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Power method

» Power iteration:

Given an initial vector uy,

1=0

repeat
tiy1 = Au;
Uir1 = tiy1 /|| tiv1 ]2 (approximate eigenvector)
Oir1 = ull | Auipq (approximate eigenvalue)
1=1+1

until convergence

» Simple stopping criterion: |0;1 — 6;| < tol - |0;].



Power method

Example: Let

—261 209 —49
A= | =530 422 —-98
—800 631 —144

and A\(A) = {10,4, 3}.
Let up = (1,0,0)7, then

1 2 3 10

?
Qi‘994.49 13.0606 10.07191 --- 10.0002



Power method

Convergence analysis: Assume that A is diagonalizable, i.e.,
A=XAX"!

with A = diag()\l,)\2,. . ,)\n) and ‘)\1‘ > |/\2| > ... > |/\n’
Then, we can show that

Alug

> U = P = x1/||x1]|, where x; = Xe; as ¢ — oc.

> 0, — A\ as i — oo.

» The convergence rate depends on RQ}
Therefore, if el Nl /\ | is close to 1, then the power method could

be very slow convergent or doesn’t converge at all.



Inverse iteration

Purposes:
» Overcome the drawbacks of the power method (slow
convergence)
» find an eigenvalue closest to a particular given number
(called shift): o
Observation: if A is an eigenvalue of A, then
» A\ — o is an eigenvalue of A — o/,
1

>+ is an eigenvalue of (A —ol)™".

1/(ambda-\sigma)




Inverse iteration

Given an initial vector ug and a shift o

1=20

repeat
solve (A — ol )ty = u; for t;44
Wir1 = tiv1 /|| tiv1]|2 (approximate eigenvector)
O; 11 = ufl  Auigq (approximate eigenvalue)
1=1+1

until convergence

If we change the shift ¢ in each iteration:
o= ufilAqu,

we have a so-called Rayleigh quotient iteration.



Inverse iteration

Convergence analysis: Assume A = XAX ! with
A = diag(A1, A2, ..., Ay) and A, is the eigenvalue cloest to
the shift o. It can be shown that

» u; — /||| as @ — oo, where x, = Xey

» 0; converges to \, i — 00.

|Ar.—0o]
[Aj—ol”

» Convergence rate depends on max;



Inverse iteration

1. Advantages:

» the ability to converge to any desired eigenvalue
nearest to the shift o;

» typically converges very quickly, and is particularly
effective when we have a good approximation to an
eigenvalue and want only its corresponding
eigenvector.

2. Drawbacks:
» expensive in general: solving linear systems
(A —ol)t;y1 = u; for u;q1, which could be very
expensive for large matrices
» Only compute one eigenpair.



Orthogonal (subspace/simultaneous) iteration

» Purpose: compute p eigenvalues (and eigenvectors) at
a time.

» Orthogonal iteration

Given an initial n X p orthogonal matrix Z

i=20

repeat
Yin = AZ;
Yiii = ZiRia (QR decomposition)
1=1+1

until convergence

» The use of QR decomposition keeps the vectors
spanning span{A’Z,} of full rank.



Orthogonal (subspace/simultaneous) iteration
Example: Let Zy = [eq, e, e3] and

A=
-0.4326 1.1892 -0.5883 -0.0956 -0.6918 -0.3999
-1.6656 -0.0376 2.1832 -0.8323 0.8580 O
.1263 0.3273 -0.1364 0.2944 1.2540 O
.2877 0.1746 0.1139 -1.3362 -1.5937 0.7119
1
[¢]

o o

-1.1465 -0.1867 1.0668 0.7143 -1.4410
.1909 0.7258 0.0593 1.6236 0.5711

-

Eigvals of A = -2.1659+-0.5560i, 2.1493,

=]

.2111+-1.9014i, -0.9548

Eigenvalues of Z!' AZ; for i = 10, 30, 70:

i=10: Eigvals of Z’_10*A*Z_10: -1.4383+-0.3479i, 2.1500
i=30: Eigvals of Z’_30*A*Z_30: -2.1592+-0.5494i, 2.1118

i=70: Eigvals of Z’_70*A*Z_70: -2.1659+-0.5560i, 2.1493



Orthogonal (subspace/simultaneous) iteration

Convergence results:

» under mild conditions, Z; converges to a subspace
spanned by the first p eigenvectors corresponding to
the p dominant eigenvalues, where

M= o 22 A > P 2 -0 = A

» If we let B, = ZI'AZ;, then

and eigenvalues of B; approximate the dominant
eigenvalues of A.

» Convergence rate depends on |A,.1|/|A,|-



QR iteration

» Goal: reorganize orthogonal iteration to incorporate
shifting and inverting as in the inverse iteration. This
will make it more efficient and eliminate the
assumption that eigenvalues differ in magnitude.

» QR iteration

Ag=A
1=0
repeat
A; = QiR; (QR decomposition)

z—i—l =R, Qz
1=1+1
until convergence



QR iteration

Properties:

» Observe that A;11 = R,Q; = Q Q;R;Q; = Q] A,Q:.
Therefore it performs an orthogonal similarity
transformation at each iteration.

