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1. Singular Value Decomposition (SVD)

Any m-by-n matrix A with m ≥ n can be written as

A = UΣV T ,

where U is m-by-n orthogonal matrix (UTU = In) and V is n-by-n orthogonal matrix (V TV = I),
and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Nonnegative scalar σ1, σ2, . . . , σn are called singular values. The columns {ui} of U are called left
singular vectors of A. The columns {vi} of V are called right singular vectors.

If m < n, the SVD can be defined by considering AT .

2. Connection (difference) between eigenvalues and singular values.

(a) Eigenvalues of ATA are σ2i for i = 1, 2, . . . , n. The corresponding eigenvectors are the right
singular vectors vi for i = 1, 2, . . . , n.

(b) Eigenvalues of AAT are σ2i for i = 1, 2, . . . , n and m−n zeros. The left singular vectors ui for
i = 1, 2, . . . , n are corresponding eigenvectors for the eigenvalues σ2i . Any m− n orthogonal
vectors that are orthogonal to u1, u2, . . . , un as the eigenvectors for the zero eigenvalues.

3. Suppose that
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

Then

(a) the rank of A is r,

(b) the column space of A is spanned by [u1, u2, · · · , ur].
(c) the nullspace of A is spanned by [vr+1, vr+2, . . . , vn].

4. The matrix norm ‖A‖2 induced the vector 2-norm

‖A‖2 ≡ max
06=x∈Rn

‖Ax‖2
‖x‖2

= σ1 =
√
λmax(ATA).

5. Suppose that A has full column rank, then the pseudo-inverse can also be written as1

A+ ≡ (ATA)−1AT = V Σ−1UT .

6. The SVD of A can be rewritten as

A = E1 + E2 + · · ·+ Er

where r = rank(A), Ek for i = 1, 2, . . . , r is a rank-one matrix of the form

Ek = σkukv
T
k ,

1If m < n, then A+ = AT (AAT )−1.
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and is referred to as the k-th component matrix. Component matrices are orthogonal to each
other, i.e.,

EjE
T
k = 0, j 6= k.

Furthermore, since ‖Ek‖2 = σk, we know that

‖E1‖2 ≥ ‖E2‖2 ≥ · · · ≥ ‖Er‖2.

It means that the contribution each Ek makes to reproduce A is determined by the size of the
singular value σk,

7. Optimal rank-k approximation (Eckart-Young Theorem):

min
B ∈ Rm×n

rank(B) = k

‖A−B‖2 = ‖A−Ak‖2 = σk+1,

where
Ak = E1 + E2 + · · ·+ Ek = UkΣkV

T
k ,

where Σk = diag(σ1, σ2, . . . , σk), Uk and Vk are the first k columns of U and V , respectively. Ak

is called a truncated SVD.

8. The problem of applying the leading k components of A to analyze the data in the matrix A is
called Principal Component Analysis (PCA).

9. An application of PCA for lossy data compression.

Note that Ak is represented by mk+k+nk = (m+n+1)k elements, in contrast, A is represented
by mn elements. Therefore, we have

compression ratio =
(m+ n+ 1)k

mn

Matlab script: svd4image.m
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