we can write g =
∑n

i=1 gidi with some
possibly negative gi. Now let

G =
n∑

i=1

|gi|di,

dmin = min
i

di,

k = dmin/g,

X = kG.

First note that the k consecutive multiples of g in the set S = {kG, kG + g, kG +
2g, . . . , kG+ (k−1)g}, all have nonnegative coefficients when written as

∑n
i=1 aidi. The

next multiple of g is kG+kg = kG+dmin, which has even larger nonnegative coefficients
than kG. The next k − 1 multiples of g consequently also have nonnegative coefficients
until we get to kG + 2xmin, and so on.

Note that the coefficients are not necessarily unique (all the di could be identical), but
we have shown that there is at least one set of nonnegative coefficients for all multiple
of g at least equal to X.

4. The optimal money changing problem is that for a given A, find the nonnegative
ai’s that satisfy A =

∑n
i=1 aidi, and such that the sum of all ai’s is minimal — that is,

you use the smallest possible number of coins.



5. Here is a greedy algorithm for solving this problem:

Order your denominations such that d1 > d2 > · · · > dn. Then the greedy algorithm
for this problem would be: Given A, let a1 be the largest integer such that a1d1 ≤ A.
If A − a1d1 > 0, let a2 be the largest integer such that a2d2 ≤ A − a1d1. If you have
nothing left over after doing this for i = 1, · · · , n, then A =

∑n
i=1 aidi.

6. Let us show that the greedy algorithm finds the optimum ai’s in the case of the denom-
inations {1, 5, 10, 25}. Here is a proof.

Since 1 divides 5 and 5 divides 10, it is clear that if we have a case in which the greedy
algorithm would not find the optimal solution, it must involve 25, i.e. A must be greater
than 25. Assume the greedy algorithm does not find the optimal solution for A, A > 25.
Then A =

∑4
i=1 aidi =

∑4
i=1 bidi and

∑4
i=1 ai >

∑4
i=1 bi, where the ai were determined

by the greedy algorithm and the bi are optimal in that
∑4

i=1 bi is minimal. W.l.o.g.
a4 = b4 [since a4 ≤ 4 any change of the number of 1 cent coins must occur in 5 unit
steps to give the same sum-this is obviously worse than changing b3 ], in addition to
that note that a3 ≤ 1.

By the above considerations we must have a1 > b1. Let x := a1−b1. We have three cases
to consider: a2 = b2, a2 > b2 and a2 < b2. If we set y := a2 − b2 then we can compute
b3 = 5x + 2y + a3. Thus the number of coins changes by

∑4
i=1 bi −

∑4
i=1 ai = 4x + y.

If we can show that this number is positive, this is a contradiction and we are done. In
cases 1 and 2, x and y are ≥ 0. Therefore 4x + y is clearly positive.

In case 3, y is negative. But, as we have to ensure that b3 = 5x+ 2y + a3 is ≥ 0 and we
know that a3 is at most 1, we have y ≥ −5

2
x− 1

2
. Hence 4x+ y ≥ 3

2
x− 1

2
and it is again

positive.

7. You can extend this problem and ask “What are good necessary and sufficient conditions
on a currency such that the greedy algorithm always gives the minimum amount of coins.”
This problem is still open. Partial answers and light hearted discussions can be found
in the following references:

(a) M. J. Magazine, G. L. Nemhauser, L. E. Trotter Jr., When the Greedy Solution
Solves a Class of Knapsack Problems, Operations Research 23 (1975), p. 207 – 217

(b) John Dewey Jones, Orderly Currencies, American Mathematical Monthly 101 (1994),
p. 36 – 38

(c) Stephen B. Maurer, Disorderly Currencies, American Mathematical Monthly 101
(1994), p. 419.