» A, is orthogonally similar to Ay = A:

Aip1 = (QoQ1 -+ Qi1@i) " A(QuQ1 - -+ Qi1 Qi)

Therefore A, and A have same eigenvalues. (why?
homework)



QR iteration

Example. The same test matrix as before.

After 10 iterations:

A_10 =
-1.6994 0.2201 -0.8787 -1.4292  -0.3847 0.0112
-0.0007 1.1325 1.2186 1.2245  -0.0867 0.0648
0.2637 1.9636 -0.1598 -2.3959 0.8136  -0.4311
0.0364 -0.2346 -0.5527 -0.4393 -1.9263 1.2496
0.4290 1.3482 -1.1484 0.6121 -0.5937 0.2416
0.0003 0.0013 -0.0003 -0.0011 0.0014  -0.9554



QR iteration

Example. The same test matrix as before.

After 30 iterations:

A_30 =
-2.4055 -1.0586 1.3420 -0.0991 1.1210 0.1720
0.0517 0.9645 .6519  -0.8512 -0.7215
-0.2248 1.9947 -0.7656 -1.1876 -0.2736 -0.1552
-0.0029 -0.0263 -0.0682 0.1381 -2.3094
-0.0147 0.0808 -0.0569 .5462 0.3082 -0.8476
0.0000 0.0000 0.0000 0.0000 0.0000 -0.9548
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» From the last rwo of Az, we can conclude “-0.9548 is
an eigenvalue of A”.

» The subsequent QR iterations are performed on the
leading 4 x 4 submatrices to find the rest of
eigenvalues.



QR iteration with shifts = QR Algorithm

1. Purpose: accelerate the convergence of QR iteration by
using shifts
2. QR Tteration with shifts
Ag=A;i=0
repeat
Choose a shift o;
A; — ol = QiR; (QR decomposition)
Aipr = RiQi + o3l
1=1+1
until convergence



QR iteration with shifts = QR Algorithm

Property:
» A; and A;,; are orthogonally similar: A;,; = QT 4;Q;.

» Therefore, A;,1 and A are orthogonally similar, and
A1 and A have the same eigenvalues.

why? homework!



QR iteration with shifts = QR Algorithm

How to choose the shifts ;7

» If 0; is an exact eigenvalue of A, then it can be shown

that R
A a 1

0 g;

Aip1 = RiQi + 0yl = [

This means that the algorithm converges in one

iteration. If more eigenvalues are wanted, we can apply

the algorithm again to the (n — 1) x (n — 1) matrix A.
» In practice, pick o; = A;(n,n).

Reason: observing that the convergence of the QR

iteration (without a shift), the (n,n) entry of A;

usually converges to an eigenvalue of A first.



QR iteration with shifts = QR Algorithm

Example. The same test matrix as before. The following is
the numerical result of QR iteration with a shift.

With the shift og = 2.1493, an “exact” eigenvalue of A,
after one iteration:

Al =
-1.4127 1.4420
-1.2949 -0.2334
0.5473 0.1343 -
-0.2630 0.0284
-1.6063 -0.3898
0.0000 0.0000

0845 -0.6866 -0.1013 -0.2042
4047  -1.3695 .5274  -0.7062
7991 -0.6716 .1585 .0736
5440 -1.4616 -1.5892 .9205
3410 0.1623 -0.9576 -0.5795
0000 0.0000 0.0000 2.1493
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We observe that by the QR iteration converged in
one-iteration.



QR iteration with shifts = QR Algorithm
With the shifts o; = A;(n,n), after 7 iteration:

AT =
-2.4302 2.0264 -0.2799 -0.2384 0.3210 -0.0526
-0.1865 -1.4295 -1.3515 0.0812 0.8577 -0.0388
-0.1087 -0.8991 0.4491 0.4890 -1.8463 -1.2034
-0.0008 0.0511 -0.5997 -0.7839 -0.8088 -0.5188
-0.0916  -0.8273 1.6940 0.0645 -0.6698 -0.0854
0.0000 0.0000 0.0000 0.0000 0.0000 2.1493

We observe that by 7th iteration, from the last row, we
have found an eigenvalue 2.1493 of A. The subsequent QR
iterations with shift are then performed on the leading

4 x 4 submatrices to find the rest of eigenvalues.



QR iteration with shifts = QR Algorithm

1. The QR decomposition takes O(n3) flops. Even if the
QR iteration took n iterations to converge, the overall
cost will be O(n*). This is too expensive.!

2. However, if the matrix is initially reduced to upper
Hessenberg form, then the QR decomposition of a
Hessenberg form costs O(n?) flops. As a result, the
overall cost of the algorithm is reduced to O(n?*). This
is referred to as the Hessenberg QR algorithm.

3. The Hessenberg QR algorithm is the method of
choice for dense eigenvalue problem today, and is
considered as one of the top 10 algorithms invented in
the 20th century.

!The complexity of algorithms for all standard matrix computation
problems is at O(n?).



