Introduction to Deep Learning
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Given training data with categories A (o) and B (x), say well drilling sites
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Question? How to classify the rest of points, say where should we propose
a new drilling site for the desired outcome?
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Al via Machine Learning

1. Al via Machine Learning has advanced radically over the past 10 year.

2. ML algorithms now achieve human-level performance or better on the
tasks such as

face recognition

optical character recognition

speech recognition

object recognition

playing the game Go — in fact, defeated human champions
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3. Deep Learning becomes the centerpiece of ML toolbox.



Deep Learning

> Deep Learning = multilayered Artificial Neural Network (ANN).
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Deep Learning

> Deep Learning = multilayered Artificial Neural Network (ANN).
> A simple ANN with four layers
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Deep Learning

> An ANN in a mathematically term

Fz)=0 (WW o (W[3] oWz + bl 4 b[3]> + b[4])

where
> pi= {(W[Q], b[Q])7 (W pB3ly, (W[4], b[4])} are parameters to be
“trained /computed” from training data.

» o(+) is an activiation function, say sigmoid function
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Deep Learning

> The objective of training is to “minimize” a properly defined cost
function, say

1 & : ;
in Cost(p) = — F(z®) — @2,
i Con(p) = 15 1)

where {(z*),y)} are training data
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Deep Learning

> The objective of training is to “minimize” a properly defined cost
function, say

1 & , ,
in Cost(p) = — F(z®) — y® 2,
min Cos () m;:l £ (=) —y™|3

where {(z®),y(")} are training data
> Steepest/gradient descent

p «— p — 7 VCost(p)

where 7 is known as the learning rate.
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Deep Learning

> The objective of training is to “minimize” a properly defined cost
function, say

1 & , ,
in Cost(p) = — F(z®) — y® 2,
min Cost(p) = 3 I1F() =y

where {(z®),y(")} are training data
> Steepest/gradient descent

p «— p — 7 VCost(p)

where 7 is known as the learning rate.

The underlying operations of DL are stunningly simple, mostly
matrix-vector products, but extremely intense.
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Given training data with categories A (o) and B (x), say well drilling sites
with different outcomes

Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Classification after 90 seconds training on my desktop
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Experiment 1
The value of Cost(W1, bl1):
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Experiment 2

Given training data with categories A (o) and B (x), say well drilling sites
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Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Classification after 90 seconds training on my desktop
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Experiment 2

1

Classification after 90 seconds training on my desktop
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Experiment 2
The value of Cost(W1, bl1):
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Experiment 3

Given training data with categories A (o) and B (x), say well drilling sites
with different outcomes
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Experiment 3

Given training data with categories A (o) and B (x), say well drilling sites
with different outcomes
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Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?
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Experiment 3

Classification after 16 seconds training on my desktop
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Experiment 3

Classification after 16 seconds training on my desktop
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Experiment 3

Classification after 38 seconds training on my desktop
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Experiment 3

Classification after 38 seconds training on my desktop
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Experiment 3

Classification after 46 seconds training on my desktop
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Experiment 3

Classification after 46 seconds training on my desktop
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Experiment 3

Classification after 62 seconds training on my desktop
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Experiment 3

Classification after 62 seconds training on my desktop
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Experiment 3

Classification after 83 seconds training on my desktop
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Experiment 3

Classification after 83 seconds training on my desktop
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Experiment 3

Classification after 156 seconds training on my desktop
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Experiment 3

Classification after 156 seconds training on my desktop
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Experiment 3

The value of Cost(W1, bl1):
16 38 46 62 83 156

107

g
g

210 g X € € € €
2 2 2 2 2 2
H H H H Zao Za
H H H 2w H H
o e fo~—ono i §ao g
5 5 5 5100 5 5
H H H H B B
;m" ;m" ;m" ;m‘ ;m’ ;m’
o 3 o 12 5 4 LR T s 1
Iteration Number ,10% Iteration Number ,10% Iteration Number ,10%

5 10 1 2 1 2 3
Iteration Number 10% Iteration Number .10% Iteration Number 10%

20/24



Experiment 4

Given training data with categories A (o) and B (x), say well drilling sites
with different outcomes
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Experiment 4

Given training data with categories A (o) and B (x), say well drilling sites
with different outcomes
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Question for DL: How to classify the rest of points, say where should we
propose a new drilling site for the desired outcome?



Experiment 4

Classification after 90 seconds training on my desktop
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Experiment 4

1

Classification after 90 seconds training on my desktop
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Experiment 4
The value of Cost(W1, bl1):
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“Perfect Storm”

1. The recent success of ANNs in ML, despite their long history, can be
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1. The recent success of ANNs in ML, despite their long history, can be
contributed to a “perfect storm” of
> large labeled datasets;
improved hardware;
clever parameter constraints;
advancements in optimization algorithms;
more open sharing of stable, reliable code leveraging the latest in
methods.

vy VvVy

2. ANN is simultaneously one of the simplest and most complex
methods:
> learning to model and parameterization
> capable of self-enhancement
> generic computation architecture
> executable on local HPC and on cloud
> broadly applicable but requires good understanding of the underlying
problems and algorthms
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